
Holomorphic Cliffordian product

Guy Laville

Abstract

Let R0,n be the Clifford algebra of the antieuclidean vector space of di-
mension n. The aim is to built a function theory analogous to the one in
the C case. In the latter case, the product of two holomorphic functions
is holomorphic, this fact is, of course, of paramount importance. Then it is
necessary to define a product for functions in the Clifford context. But, non-
commutativity is inconciliable with product of functions. Here we introduce
a product which is commutative and we compute some examples explicitely.

1 Introduction

In one complex variable, it is possible to define a product of two holomorphic func-
tions f and g by (fg)(z) = f(z)g(z) because this last expression is holomorphic.
Here we make use of commutativity and of Cauchy-Riemann equations which are
first order partial differential equations. But in fact, there is much more than that.
Holomorphy is equivalent of analyticity : taking f(z) = Σapz

p and g(z) = Σaqz
q

then

(fg)(z) =
∑
n

( ∑
p+q=n

ap bq

)
zn.

We can do the product either in the space of the values or in the space of
the variable and parameters. For higher dimensional spaces, in Clifford analy-
sis, the above two possibilities give two different results. The first product is
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useless because if f(x) and g(x) are monogenic [1], [3], or regular [6], or holo-
morphic Cliffordian [9], f(x)g(x) is not. In [1], F. Bracks, R. Delanghe,
F. Sommen defined the Cauchy Kovalewski product, but it is no so easy to work
with it [8]. The existence of a product is one of the principal questions in Clifford
analysis, see [11] and [13]. In [7] D. Hestenes and G. Sobczyk defined the inner
product. In [10] H. Malonek worked with his permutational product. It is related
to Fueter’s ideas [5].

The anticommutator {a, b} = 1/2(ab + ba) is well known, but when we have
three elements, we get {a, {b, c}} or {{a, b}, c} or {{a, c}, b}. In several papers
[12], [14], F. Sommen uses the basic fact that the anticommutator of two vectors
is a scalar and hence commutes with all elements. By the same token here a basic
fact is that the anticommutator of two paravectors is a paravector.

In quantum mechanics other products are defined : chronological product, nor-
mal order in product.

Notations.

Let R0,n the Clifford algebra of the real vector space V of dimension n, provided
with a quadratic form of negative signature. Denote by S the set of scalars in R0,n

which can be identified to R. An element of the vector space S ⊕ V is called a
paravector. Let {ei}, i = 1, . . . , n be an orthonormal basis of V and let e0 = 1.
We have eiej + ejei = −2δij for 1 ≤ i, j ≤ n. On S ⊕ V we have two quadratic
structures : one with signature + − · · ·−, the other with signature + + · · ·+. In
this latter case the scalar product is denoted by (a | b). To do analysis, we take a
norm on S ⊕ V such that ‖ab‖ ≤ ‖a‖ ‖b‖.

For any paravector u, we split up the real part u0 and the vectorial part ~u :

u = u0 + ~u.

2 Algebraic structure on the paravector space

2.1 Symmetric product

Theorem and definition 1.- For ` ∈ N \ {0} define the multilinear symmetric
function

E : (S ⊕ V )` −→ S ⊕ V

(u1, . . . , u`) −→
1

`!

∑
σ∈S`

uσ(1) . . . uσ(`)

where S` is the set of all permutations of {1, . . . , `}.

Proof.- It is obvious that this function is multilinear and symmetric. To prove
that the values are in S ⊕ V , we need a lemma, but before stating it, it is useful to
introduce an algorithmic symbol :
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(1) ¤

∏̀
i=1

ui ¤ :=
1

`!

∑
σ∈S`

uσ(1) . . . uσ(`).

It is easier to work with this than with E(u1, . . . , u`).

Lemma 1.

(2) ¤

∏̀
i=1

ui ¤ =
1

`

∑̀
i=1

ui ¤

∏̀
j=1
j 6=i

uj ¤ =
1

`

∑̀
i=1

¤

∏̀
j=1
j 6=i

uj ¤ ui =

1

2`

(∑̀
i=1

ui ¤

∏̀
j=1
j 6=i

uj ¤ +
∑̀
i=1

¤

∏̀
j=1
j 6=i

uj ¤ ui

)
.

Proof of (2).- The first and second formulas are factorisations of the symmetric
product. The third one is a mean of these two.

Now, to prove that the values of the function E is in S⊕V , we use induction on
`.

For ` = 1 the result is trivial, for ` = 2, we have

¤ ab ¤ =
1

2
(ab + ba)

is in S ⊕ V . The last formula (2) allows us to finish the recurrence.

Proposition 1.- For i = 1, . . . , ` and ui ∈ S ⊕ V

(3) ‖ ¤
∏̀
i=1

ui ¤ ‖ ≤ ‖
∏̀
i=1

ui‖.

This follows from the definition.

Extension of the symbol.

Let ϕ be a linear function :

(S ⊕ V )k −→ (S ⊕ V )`

(u1, . . . , uk) −→
(
ϕ1(u1, . . . , uk), . . . , ϕ`(u1, . . . , uk)

)
then, we define

(4) ¤

∏̀
i=1

ϕi(u1, . . . , up) ¤ := E ◦ ϕ (u1, . . . , up).

Remark 1.
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It is always possible to restrict the symmetrization to only n = dim V factors
because if we have ` paravectors u1, . . . , u` we can take ~ui1 , . . . , ~uip , p linearly inde-
pendent vectors, all paravectors uj are linear combinations of 1 and the ~uik and the
symmetrization is on ~ui1 , . . . , ~uip .

Remark 2.

¤

k∏
i=1

Ai ¤ is well defined for all Ai ∈ R0,n because Ai are sums and products

of paravectors and we have linearity.

Remark 3.

¤ x ¤ yz ¤ ¤ makes sense but it is clumsy and it is a pitfall, so we shall avoid
using it. In general it is not equal to ¤ xyz ¤ .

2.2 The symmetric algebra of V

For n = 1, R0,1 = C we have a special phenomena. Take R[X] the algebra of
polynomials in one indeterminate, then R[X]/(X2 + 1) is C. But R[X1, . . . , Xn],
the algebra of polynomials in n indeterminates is not directly connected with R0,n.
This algebra of polynomials is clearly built to do products.

Inside the ¤ we compute in R[e1, . . . , en] which may be identified with the
symmetric algebra (algebra of symmetric tensors) of the vector space V .

2.3 Examples

In the following formulas a, b, c are in S ⊕ V .

¤ a ¤ = a

¤ ab ¤ =
1

2
(ab + ba)

¤ a2b ¤ =
1

3
(a2b + aba + ba2).

It is important to notice that this is not
1

2
(a2b + ba2)

¤ e2
1a ¤ = −2

3
a +

1

3
e1 ae1(

p + q
q

)
¤ apbq

¤ =
dq

dtq

∣∣∣∣
q=0

(a + tb)p+q

Here are explicit formulas for ¤

H∏
h=1

eih ¤ :

If H ≡ 0 ( mod 4) and if all indices are equal then it is equal to 1, otherwise
it is 0.



Holomorphic Cliffordian product 379

If H ≡ 1 ( mod 4) and if all indices are equal then it is equal to ei1 , otherwise

if all indices are equal but one, say i1, it is
1

H
ei1 else it is 0.

If H ≡ 2 ( mod 4) and if all indices are equal then it is equal to −1 otherwise
0.

If H ≡ 3 ( mod 4) and if all indices are equal then it is equal to −ei1 otherwise

if all indices are equal but one, say i1, it is − 1

H
ei1 else it is 0.

Proof of these values :

Take v = (t1 ei1 + . . . + tH eiH ) where t1, . . . , tH are scalars.
Beside the coefficient, the value of the product is the homogeneous term corre-

sponding to t1t2 . . . tH in vH .

First case : all indices are equal, say ei1

v = (t1 + . . . + tH)ei1

vH = (t1 + . . . + tH)H eH
i1

and eH
i1

is 1 or ei1 or −1 or −ei1 .
Second case : all indices but one are equal, say ei1 .

v = t1 ei1 + (t2 + . . . + tH) ei2

vH =



(
t21 + (t2 + . . . + tH)2

)H/2
we get 0(

t21 + (t2 + . . . + tH)2
)(H−1)/2

v we get ei1/H

−
(
t21 + (t2 + . . . + tH)2

)H/2
we get 0

−
(
t21 + (t2 + . . . + tH)2

)(H−1)/2
v we get − ei1/H

Third case : at least three different indices

v = t1 ei1 + t2 e2 + w

with w orthogonal to ei1 and ei2

vH =



(t21 + t22 + w2)H/2

(t21 + t22 + w2)(H−1)/2 v

−(t21 + t22 + w2)H/2

−(t21 + t22 + w2)(H−1)/2 v

We get 0 (no homogenous factor in t1 . . . tH).

2.4 Symmetrization by integral means

The main problem of the ¤ algorithm is the disentangling, that is to translate from
¤ expression ¤ to an expression without ¤ ¤ using the classical product in the
Clifford algebra. A tool for that is Dirichlet means, which was studied extensively
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by B.C. Carlson [2] in a completely different situation. He uses these means for
classical special functions.

Let E`−1 be the standard simplex.

E`−1 := {(t1, . . . , t`−1) ∈ R`−1 : ∀j, tj ≥ 0,
`−1∑
p=1

tp ≤ 1}.

The beta function in ` variables is

B(b1, . . . , b`) :=
∫

E`−1

tb1−1
1 . . . t

b`−1−1
`−1 (1− t1 − . . .− t`−1)

b`−1 dt1 . . . dt`−1

B(b) = B(b1, . . . , b`) is symmetric. For bj ∈ C, Re bj > 0 and g integrable, the
Dirichlet measure µb is defined by

(5)
∫

E
g(t) dµb(t) :=∫

E`−1

g(t1, . . . , t`−1)
1

B(b)
tb1−1
1 . . . t

b`−1−1
`−1 (1− t1 − . . .− t`−1)

b`−1 dt1 . . . dt`−1.

Definition.- For f : S ⊕ V −→ S ⊕ V continuous and u1, . . . , u` in S ⊕ V , put

(6) F (f, b, u) :=
∫

E
f(t :u) dµb(t)

with t :u :=
`−1∑
i=1

tiui +
(
1−

`−1∑
i=1

ti
)
u`.

This integral gives the symmetrization.
A simple illustration with two paravectors u, v

F (t → t2, 1, 1, u, v) =
∫ 1

0
(tu + (1− t)v)2dt =

1

3
u2 +

1

3
¤ uv ¤ +

1

3
v2.

By the remark 1 of paragraph 3, it is always possible to take only simplices of
dimension less than or equal to n.

3 Analysis with the holomorphic cliffordian product

3.1 Holomorphic cliffordian functions

In this paragraph, we recall some notions from [9].
Let D denote the differential operator

D =
n∑

i=0

ei
∂

∂xi

and let ∆ be the standard Laplacian

∆ =
n∑

i=0

∂2

∂x2
i

.
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If n is odd, say n = 2m + 1, the vector space V of holomorphic cliffordian
functions was defined to be the kernel ot the D∆m operator.

Let x := x0 +
n∑

i=1

eixi, it is holomorphic cliffordian as well as its powers xk

(with k ∈ Z). More generally, put α := (α0, . . . , αn) a multiindice, αi ∈ N, and

|α | :=
n∑

i=0

αi

Pα(x) :=
∑
σ∈S

|α |−1∏
ν=1

(
eσ(ν) x

)
eσ(|α |)

where S is the permutation group with |α | elements. By the same token, put

β := (β0, . . . , βn), βi ∈ N

|β | :=
n∑

i=1

βi

Sβ(x) :=
∑
σ∈S

|β |∏
ν=1

(
x−1 eσ(ν)

)
x−1.

The functions Pα and Sβ are, for n odd, holomorphic cliffordian but they
make sense for all n.

Recall from [9] that, when n is odd there is a Laurent type expansion for
holomorphic cliffordian functions with a pole at the origin :

f(x) =
∑

|β | < B

Sβ(x)dβ +
∞∑

|α |=1

Pα(x)cα

where, in general, dβ and cα belong to R0,n.
The basic idea is that we work with functions which are limits of sums of xk

and their scalar derivatives. Functions generated in this manner are well-defined for
all n. The problem of building a product is not connected directly with the D∆m

operator.
First we extend the product defined in the previous part.

3.2 Extension of the product to normally convergent series

Theorem 2.- Let
∞∑

n=0

an be a series which converges in norm and such that the

coefficients are products of paravectors. Then the series
∞∑

n=0

¤ an ¤ converges and

¤

∞∑
n=0

an ¤ =
∞∑

n=0

¤ an ¤ .
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Proof.- From the inequality (3)

N∑
n=0

‖ ¤ an ¤ ‖ ≤
N∑

n=0

‖an‖

thus the series
∞∑

n=0

¤ an ¤ is convergent in norm.

By linearity

¤

N∑
n=0

an ¤ −
N∑

n=0

¤ an ¤ = 0

and it suffices to let N →∞.

Now it is easy to extend the product to rational functions. First an example.
We define, for ‖1− a‖ < 1

¤ a−1b ¤ := ¤

(
1− (1− a)

)−1
b ¤ =

¤

∞∑
k=0

(1− a)kb ¤ =
∞∑

k=0

¤ (1− a)kb ¤ .

In general we define, for ‖1− vj‖ < 1

¤

k∏
i=1

ui

∏̀
j=1

v−1
j ¤ :=

∞∑
k1=1

. . .
∞∑

k`=1

¤

k∏
i=1

ui

∏̀
j=1

(1− vj)
kj
¤ .

Of course we have to find the analytic extension for that symbol.
A classical example is the following : for u, v ∈ (S ⊕ V ) \ {0}
¤ u−1v−1

¤ is defined by :
if u and v are linearly dependent with v = λu for some λ ∈ R \ {0} then it is
¤ u−1(λu)−1

¤ = λ−1 u−2.
If u and v are linearly independant for all t ∈ [0, 1], tu + (1 − t)v has an

inverse and we have

¤ u−1v−1
¤ =

∫ 1

0

(
tu + (1− t)v)−2dt = F (t → t−1, 1, 1, u, v).

This was introduced in quantum mechanics by R.P. Feynmann [4].

For a proof, in the open set ‖1− u‖ < 1, ‖1− v‖ < 1 expand in series.

In general, with the hypothesis of linear independence of vj

(7) ¤

∏̀
i=1

ui

`+1∏
j=1

v−1
j ¤ =

1

`!

∑
σ∈S`

∫
E

∏̀
j=1

(
(t :v)−1uσ(j)

)
(t :v)−1 dt1 . . . dt`.

We have one more vj than ui. If it is not true, add some vj = 1.

Remark.- Inside the ¤ we compute in the field of fractions of R[e1, . . . , en].
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3.3 Integral representation formulas for holomorphic Cliffordian products

The standard spectral theory allows us to write

f(A) =
1

2iπ

∮
f(z)

1

z − A
dz.

In particular

An =
1

2iπ

∮
zn 1

z − A
dz.

Now, let u1 and u2 be linearly independant elements of the vector space V , then

¤ up
1 uq

2 ¤ =
1

(2iπ)2

∮
C1

∮
C2

zp
1z

q
2

∫ 1

0

(
t(z1 − u1) + (1− t)(z2 − u2)

)−2
dt dz1 dz2.

Where C1 and C2 are positively oriented simply closed contours, such that
the eigenvalues are inside these contours.

For u ∈ S ⊕ V with u = u0 + ~u, the eigenvalues are u0 ± i ‖~u‖

For a general integral representation formula, it is possible to reduce to the case
where {u1, . . . , u`} are paravectors and are linearly independent, then formally :

(8) ¤ f(u1, . . . , u`) ¤ =

=
1

(2iπ)`

∮
C1

. . .
∮
C`

f(z1, . . . , z`) F (t → t−`, 1, . . . , 1, z1−u1, . . . , z`−u`)dz1 . . . dz`.

3.4 Interpolation by polynomials

Theorem 3.- The interpolation formula of Lagrange. Let x0, . . . , x`, ` + 1 par-
avectors, a0, . . . , a`, ` + 1 paravectors. Put

(9) P (x) :=
∑̀
i=0

¤ ai

∏̀
k 6=i
k=0

x− xk

xi − xk

¤ .

Then, for all j = 0, . . . , `, P (xj) = aj and, for n odd, P is an holomorphic
Cliffordian polynomial of degre `.

Proof.-

P (xj) = ¤ aj

∏̀
k 6=j
k=0

xj − xk

xj − xk

¤ = aj.

The desentangling is easy. Put

αi =
∑̀
k=0
k 6=i

tk(xi − xk) + ti +
(
1−

∑̀
k=0

tk
)

βk,i =

x− xk if k 6= i

ai if k = i
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Then

(10) P (x) =
∑̀
i=0

1

(` + 1)!

∑
σ∈S`+1

∫
E`

∏̀
k=0

(
α−1

i βσ(k),i

)
α−1

i dt0 dt1 . . . dt`.

where S`+1 is the permutation group of {0, 1, . . . , `}. This formula shows that
P is holomorphic Cliffordian in x but also in xk and ak.

3.5 Product of holomorphic cliffordian functions

From the point of view of the product, the Sβ(x) are natural :

put

∂β :=
∂β0+···+βn

∂xβ0
0 · · · ∂xβn

n

¤ Sβ(x) ¤ = ¤ (−1)|β | ∂βx−1
¤

= (−1)|β | ∂β
¤ x−1

¤

= (−1)|β | ∂βx−1

= Sβ(x).

But the Pα(x) are, in general, different from ¤ Pα(x) ¤. For example :

¤ e2
1x ¤ =

1

3
e1 x e1 −

2

3
x.

Let

kα :=
|α | !

α0 ! . . . αn !

we have
¤ Pα(x) ¤ = kα ∂α x2|α |−1

because the left side is

¤ Pα(x) ¤ = |α | ! ¤ eα0
0 . . . eαn

n x|α |−1
¤

and the right side is

∂α x2|α |−1 = ¤ ∂α x2|α |−1
¤

= α0! . . . αn! ¤ eα0
0 . . . eαn

n x|α |−1
¤.

We may conclude that the set of polynomials ∂α xk, k ∈ N are better.
For h and k in N, let

p(x) = ¤ eα0
0 · · · eαn

n xh
¤

q(x) = ¤ eβ0
0 · · · eβn

n xk
¤.

Then, their product is

¤ p(x)q(x) ¤ = ¤ eα0+β0
0 · · · eαn+βn

n xh+k
¤.
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Here are other examples of products of holomorphic cliffordian functions.

Product of the exponential and a constant :

¤ aex
¤ =

∫ 1

0
etx a e(1−t)x dt

=
d

ds

∣∣∣∣
s = 0

ex+sa.

Product of two exponentials :

¤ ex ey
¤ = ¤ ex+y

¤ = ex+y.

Product of rational functions :

¤

a

x− b
¤ =

d

ds

∣∣∣∣
s = 0

∫ 1

0

(
t + (1− t)(x− b) + sa

)−1
ds

¤

1

(x− a)p (x− b)q
¤ =

(p + q + 1) !

(p− 1) ! (q − 1) !

∫ 1

0

(
ta + (1− t)b

)−(p+q+2)
tp(1− t)qdt.

The computations are the usual ones, by example :

¤

1

x− a
− 1

x− b
¤ = ¤

a− b

(x− a)(x− b)
¤

this means

(x− a)−1− (x− b)−1 =
∫ 1

0

(
x− (ta + (1− t)b)

)−1
(a− b)

(
x− (ta + (1− t)b)

)−1
dt.

The basic fact is that there is no difference between “variable” and “constants” :
for n odd, all expressions are holomorphic cliffordian with respect to their constants
too.

3.6 Derivatives and equations of Cauchy-Riemann type

For u ∈ S ⊕ V , u =
n∑

j=0

ujej, the directional derivative is

(u | ∇x) :=
n∑

j=0

uj
∂

∂xj

.
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Lemma 2.- Let u ∈ S ⊕ V , a ∈ R0,n p ∈ N, then

(u | ∇x) ¤ axp
¤ = ¤ (u | ∇x)axp

¤(11)

=

0 if p = 0

p ¤ auxp−1
¤ if p 6= 0.

Proof.- If p 6= 0 and ε ∈ R

(u | ∇x) ¤ axp
¤ =

d

dε

∣∣∣∣
ε=0

¤ a(x + εu)p
¤ =

d

dε

∣∣∣∣
ε=0

¤ a
p∑

k=0

(
p

k

)
xp−kεkuk

¤

=
d

dε

∣∣∣∣
ε=0

p∑
k=0

εk

(
p

k

)
¤ axp−kuk

¤ = p ¤ auxp−1
¤ .

Proposition 2.- Let u ∈ S ⊕ V , a ∈ R0,n p ∈ Z \ {0}, then

(12) (u | ∇x) ¤ axp
¤ = ¤ (u | ∇x)axp

¤ = p ¤ auxp−1
¤ .

Proof.- We have only to work out the case p < 0. If ‖1− x‖ < 1

(u | ∇x) ¤ ax−p
¤ = (u | ∇x) ¤ a

(
1− (1− xp)

)−1
¤

= (u | ∇x) ¤ a
∞∑

q=0

(1− xp)q
¤ =

∞∑
q=0

¤ (u | ∇x) a(1− xp)q
¤

= ¤ (u | ∇x) a
∞∑

q=0

(1− xp)q
¤ = ¤ (u | ∇x) axp

¤ = p ¤ auxp−1
¤ .

Theorem 4.- Let Ω be an open set of S ⊕ V with 0 ∈ Ω. Let f : Ω → S ⊕ V
such that locally :

(13) f(x) =
∑
α

Pα(x)cα +
∑

| β |<B

Sβ(x)dβ

with cα ∈ R and dβ ∈ R. Then for all u ∈ V and x 6= 0 we have

(14)
∂

∂x0

¤ uf(x) ¤ − (u | ∇x) ¤ f(x) ¤ = 0.

Remark.- We get exactly the classical Cauchy-Riemann equations. When n = 1,
that is, in the C case, taking u = iλ, λ ∈ R, we get these well-known equations.
When n is odd, such function is holomorphic cliffordian and we say that it is with
scalar coefficients.
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Proof.- By uniform convergence, we have only to compare

∂

∂x0

¤ uPα(x) ¤ =
∂

∂x0

¤ ukα∂α x2| α |−1
¤ = kα ∂α(2 |α | −1) ¤ ux2| α |−2

¤

(u | ∇x) ¤ Pα(x) ¤ = ¤ (u | ∇x)kα∂αx2| α |−1
¤ = kα∂α(2 |α | −1) ¤ u x2| α |−2

¤ .

For the Sβ, we have

∂

∂x0

¤ uSβ(x) ¤ =
∂

∂x0

¤ uhβ ∂βx−1
¤ = −hβ ∂β

¤ ux−2
¤

(u | ∇x)¤Sβ(x)¤ = ¤(u | ∇x)hβ ∂βx−1
¤ = hβ ∂β

¤(u | ∇x)x
−1
¤ = −hβ∂β

¤ux−2
¤.

Remark.- For this type of holomorphic Cliffordian function f and for x 6= 0,

lim
h→0

¤

f(x + h)− f(x)

h
¤ ,

does not depend on the particular paravector h, because this is true for xp, hence
also for Pα(x), and Sβ(x), and therefore for f .

3.7 Taylor formula

Lemma 3.- Let p ∈ Z, q ∈ N, u ∈ V . Then

∂q

∂xq
0

¤ uq xp
¤ = (u | ∇x)

q xp.

Proof.- iterate (11).
Using scalar derivations this implies

∂q

∂xq
0

¤ uq Pα(x) ¤ = (u | ∇x)
q
¤ Pα(x) ¤

∂q

∂xq
0

¤ uq Sβ(x) ¤ = (u | ∇x)
q
¤ Sβ(x) ¤.

If f is of the same type as in theorem 4 we have

(15)
∂q

∂xq
0

¤ uq f(x) ¤ = (u | ∇x)
q
¤ f(x) ¤.

Theorem 5 (Taylor series).- Let f be an holomorphic Cliffordian function
with scalar coefficients, then we have :

¤ f(a + x) ¤ =
∞∑

k=0

1

k!
¤ xk ∂kf

∂ak
0

(a) ¤.
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Proof.- Put x = x0 + ~x. Since f is real analytic, we have

f(a + x) =
∞∑

k=0

1

k!
(x | ∇a)

k f(a)

=
∞∑

k=0

1

k!

(
x0

∂

∂a0

+ (~x | ∇a)
)k

f(a)

=
∞∑

k=0

1

k!

∑
r+s=k

(
k

r

)
xr

0

∂r

∂ar
0

(~x | ∇a)
s f(a)

¤ f(a + x) ¤ =
∞∑

k=0

1

k!

∑
r+s=k

(
k

r

)
xr

0

∂r

∂ar
0

∂s

∂as
0

¤ ~xsf(a) ¤

=
∞∑

k=0

1

k!

∑
r+s=k

(
k

r

)
¤ xr

0 ~xs ∂k

∂ak
0

f(a) ¤

=
∞∑

k=0

1

k!
¤ xk ∂k

∂ak
0

f(a) ¤.

3.8 Differential calculus

In this paragraph, n is odd.
Let ω be a differential form with values in R0,n. Then there exist scalar differ-

ential forms ωI such that
ω = Σ ωI eI .

We define
¤ ω ¤ := Σ ωI ¤ eI ¤

and then the exterior derivative

d ¤ ω ¤ = Σ dωI ¤ eI ¤

= Σ ¤ dωI eI ¤

so that
d ¤ ω ¤ = ¤ dω ¤.

Let Pv be the vectorial plane generated by 1 and v, v ∈ V , v2 = −1. For a
holomorphic Cliffordian function of the same type as in the previous theorem and
Ωv an open set in Pv with regular boundary, we have a Cauchy-Morera theorem.

Theorem 6.-∫
∂Ωv

¤ f(x) (dx0 + v d(~x | v) ¤ =
∫
Ωv

¤ v
∂f(x)

∂x0

− (v | ∇x)f(x) ¤ dx0 ∧ d(~x | v) = 0.

Proof.- Stokes theorem gives :∫
∂Ωv

¤ f(x)
(
dx0 + vd(~x | v)

)
¤ =

∫
Ωv

d ¤ f(x)
(
dx0 + vd(~x | v)

)
¤ =∫

Ωv

¤ df(x) ∧
(
dx0 + vd(~x | v)

)
¤
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Then we get

∫
Ωv

¤ (v | ∇)f(x) d(~x | v) ∧ dx0 +
∂f(x)

∂x0

dx0 ∧ vd(~x | v) ¤ =∫
Ωv

¤ v
∂f(x)

∂x0

− (v | ∇)f(x)¤ dx0 ∧ d(~x | v) = 0.
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[6] K. Gürlebeck, W. Sprössig - Quaternionic and Clifford calculus for physi-
cists and engineers ; Wiley 1997.

[7] D. Hestenes, G. Sobczyk - Clifford algebra to geometric calculus ; Reidel
1984.

[8] G. Laville - On Cauchy-Kovalewski extension ; Journal of functional anal-
ysis vol 101, n◦1, 25-37, 1991.

[9] G. Laville, I. Ramadanoff - Holomorphic Cliffordian functions ; Advances
in Clifford algebras vol 8, n◦2, 323-340.

[10] H. Malonek - Power series representation for monogenic functions in Rm+1

based on a permutational product ; Complex variables vol 15, 181-191, 1990.

[11] F. Sommen - A product and an exponential function in hypercomplex func-
tion theory ; Appl. Anal. 12, 13-26 (1981).

[12] F. Sommen - The problem of defining abstract bivectors ; Result. Math. 31,
148-160, (1997).



390 G. Laville

[13] F. Sommen, P. van Lancker - A product for special classes of monogenic
functions and tensors ; Z. Anal. Anwend. 16, N◦4. 1013-1026, (1997).

[14] F. Sommen, M. Watkins - Introducing q - Deformation on the Level of
Vector Variables ; Advances in Applied Clifford Algebras. Vol 5, n◦1, 75-82,
(1995).

UMR 6139, Laboratoire Nicolas ORESME
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