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Abstract

The sets we are going to consider here are of the form {z ∈ C; |A(z)| =
1} (equipotential) and {z ∈ C; ImA(z) = 0} (harmonic) with A being a
polynomial with complex coefficients. There are two themes which we want
to focus on and which come out from invariance property of inner products
on C[Z] related to the aforesaid sets. First, we formalize the construction
of integral representation of the inner products in question with respect to
matrix measure. Then we show that these inner products when represented
in a Sobolev way are precisely those with discrete measures in the higher
order terms of the representation. In this way we fill up the case already
considered in [3] by extending it from the real line to harmonic sets on the
complex plane as well as we describe completely what happens in this matter
on equipotential sets. As a kind of smooth introduction to the above we are
giving an account of standard integral representations on the complex plane
in general and of those supported by these two kinds of real algebraic sets.
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1 Introduction

Denote as usually by C[Z] the algebra of all polynomials in a single variable having
complex coefficients. In this paper we are going to consider a semi-inner product s
on C[Z], that is a mapping s : C[Z]× C[Z] 7→ C with the properties: the mapping
p 7→ s(p, ·) is linear, s(p, q) = s(q, p) for p, q ∈ C[Z] and s(p, p) ≥ 0 for p ∈ C[Z].
Generally speaking, we are interested here in s being represented either as

s(p, q) =
∫

C
pq̄ dµ, p, q ∈ C[Z], (1)

or, more intriguing, as 1

s(p, q) =
N∑

i=0

∫
C

p(i)q(i) dµi, p, q ∈ C[Z], (2)

where µ and µi, i = 0, 1, . . . , N , are positive (=non-negative) Borel measures on C
having support on a real algebraic set like lemniscates and harmonic curves.

If we define the moments of s by

sm,n
df
= s(Zm, Zn), m, n = 0, 1, . . . , (3)

then (1) says that {sm,n}∞m,n=0 is a complex moment bisequence on C (the references
[11], [10], and [12] have to be recommended in this matter); in this context the rep-
resentation (2) refers to that of Sobolev type (here we refer to [8] and [9]). Moreover,
there is a way back, given a bisequence {sm,n}∞m,n=0, we can always extend it in a
sesquilinear way to a semi-inner product on C[Z] provided

K∑
m,n=0

sm,nξmξ̄n ≥ 0, ξ0, . . . , ξK ∈ C, K = 0, 1, . . . , (4)

which means positive definiteness of every finite section {sm,n}K
m,n=0 in the matrix

sense. Thus, while these two possibilities are equivalent (via (3)), we prefer here to
use the semi-inner approach.

In this paper we consider representations of the form (1) (call them standard),
also with a matrix valued measure replacing the scalar one; this is the first part.
Then, in the second part, we deal with representations (2) of Sobolev type. Before
doing this we want to say a bit what can be done for representations (1) themselves.

Let us mention that different kinds or integral representations of inner products
are discussed in [7].

1 the superscript (i) stands for the i-th derivative with respect to the independent variable
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2 Positivity conditions and standard representations

In the sequel we distinguish the conditions

s(p, p) ≥ 0, p ∈ C[Z], (5)

which is included in the definition of semi-inner product, by referring to it as to
positivity of s and this corresponds to positivity of {sm,n}∞m,n=0 understood as in (4).
There is another condition, much stronger, which requires s to satisfy

K∑
m,n=0

s(Zmpn, Z
npm) ≥ 0, p0, . . . , pK ∈ C[Z], K = 0, 1, . . . (6)

We call it positive definiteness of the semi-inner product s and this corresponds in
the moment version of (3) to

K∑
k,l,m,n=0

sk+n,l+mξk,lξ̄m,n ≥ 0, {ξi,j}K
i,j=0 ⊂ C, K = 0, 1, . . . , (7)

which is recognized as positive definiteness of the bisequence {sm,n}∞m,n=0. Let us
mention by the way that condition (6) ensures the possibility of extending the defi-
nition

s̃(Z̄mp, Z̄nq)
df
= s(Znp, Zmq), p, q ∈ C[Z]

in a sesquilinear way to an semi-inner product (thus positive) on C[Z, Z̄]. As a
consequence we get, cf. [13],

s̃(p, q) = L(pq̄),

for some positive linear functional L on C[Z, Z̄]. This shows how strong positive
definiteness is.

Positive definiteness is equivalent for s to be of the form s(p, q) = L(pq̄), where
L is a linear functional on C[Z] (cf. [13]) and it is not sufficient to guarantee
existence of the representation (1); still some stronger conditions are needed (see
[12] for recent results in this matter). On the other hand, for the very special cases
when s(Zp, q) = s(p, Zq) or s(Zp, Zq) = s(p, q), p, q ∈ C[Z] (which determines the
Hankel or the Toeplitz structure of the infinite matrix {sm,n}∞m,n=0) even positivity of
s implies the representation (1). Because these two cases correspond to the situation
when the support of the measure µ is either the real line {z; Im z = 0} or the unit
circle {z; |z| = 1} the question is whether the same happens for other real algebraic
sets on the complex plane C. Though this is not so in general (see [11] for some
discussion) we try to say a word on the circumstances under which positivity of the
semi-inner product together with its invariance (like this mentioned above in the
real line or unit circle case) lead to representation of the form (1) with measure
supported on a real algebraic set: the equipotential sets, that is sets of the form
{z ∈ C; |A(z)| = 1} and the harmonic ones, that is of the form {z ∈ C; Im A = 0},
for some A ∈ C[Z].

Fortunately, for the equipotential sets the answer is affirmative.
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Theorem 1 ([11], Theorem 4). Suppose s is a semi-inner product on C[Z] such
that s(Ap,Aq) = s(p, q), p, q ∈ C[Z] for some nonconstant A ∈ C[Z]. Then the
following conditions are equivalent

(i) s satisfies (6);

(ii) there is a positive measure µ such that

s(p, q) =
∫
E(A)

pq̄ dµ, p, q ∈ C[Z],

where E(A)
df
={z ∈ C; |A(z)| = 1}.

Unfortunately, for the harmonic case nothing like this exists so far; one has to
add some extra conditions, like the Carleman one, to get a sufficiency result.

3 The matrix representation of s

We start with the algebraic observation (already exploited in this direction in [4],
[5] and [6]) that the following direct sum decomposition holds

C[Z] = PA u ZPA u Z2PA u · · ·u Zd−1PA (8)

where PA
df
= lin{1, A,A2, . . . } 2 and d = deg A > 0. So, if p is in C[Z] we get a

uniquely determined collection

π(p)
df
=(π0(p), . . . , πd−1(p)) (9)

of polynomials in C[Z] such that

p = π0(p) ◦ A + Z(π1(p) ◦ A) + · · ·+ Zd−1(πd−1(p) ◦ A). (10)

The mappings p 7→ πk(p) are apparently linear and satisfy

πk((r ◦ A)p) = rπk(p), p, r ∈ C[Z]. (11)

Given a semi-inner product s, we can associate with it a Hilbert space H together
with a mapping C[Z] 3 p 7→ p̃ ∈ H such that 3

s(p, q) = 〈p̃, q̃〉H.

2 we prefer to use ”lin” for the linear span just to distinguish it from other algebraic spans
3 〈·, -〉 stands always for an inner product in a Hilbert space, even if it is finite dimensional; in

the latter case as a consequence we can drop the usual linear algebra notation and replace it by
the more convenient shape free one used in operator theory
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3.1 The equipotential case

This case means we are going to work under the assumption of invariance of s of
the form

s(Ap, Aq) = s(p, q), p, q ∈ C[Z] (12)

for some fixed nonconstant A ∈ C[Z]. Then in the Hilbert space H we can consider 4

an operator V : p̃ 7→ Ãp which, by (12) is well defined and extends to an isometry
on the whole H. Furthermore, we have

s(Amp, Anq) = 〈V mp̃, V nq̃〉H. (13)

Now, by classical means, we can imbed H isometrically in another Hilbert space K
into such a way that V extends to a unitary operator U which leaves H invariant.
Let E be the spectral measure of U . Then we can write (13) as 5

s(Amp, Anq) =
∫

T
zmz̄n〈E(dz)p, q〉K. (14)

Decomposing p and q according to (10) we can write furthermore

s(p, q) =
d−1∑
i,j=0

s(Zi(πi(p) ◦ A), Zj(πj(q) ◦ A))

=
d−1∑
i,j=0

∫
T
πi(p)(z)πj(q)(z)〈E(dz)Zi, Zj〉K.

All this brings us to 6

Theorem 2. A semi-inner product s satisfies (12) if and only if

s(p, q) =
∫

T
〈M(dz)π(p)(z), π(q)(z)〉CN (15)

(with π(p) and π(q) are defined by (9)) whereas the positive definite d × d-matrix
measure M is defined as

M
df
=
〈
E(·)(1, Z, . . . , Zd−1), (1, Z, . . . , Zd−1

)
〉K.

Proof. The only thing which still would need some comment is that if s is represented
by (14), then it satisfies (12); but this is straightforward. �

Using (15) and (11) we come to the following observation.

Corollary 3. Suppose the semi-inner product s satisfies (12). Then positivity of s
is equivalent to

K∑
m,n=0

q((rn ◦ A)pm, (qm ◦ A)pn) ≥ 0, p1, . . . , pK , q1, . . . , qK ∈ C[Z]. (16)

4 a rough way of doing this is to pass to the quotient space, complete it afterwards and claim
that everything goes well; the other is to quote something, for someone who prefers the latter we
refer to [14] where some more information on the technique can be found

5 this requires some identifications on the way, as dropping the tilde ˜ for instance, which we
omit

6 a unconventional approach to matrix integration can be found in [15]
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3.2 The harmonic case

By this we mean s to satisfy

s(Ap, q) = s(p, Aq), p, q ∈ C[Z] (17)

for some fixed A ∈ C[Z]. The formula T : p̃ 7→ Ãp makes T a well defined linear
operator provided

s(Ap, Ap) = 0 implies s(p, p) = 0. (18)

T is apparently a symmetric operator in H and it has a selfadjoint extension therein
(the latter fact finds its argument in [15]). If E is the spectral measure of an
extension of T in H, then as above we come to the following

Theorem 4. Suppose a semi-inner product s is such that (18) holds. Then s satisfies
(17) if and only if

s(p, q) =
∫

R
〈M(dx)π(p)(x), π(q)(x)〉CN (19)

(with π(p) and π(q) are defined by (9)) whereas the positive definite d × d-matrix
measure M is defined as

M
df
=
〈
E(·)(1, Z, . . . , Zd−1), (1, Z, . . . , Zd−1

)
〉K.

Remark 5. One should mention here that some higher order recurrence relations
(considered in [1], [2] and, in a sense also in [3]) are in fact immediately related
to the kind of invariance we consider here; their relation to other properties, like
matrix representation, is less direct. More precisely, we have the following.

Suppose A is a nonconstant polynomial in C[Z]. Then the following conditions
are equivalent

(α) s satisfies (17);

(β) the sequence {pn}∞n=0 of polynomials orthonormal with respect to s satisfies the
following recurrence relation

Apn =
n+d∑

i=n−d

a
(n)
i pi, n = 0, 1, . . . , a

(n)
i = 0, if n− d < 0,

with a
(n)
i such that a

(n)
i = a

(i)
n , n− d ≤ i ≤ n + d and a(n+d)

n always non-zero.

The proof α ⇒ β goes the same way as that for orthonormal polynomials on the
real line. For the other implication insert the recurrence relation into both sides of
(17) and compare.
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4 The Sobolev type representation of s

Suppose we know s is already of the form

s(p, q) =
N∑

i=0

∫
Si

p(i)q(i) dµi, p, q ∈ C[Z], (20)

with N ∈ {0, 1, . . . } ∪ {+∞}. For fixed p and q this sum is finite though its length
may increase with the degree of those polynomials. We do not fix N a priori but we
try to determine it from the degree of A and the invariance property (12) or (17) as
well as to localize the supports of µi’s.

Let us short the notation by

sk(p, q)
df
=
∫
C
p(k)q(k) dµk, p, q ∈ C[Z] , k = 0, 1, . . . , (21)

Ei(A)
df
=

{z ∈ C; |A(z)| = 1} if i = 0

{z ∈ C; |A(z)| = 1} ∩ Z(A′) ∩ · · · ∩ Z(A(i)) if i = 1, . . . , d− 1
(22)

and

Hi(A)
df
=

{z ∈ C; Im A(z) = 0} if i = 0

{z ∈ C; Im A(z) = 0} ∩ Z(A′) ∩ · · · ∩ Z(A(i)) if i = 1, . . . , d− 1
(23)

where
Z(p)

df
={z ∈ C; p(z) = 0}, p, q ∈ C[Z].

4.1 The equipotential case

Theorem 6. Let A ∈ C[Z] with d = deg A.

(i) If s has an integral representation7

s(p, q) =
∞∑
i=0

∫
Si

p(i)q(i) dµi, p, q ∈ C[Z] (24)

with supp µi ⊂ Si for i = 0, 1, . . . and has the invariance property (12) then
(cf. (22))

supp µi ⊂ Si ∩ Ei(A), i = 0, 1, , . . . , d− 1, (25)

supp µi = ∅, i = d, d + 1, . . . . (26)

provided 8 |A(z)| ≥ 1 for z ∈ Sk, k = 0, 1, . . . .

7the summation on the right hand side of (24) always terminates, its length depends on degree
of p and q as well as on multiplicities of the roots of A (the lower the multiplicities are the shorter
the summation becomes)

8 this enforces a question: does there exist a representation (24) of s satisfying (12) and such
that suppµ0 ∩ {z ∈ C; |A(z)| < 1} 6= ∅; in other words, is this what follows in the main text
essential or technical?
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(ii) If s is such that

s(p, q) =
d−1∑
i=0

∫
Si

p(i)q(i) dµi, p, q ∈ C[Z] (27)

with S0
df
= Ei(A) , i = 0, 1, , . . . , d− 1 then (12) holds.

Proof of (i). We prove by induction in i that

∫
Si

(|A(z)|2 − 1)µi(dz) = 0,
∫
Sd+i

dµd+i = 0,∫
Sk

|A(k−i)(z)|2µk(dz) = 0, k = 1, 2, . . . . (28)

Notice first that the condition (12) explicitly means for p = q

∞∑
k=0

∫
Sk

(|(Ap)(k)|2 − |p(k)|2) dµk = 0. (29)

Take p = 1 in (29). This gives∫
S0

(|A|2 − 1) dµ0 +
∞∑

k=1

∫
Sk

|A(k)|2 dµk = 0.

This implies directly (28) for i = 0. Suppose now (28) holds for i ≤ n. Then from
(29) with p = Zn+1 we get

((n + 1)!)2
∫
Sn+1

(|A|2 − 1) dµn+1 −
∑

k>n+1

γ2
n+1,k

(
k

n + 1

)2 ∫
Sk

|A(k−(n+1))|2 dµk = 0,

where γm,0
df
= 1, γm,k

df
= m(m−1) · · · (m−k +1) if 1 ≤ k ≤ m and γm,k

df
= 0 otherwise.

This is nothing but (28) for i = n + 1. It is clear that conditions (28) hold for any
n lead directly to (25) and (26). �

Proof of (ii). Perform the indicated differentiation and make use of the specific
ranges of integration. �

4.2 The harmonic case

Here we have the following

Theorem 7. Let A ∈ C[Z] with d = deg A.

(i) If s has an integral representation

s(p, q) =
∞∑
i=0

∫
Si

p(i)q(i) dµi, p, q ∈ C[Z] (30)

with supp µi ⊂ Si for i = 0, 1, . . . and it has the invariance property (17) then
(cf. (23))

supp µi ⊂ Si ∩Hi(A), i = 0, 1, , . . . , d− 1, (31)

supp µi = ∅, i = d, d + 1, . . . . (32)
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(ii) If s is such that

s(p, q) =
d−1∑
i=0

∫
Si

p(i)q(i) dµi, p, q ∈ C[Z] (33)

with S0
df
=H(A) and Si

df
=H(A)∩Z(A′)∩Z(A′′)∩· · ·∩Z(A(i)), i = 1, 2, , . . . ,

d− 1 then (17) holds.

Remark 8. When A ∈ R[Z] and all Sk = R, we are in the situation of [3] (in addition
to that the length N is fixed there). Assuming S0 = R and letting the remaining
Sk’s be arbitrary, we extend the scope of Theorem 1 therein. Because R is only a
subset of H(A) this still does not exhaust the whole power of the conclusion (i) of
Theorem 7.

Because of (32) the series (30) terminates, that is s has the representation

s(p, q) =
N∑

i=0

∫
Sk

p(i)q(i) dµi, p, q ∈ C[Z] (34)

with N ≤ d − 1. It may terminate earlier if a set Sk is chosen too narrow for
some k < d; this happens in [3] if some A(k) has exclusively nonreal zeros. Of
course, setting Sk = C, k = 0, 1, . . . let us enjoy the full length representation with
N = d− 1. Nevertheless, one has to remember that the condition (17) is a kind of
(algebraic) constraint in this game.

Proof of (i). In the sequel we need the following notation

Pm,k
df
=(ZmA)(k)(ZmA)(k), Rm,k

df
=(Zm)(k)(ZmA2)(k), m, k = 0, 1, . . . .

From (17) we get s(Ap, Aq) = s(p, A2q). Thus, for p = q = Zm and with the above
notation, we have

∞∑
k=0

∫
Sk

(Pm,k −Rm,k) dµk = 0, m = 0, 1, . . . (35)

We prove by induction in i that∫
Si

(Im A(z))2µi(dz) = 0,
∫
Sd+i

dµd+i = 0,∫
Sk

|A(k−i)(z)|2µk(dz) = 0, k = 1, 2, . . . . (36)

For m = 0 we get P0,k = |A(k)|2 for k = 0, 1, . . . and R0,k = 0 for k = 1, 2, . . . ,
R0,0 = Ā2. Thus (35) is now

∫
S0

(|A(z)|2 − A(z)2)µ0(dz) +
∞∑

k=1

∫
Sk

|A(k)(z)|2µk(dz) = 0

and, consequently,∫
S0

(|A(z)|2 −ReA(z)2)µ0(dz) +
∞∑

k=1

∫
Sk

|A(k)(z)|2µk(dz) = 0.
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Because |A(z)|2 −ReA(z)2 = 2(Im A(z))2 we have

∫
S0

(Im A(z))2µ0(dz) = 0,
∫
Sk

|A(k)(z)|2µk(dz) = 0, k = 1, 2, . . . . (37)

The first of (37) gives us supp µ0 ⊂ H(A) ∩ S0. The second implies

supp µk ⊂ Z(A(k)) ∩ Sk, k = 1, 2, . . . , d− 1, supp µd ∩ Sd = 0. (38)

These together establish (36) for i = 0.
Suppose (36) holds for i ≤ n. Take m = n + 1. Notice that, under the induction

assumption, we get

∫
Sk

Pn+1,k dµk =


0 k < n + 1

(k!)2
∫
Sk
|A(z)|2µk(dz) k = n + 1

(k!/(k − n− 1)!)2
∫
Sk
|A(k−(n+1))(z)|2µk(dz) k > n + 1

and ∫
Sk

Rn+1,k dµk =

(k!)2
∫
Sk

A(z)2µk(dz) k = n + 1

0 otherwise

Inserting these two formulae into (35) we deduce that (36) holds for i = n + 1 as
well. This completes the proof of (i). �

Proof of (ii). Straightforward calculation again. �

Remark 9. Consider a number of examples which exhibit different aspects of Theo-
rems 6 and 7.

(a) Take A = Z5 −
√

5Z4 + 4Z5 − 2
√

5Z. Then R ∪ {i} ∪ {− i} ⊂ H0(A) and
H1(A) = {1/

√
5} ∪ {i} ∪ {− i}. This show a difference between Theorem 1 of

[3] and our Theorem 7.

(b) The polynomial A = Z3 + 3Z + 3 of example 2 of [3], p 459 has H1(A) = ∅
though R ⊂ H0(A). This is the reason why the Sobolev part of (30) disappears;
however the standard part of (30) can be considered for S0 = H0(A) = {z ∈
C; Re z = 0} ∪ {z ∈ C; Im z = 0} ∪ {z ∈ C; Re z = Im z}.

(c) For A = i Z2 − i one has H0(A) = T df
={z ∈ C; (Re z)2 + (Im z)2 = 1}.

This is the unit circle case though the invariance (17) is not the usual one.
Nevertheless the Sobolev part may not be trivial because H1(A) = {i,− i}

(d) The usual invariance for the unit circle is ceq8 and A = Z. Here E0 = T (cf.
the case (c) above) and E1(A) = ∅ (no nontrivial Sobolev part on the unit
circle under the invariance (12)). For the lemniscate A = Z2 − 1 we have the
Sobolev part at H1(A) = {0}.

One always has uniqueness of A in the sense it determines E0(A) or H0(A) (two
different polynomials do not lead to the same set because of harmonicity of the
defining functions). This contributes to the question of uniqueness solved in [3]
by Theorem 6. That Theorem gives an answer to the question of uniqueness and
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existence in one: giving a construction expressed by formula (3.25) therein. However
if we follow this construction trying to determine a polynomial A for which Z(A′) =
{−1} ∪ {i} and Z(A′) ∩ Z(A′′) = ∅ (and forgetting about H0(A) for a while) what
we get is A = 1

3
Z3 +(1+ i)Z− i. Then H1(A) becomes empty. Thus the question of

uniqueness and existence of A becomes more complex and this is the price we pay
extending applicability of results of [3] to much broader context.
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