Holomorphic Cliffordian product

Guy Laville

Abstract

Let Ro, be the Clifford algebra of the antieuclidean vector space of di-
mension n. The aim is to built a function theory analogous to the one in
the C case. In the latter case, the product of two holomorphic functions
is holomorphic, this fact is, of course, of paramount importance. Then it is
necessary to define a product for functions in the Clifford context. But, non-
commutativity is inconciliable with product of functions. Here we introduce
a product which is commutative and we compute some examples explicitely.

1 Introduction

In one complex variable, it is possible to define a product of two holomorphic func-
tions f and g by (fg)(z) = f(2)g(z) because this last expression is holomorphic.
Here we make use of commutativity and of Cauchy-Riemann equations which are
first order partial differential equations. But in fact, there is much more than that.
Holomorphy is equivalent of analyticity : taking f(z) = Xa,2? and g(z) = Xa,2?

then
(f9)(z) = Z ( Z ap bq>z".

n ptg=n

We can do the product either in the space of the values or in the space of
the variable and parameters. For higher dimensional spaces, in Clifford analy-
sis, the above two possibilities give two different results. The first product is

Received by the editors February 2003.

Communicated by R. Delanghe.

1991 Mathematics Subject Classification : 30Gxx, 30G35, 15A66.

Key words and phrases : Non-commutative analysis, Clifford algebra, symmetric algebra, Clif-
ford analysis, product, holomorphic Cliffordian functions.

Bull. Belg. Math. Soc. 11 (2004), 375-390



376 G. Laville

useless because if f(z) and g(x) are monogenic [1], [3], or regular [6], or holo-
morphic Cliffordian [9], f(z)g(x) is not. In [1], F. BRACKS, R. DELANGHE,
F. SOMMEN defined the Cauchy Kovalewski product, but it is no so easy to work
with it [8]. The existence of a product is one of the principal questions in Clifford
analysis, see [11] and [13]. In [7] D. HESTENES and G. SOBCZzYK defined the inner
product. In [10] H. MALONEK worked with his permutational product. It is related
to Fueter’s ideas [5].

The anticommutator {a,b} = 1/2(ab + ba) is well known, but when we have
three elements, we get {a,{b,c}} or {{a,b},c} or {{a,c}, b}. In several papers
[12], [14], F. SOMMEN uses the basic fact that the anticommutator of two vectors
is a scalar and hence commutes with all elements. By the same token here a basic
fact is that the anticommutator of two paravectors is a paravector.

In quantum mechanics other products are defined : chronological product, nor-
mal order in product.

Notations.

Let Ry, the Clifford algebra of the real vector space V' of dimension n, provided
with a quadratic form of negative signature. Denote by S the set of scalars in Ry,
which can be identified to R. An element of the vector space S @ V is called a

paravector. Let {e;},7 = 1,...,n be an orthonormal basis of V' and let ¢y = 1.
We have e;e; + eje; = —20;; for 1 < 4,57 < n. On § @V we have two quadratic
structures : one with signature + — --- —, the other with signature + + ---+. In

this latter case the scalar product is denoted by (a | b). To do analysis, we take a
norm on S & V such that |lab|| < |a|| ||8]]-
For any paravector u, we split up the real part ug and the vectorial part u :

UZUO—i‘ﬁ.

2 Algebraic structure on the paravector space

2.1 Symmetric product

THEOREM and DEFINITION 1.- For ¢ € N\ {0} define the multilinear symmetric
function

E: (SeV) — SaVv

(u, ..., up) — 0 Z Ug(1) « - - Ug(£)

where &y is the set of all permutations of {1,...,(}.

Proof.- It is obvious that this function is multilinear and symmetric. To prove
that the values are in S @ V', we need a lemma, but before stating it, it is useful to
introduce an algorithmic symbol :
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1
(1) € Hul € = E Z Ug(1) « - - Ug(0)-

i=1 © oeB,
It is easier to work with this than with E(us, ..., u,).
Lemma 1.
¢ 1L ¢ 1 ¢ ¢
2) € JJwe =7 due [[ue =7 > e JJujeuw=
i=1 i=1 j=1 =1 j=1
J#i J#i
1/t ‘ ¢ ¢
(Z:uZ € Huje +Z € Huj€ ul)
2 i=1 j=1 =1 j=1
J# J#

Proof of (2).- The first and second formulas are factorisations of the symmetric
product. The third one is a mean of these two.

Now, to prove that the values of the function F isin S @ V', we use induction on

For ¢ =1 the result is trivial, for ¢ =2, we have
1
eabe = i(ab—i- ba)

isin S @ V. The last formula (2) allows us to finish the recurrence.

Proposition 1.- Fori=1,...,f andu; € S®V

‘ ‘
(3) le [T wel < [TTwll
i=1 i=1

This follows from the definition.

Extension of the symbol.

Let ¢ be a linear function :
SeV)— (SaV)
(ug,...,ux) — (gpl(ul,...,uk),...,w(ul,...,uk))

then, we define

(4) € ngi(ul,...,up)e =Fog (uy,...,up).

Remark 1.
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It is always possible to restrict the symmetrization to only n = dim V' factors
because if we have ¢ paravectors uy,...,u, we can take u;,,...,u;,, p linearly inde-
pendent vectors, all paravectors u; are linear combinations of 1 and the #;, and the
symmetrization is on ,, ..., U;,.

Remark 2.
k
€ H A; € is well defined for all A; € Ry,, because A; are sums and products
i=1
of paravectors and we have linearity.

Remark 3.

€ x € yz € € makes sense but it is clumsy and it is a pitfall, so we shall avoid
using it. In general it is not equal to € xyz € .

2.2 The symmetric algebra of V'

For n =1, Rg; = C we have a special phenomena. Take R[X] the algebra of
polynomials in one indeterminate, then R[X]/(X?+1) is C. But R[Xj,...,X,],
the algebra of polynomials in n indeterminates is not directly connected with R ,,.
This algebra of polynomials is clearly built to do products.

Inside the € we compute in Rley,...,e,] which may be identified with the
symmetric algebra (algebra of symmetric tensors) of the vector space V.

2.3 Examples
In the following formulas a, b, c are in S @ V.
€a€ =a

1
eabe = =(ab+ ba)

(\V]

1
ea’he = §(a2b + aba + ba®).
- . o Lo 2
It is important to notice that this is not 5 (a”b + ba”)

2 1

eclae = —§a+§ e, ae;
da
PTA) ¢ grpre = (a + th)Pte
q dtq q:(]

H
Here are explicit formulas for € H €i, €
h=1
If H=0( mod 4) and if all indices are equal then it is equal to 1, otherwise
it is 0.
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If H=1( mod 4) and if all indices are equal then it is equal to e;,, otherwise

1
if all indices are equal but one, say i, it is ﬁeil else it is 0.

If H=2( mod 4) and if all indices are equal then it is equal to —1 otherwise

If H=3( mod 4) and if all indices are equal then it is equal to —e;, otherwise

1
if all indices are equal but one, say iy, it is e else it is 0.

Proof of these values :

Take v = (t; e; +...+ty €;,) where ty,...,ty are scalars.
Beside the coefficient, the value of the product is the homogeneous term corre-

sponding to tity...ty in v,

First case : all indices are equal, say e;

v:(tl—i—...—i—tH)eil
v =t + .. 4ty el

1
and e is 1 or e;, or —1 or —e;
i1 i1 iy

Second case : all indices but one are equal, say e;,.

U:tl €z1+(t2++tH) €is

H/2
(B4 (ta+ .. +1tn)?) we get 0
) S\ (H=1)/2

" (t1+(t2+...+tH)> v we get e, /H
vt = H/2

~(B+(ta+ ... +tn)?) we get 0

2 2 (H_l)/Q
—(t1+(t2+...+tH)) v weget —e;,/H

Third case : at least three different indices
v="1; €, +tlaeatw

with w orthogonal to e;, and e;,

(£ + 85 +w?) /2

(11 + 13+ w?)H=D/2 g

— (2 + 12 4+ w?)H/?

—(t2 4+ 34+ w?)HD/2y

We get 0 (no homogenous factor in ty...ty).

2.4 Symmetrization by integral means

The main problem of the € algorithm is the disentangling, that is to translate from
€ expression € to an expression without € € wusing the classical product in the
Clifford algebra. A tool for that is Dirichlet means, which was studied extensively
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by B.C. Carlson [2] in a completely different situation. He uses these means for
classical special functions.

Let E,_; be the standard simplex. .
Ery = {(ti,....t)m) R0V, ¢,>0, Y 8, <1}

p=1

The beta function in ¢ variables is

B(by,...,by) = /E T L =ty — =) iy dEy
—1

B(b) = B(by, ..., be) is symmetric. For b; € C, Re b; > 0 and g integrable, the
Dirichlet measure p; is defined by

() [ o(t) dun(t) :=
1 _
/E gty ... ,tg_l)B— T =t — =t )N dty L dty
—1

(b)

Definition.- For f:S@®V — S &V continuous and uy,...,us in S SV, put

(6) F(f.bu) = [ () d(t)

-1 -1
with t:u = Z tiu; + (1 — Zti)ug.
i=1 i=1

This integral gives the symmetrization.

A simple illustration with two paravectors u, v
2 ! 2 Ly 1 L,
F(t —t,1,1,u,v) :/ (tu + (1 —t)v) dt:§u +§€uv€ —i-gv :
0

By the remark 1 of paragraph 3, it is always possible to take only simplices of
dimension less than or equal to n.

3 Analysis with the holomorphic cliffordian product

3.1 Holomorphic cliffordian functions

In this paragraph, we recall some notions from [9].
Let D denote the differential operator

- 0
D — i~
Z(:) ¢ 8@
and let A be the standard Laplacian
n 62
A= —.
; 0x?
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If n isodd, say n =2m + 1, the vector space V of holomorphic cliffordian

functions was defined to be the kernel ot the DA™ operator.

Let z := x¢+ Z e;x;, it is holomorphic cliffordian as well as its powers "

i=1
(with k € Z). More generally, put « := («ap,...,®,) a multiindice, a; € N, and

n
|| ::Z o
i=0

|a|—-1
Pa(@) =3 TI (6ot %) €oqra)
e v=1

where & is the permutation group with || elements. By the same token, put

/6::(607"'7/671)7 ﬁlEN

18] = Z Bi
i=1
Kl
Sa(z):=>_ ] (x_l eg(y)>x_1.
ocec6 v=1

The functions F, and Sz are, for n odd, holomorphic cliffordian but they
make sense for all n.

Recall from [9] that, when 7 is odd there is a Laurent type expansion for
holomorphic cliffordian functions with a pole at the origin :

f@)= Y Sp@)ds+ S Pale)ea

Bl < B |a|=1

where, in general, dg and ¢, belong to Rg,.

The basic idea is that we work with functions which are limits of sums of =z
and their scalar derivatives. Functions generated in this manner are well-defined for
all n. The problem of building a product is not connected directly with the DA™
operator.

First we extend the product defined in the previous part.

k

3.2 Extension of the product to normally convergent series

o0

THEOREM 2.- Let Z a, be a series which converges in norm and such that the

n=0
oo

coefficients are products of paravectors. Then the series Z € a, € converges and

n=0

x [o@)
€ a, € =) €a,«€.
n=0 n=0
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Proof.- From the inequality (3)
N N
Yo lleanel < > flanll
n=0 n=0

o
thus the series Z € a, € is convergent in norm.
. . n=0
By linearity

N N
€> ae —> €a,€ =0
n=0 n=0

and it suffices to let N — oo.

Now it is easy to extend the product to rational functions. First an example.
We define, for |1 —al| <1

ea'be = € (1—(1—a))71b€ =

o0 o0

e (1-a)fbe => e(l—-a)be.
k=0 k=0

In general we define, for |1 —wv;|| <1

k L 00 00 k l
€Hu,Hv;1€:ZZ€Hu, [Ta—v)" €.
=1 j=1 ki=1 k=1 =1 j=1

Of course we have to find the analytic extension for that symbol.

A classical example is the following : for u,v € (S@® V) \ {0}
e u vt e is defined by :

if u and v are linearly dependent with v = Au for some A € R\ {0} then it is
eutQu)te =11 u2
If w and v are linearly independant for all t € [0,1], tu+ (1 —t)v has an
inverse and we have

1
eulvle = / (tu + (1 —t)w)2dt = F(t —t 1, 1,1,u,v).
0

This was introduced in quantum mechanics by R.P. FEYNMANN [4].
For a proof, in the open set ||1 —u|| <1, ||[1 —v| <1 expand in series.

In general, with the hypothesis of linear independence of v

l+1

¢ 1 ¢
(7) e 1:[1uz 1:[11);1 €=y > /E 1:[1 ((t:v)_lug(j)> (t:v)tdty ... dt,.

ey

We have one more v; than w;. If it is not true, add some v; = 1.

Remark.- Inside the € we compute in the field of fractions of Rles,...,e,].
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3.3 Integral representation formulas for holomorphic Cliffordian products

The standard spectral theory allows us to write

A= o 1)

1 1
PR I
20m Zz—AdZ

In particular

Now, let u; and uy be linearly independant elements of the vector space V, then
eufule = 1}{ y{ 2222 /1 (t(zl —up) + (1 —t)(22 — u2))72 dt dz, dzo.
(2im)2 Jey Jo, 0

Where C; and (5 are positively oriented simply closed contours, such that
the eigenvalues are inside these contours.

For we S@®V with u = ug+ 4, the eigenvalues are wug % ¢ |||

For a general integral representation formula, it is possible to reduce to the case

where {uq,...,u,} are paravectors and are linearly independent, then formally :
®) €S w)e =
7{ 7{ (z1,...,2 F(t—>t£1 cu Lz —ug, o ze—ug)dzy L dzy.
2Z7T Ce

3.4 Interpolation by polynomials

THEOREM 3.- The interpolation formula of Lagrange. Let xq,...,z,, ¢+ 1 par-
avectors, ag,...,ays, ¢+ 1 paravectors. Put
¢ ¢ or—
(9) Plx):=>Y ea ][]
i=0 kA Li T Tk
k=0

Then, for all j = 0,...,¢, P(z;) = a; and, for n odd, P is an holomorphic
Cliffordian polynomial of degre /.

Proof.- ,
T; — T}
J _
P(x])—€a] H ﬁ‘@ —CLJ‘.
k#j 1T Tk
k=0

The desentangling is easy. Put

14

=3 tk(xi—a:k)+ti+(1—§:tk)

k=0 k=0

B = x—uwxp ifk#1
e a; ifk=1
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Then

4
(10) Z ‘ Z / (a;lﬁg(k),i> Oéi_l dto dtl R dtg.
i= Ee p=o

T 0€e6p

where &y, is the permutation group of {0,1,...,¢}. This formula shows that
P is holomorphic Cliffordian in 2 but also in z;, and ay.

3.5 Product of holomorphic cliffordian functions

From the point of view of the product, the Sg(z) are natural :
put
9 HPfo+-+Bn
oz - - - Oz
e Ss(x)e =€ (-1)P1 971 e
= (-1 oP et e
= (_1>|6| 9Pr !
= Sﬁ(iﬁ)

But the P,(x) are, in general, different from € P,(z) €. For example :

9 1 2
€ejT € :§elxel——x.

3

Let | |'
al !
koy = —————
ag ! oy !
we have

e P(x) € =k, 0% 2?11

because the left side is

eP(r)e = |a| ! €e’...enm x €
and the right side is
9« et — g g p?lel-1 ¢
=apl...a,l €ef®. .. enn glel=1 e

We may conclude that the set of polynomials 9% z¥, k € N are better.
For h and k£ in N, let
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Here are other examples of products of holomorphic cliffordian functions.

Product of the exponential and a constant :

€ae€—/ a e 0% qt

x—l—sa

ds s=0

Product of two exponentials :

ect Ve =€V e =Y,

Product of rational functions :

a d 1 -1
€$_b€_£szo /0 (t+(1—t)(x—b)+sa) ds
1 (p+qg+1)! /1 —(p+q+2)

€ € = ta+ (1 —1)b tP(1 — t)4dt.

e T e R S G =

The computations are the usual ones, by example :

. 11 c - < a—>b .
r—a x—b (z—a)(z—0)

this means

@0~ =) = [ (= (a+ (1 -0) " (@b (r— (et (1—00) " d.

The basic fact is that there is no difference between “variable” and “constants”
for n odd, all expressions are holomorphic cliffordian with respect to their constants
too.

3.6 Derivatives and equations of Cauchy-Riemann type

n
For ue SaV, u= Z uje;, the directional derivative is
=0

- 8
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Lemma 2.- Letue S@®V,a € Ry, peN, then
(11) (u| V) €eax? € = € (u| V,)az? €
_Joif p=0
p€aurPte if p#0.
Proof- If p#0 and e € R

. €a(zx+eu)l e = jg

_d
Cde

(u] V) €ax® € =7

" (p
€aq Z aPkekyk e
im0 \F

p
p _ _
Egk cear’ e =peaur’te.
e=0 =y \F

e=0

Proposition 2.- Let ue S®V,ae€ Ry, peZ\{0}, then

(12) (u|V,) €ar* € = € (u|V,)ar* € =pe aur’'e.

Proof.- We have only to work out the case p < 0. If |1 —z| <1

1

(ulvx)eax_pez(u|v)€a(1—(1—x”))_ €

[e.e]

= (u]| Vy) €az Ple = e(u|V,) a(l—a")"e
qO q=0
= € (u|V,) Zl—xp e =€e(u|V,)ar*e =peaur’'e.
q=0

THEOREM 4.- Let 2 be an open set of SV with0€ Q. Let f: Q =SV
such that locally :

(13) fl@) =3 Pa(x)ea+ > Spla)ds
o |8 I<B
with ¢, € R and dg € R. Then for all u € V and x # 0 we have
0
(14) 2 cufr)e —(u|V,)e fa)e =
8110

Remark.- We get exactly the classical Cauchy-Riemann equations. When n =1,
that is, in the C case, taking u = i\, A € R, we get these well-known equations.
When n is odd, such function is holomorphic cliffordian and we say that it is with
scalar coefficients.
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Proof.- By uniform convergence, we have only to compare

£€UP(> ai€uk o 2\a|—1€:kaaa(2|a|_1)€ux2|a|—2€
0 0
(u|V,) € Pu(z) € = € (u| Vo)k 02" *I ™ e =(,0°2 |a| —1) eua? e

For the Sg, we have

2

e uSs(xr) € euhg °r'e = —hz0° eur e

(91:0 396’0
u|V,)eS —e(u|V,)hg 0%z e = hy 9%e(u | V,)a e = —hz0Peur2e.
(u| Va)eSs(x 8 8 8

Remark.- For this type of holomorphic Cliffordian function f and for z # 0,

lim € fle+h) = fz)

h—0 h

€ Y

does not depend on the particular paravector h, because this is true for xP, hence
also for P,(x), and Sg(x), and therefore for f.

3.7 Taylor formula

Lemma 3.- Let peZ, g€ N, u e V. Then

o1
G eulrf e = (u|V,)? 2P
oz
Proof.- iterate (11).
Using scalar derivations this implies
91

J e B =] VL)< Ro) <

01

01’0 € ul SB( ) (u | VI)LI e Sﬁ(l’) c.

If f is of the same type as in theorem 4 we have

01

(15) oot

eu! f(x)e =(u|Vy)?e f(z) €

THEOREM 5 (Taylor series).- Let f be an holomorphic Cliffordian function
with scalar coefficients, then we have :

) ak
€ fla+uz)e —Z ]i'€xkac;(;(a)€
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Proof.- Put = =z + Z. Since f is real analytic, we have

1
=@ Vo) (a)
& (05 + (71 9)" 1@

NE

fla+ )=

=
Il
o

I
NE

e
Il
o

0o

r+s=k
7" s

1 78
rs=k (7“) . day 8a0 fla) <
k
(7’) S a:s f(a) €
: f(a

oF
E€kT()

[
Mg

e
Il
<)

k) o 2 (7. )

O Dap

€ fla+1x)e

e
Il
o

I
Mg

i
o

|
\M8

r4+s=k

[
M]3

k=0

3.8 Differential calculus

In this paragraph, n is odd.
Let w be a differential form with values in Ry,. Then there exist scalar differ-
ential forms w; such that
w = wy ey.

We define
EWeE =X wr€ere

and then the exterior derivative

dewe = Y dwy €er €
= E€du)[€[€

so that
dewe= €dwe.

Let P, be the vectorial plane generated by 1 and v, v € V, v? = —1. For a

holomorphic Cliffordian function of the same type as in the previous theorem and
), an open set in P, with regular boundary, we have a Cauchy-Morera theorem.

THEOREM 6.-

/6)QU€ f(z) (dxo+v d(f|’u)€:/m€ vagif) — (v | V) f(z) € dro Nd(Z | v) =0.

Proof.- Stokes theorem gives :
/E)QU€ f(a:)(dxo + vd(Z | U)) €= /de € f(x)(dxo + vd(Z | v)) €=
/Q e df(@)A (dao +0d(T| v)) €
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Then we get

/Qv€(v|V)f(x) d(T | v) A dwo +

[10]

[11]

[12]

0f (x)
0

dzo ANvd(Z | v) € =
Zo

/Qv€y agiﬂol?) — (v | V)f(z)e drg ANd(T | v) = 0.
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