
Near polygons having a big sub near polygon

isomorphic to Gn

Bart De Bruyn∗

Abstract

In [7] a new infinite class Gn, n ≥ 0, of near polygons was defined. The
near 2n-gon Gn has the property that it contains Gn−1 as a big geodetically
closed sub near polygon. In this paper, we determine all near 2n-gons, n ≥ 4,
having Gn−1 as a big geodetically closed sub near 2(n − 1)-gon under the
additional assumption that every two points at distance 2 have at least two
common neighbours. We will prove that such a near 2n-gon is isomorphic to
either Gn, Gn−1 ⊗G2, or Gn−1 × L for some line L.

1 Definitions and Overview

1.1 Basic definitions

A near polygon is a partial linear space (P ,L, I), I ⊆ P ×L, with the property that
for every point p ∈ P and for every line L ∈ L there exists a unique point on L
nearest to p. Here distances d(·, ·) are measured in the collinearity graph. If n is the
maximal distance between two points, then the near polygon is called a near 2n-
gon. A near 0-gon consists of one point, a near 2-gon is a line, and the class of near
quadrangles coincides with the class of generalized quadrangles (GQ’s) which were
introduced by Tits in [10]. Near polygons themselves were introduced by Shult and
Yanushka in [9] because of their relationship with certain line systems in Euclidean
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spaces. Generalized 2n-gons ([11]) and dual polar spaces ([3]) form two important
classes of near polygons.

A set X of points in a near polygon S is called a subspace if every line meeting
X in at least two points is completely contained in X. A subspace X is called
geodetically closed if every point on a shortest path between two points of X is as
well contained in X. Having a subspace X, we can define a subgeometry SX of
S by considering only those points and lines of S which are completely contained
in X. If X is geodetically closed, then SX clearly is a sub near polygon of S. A
geodetically closed sub near polygon SX 6= S is called big if every point outside SX

is collinear with a unique point of SX . If a geodetically closed sub near polygon SX

is a nondegenerate generalized quadrangle, then X (and often also SX) will be called
a quad. Sufficient conditions for the existence of quads were given in [9]. For every
point x of a near polygon S, L(S, x) denotes the incidence structure whose points,
respectively lines, are the lines, respectively quads, through x (natural incidence).
L(S, x) is a partial linear space and called the local space at x. If X is a set of points
in a near polygon, then C(X) denotes the unique minimal geodetically closed sub
near polygon through X. (C(X) is the intersection of all geodetically closed sub
near polygons through X.) We call C(X) the geodetic closure of X. If X1, . . . , Xk

are sets of points, then C(X1 ∪ · · · ∪ Xk) is also denoted by C(X1, . . . , Xk). If one
of the arguments of C is a singleton {x}, we will often omit the braces and write
C(· · · , x, · · · ) instead of C(· · · , {x}, · · · ).

A near polygon is said to have order (s, t) if every line is incident with exactly
s+1 points and if every point is incident with exactly t+1 lines. A near polygon is
called dense if every line is incident with at least three points and if every two points
at distance 2 have at least two common neighbours. Dense near polygons satisfy
several nice properties. By Lemma 19 of [2], every point of a dense near polygon S
is incident with the same number of lines; we denote this number by tS +1. If x and
y are two points of a dense near polygon, then by Theorem 4 of [2], C(x, y) is the
unique geodetically closed sub near [2 · d(x, y)]-gon through x and y. Geodetically
closed sub near hexagons of a dense near polygon are called hexes. All local spaces
of a dense near polygon are linear spaces. For every point x of a dense near 2n-
gon, a rank n− 1 geometry G(S, x) can be defined over the type set {1, . . . , n− 1}
whose i-objects are the geodetically closed sub near 2i-gons through x and whose
incidence relation is the symmetrized containment. The geometry G(S, x) is called
the local geometry at x. For n = 3 the notions of local space and local geometry are
equivalent.

1.2 Overview

In [7] a new infinite class of dense near polygons was defined. The unique near
2n-gon, n ≥ 0, of this class was denoted by Gn. The near polygon Gn, n ≥ 1,
has the nice property that it contains Gn−1 as a big geodetically closed sub near
2(n − 1)-gon, see Lemma 12 of [7]. Also the near polygon Gn−1 ⊗ G2 (see Section
2.7) and the direct products Gn−1 × L (see Section 2.1) have this property. The
examination whether this property is sufficient to characterize these near polygons
led to the main theorem of the present paper.
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Main Theorem. Every near 2n-gon S, n ≥ 4, which satisfies

(A) every two points at distance 2 have at least two common neighbours,

(B) S has a big geodetically closed sub near polygon isomorphic to Gn−1,

is isomorphic to either Gn, Gn−1 ⊗G2 or Gn−1 × L for some line L.

The proof of our Main Theorem (Section 4) relies on the classification of dense near
hexagons with three points on each line ([1]). We recall this classification in Section
3. But first we will give some notions and results which we will need later.

2 Some notions and results regarding near polygons

2.1 Direct product

Let S1 = (P1,L1, I1) and S2 = (P2,L2, I2) be two near polygons. A new near polygon
S = (P ,L, I) can be derived from S1 and S2. It is called the direct product of S1 and
S2 and is denoted by S1×S2. We have: P = P1×P2, L = (P1×L2)∪ (L1×P2), the
point (x, y) of S1 ×S2 is incident with the line (z, L) ∈ P1 ×L2 if and only if x = z
and y I2 L, the point (x, y) of S1 × S2 is incident with the line (M, u) ∈ L1 × P2

if and only if x I1 M and y = u. If Si, i ∈ {1, 2}, is a near 2ni-gon then the
direct product S = S1 × S2 is a near 2(n1 + n2)-gon. Since S1 × S2

∼= S2 × S1 and
(S1 × S2) × S3

∼= S1 × (S2 × S3), also the direct product of k ≥ 3 near polygons
S1, . . . ,Sk is well-defined.

Theorem 1 (Theorem 1 of [2]) Let S be a near polygon with the property that
every two points at distance 2 have at least two common neighbours. If k ≥ 2
different line sizes occur in S, then S is isomorphic to a direct product S1×· · ·×Sk

of near polygons each of which has constant line size.

2.2 Big geodetically closed sub near polygons

Let S be a near 2n-gon. Recall that a geodetically closed sub near 2(n− 1)-gon F
of S is called big if every point x outside F is collinear with a unique point π(x) of
F . If x ∈ F , then we put π(x) equal to x. The map π is called the projection on
F . Properties of big geodetically closed sub near polygons are given in the following
lemmas.

Lemma 1 Let F be a big geodetically closed sub near polygon of S. If x is a point
outside F , then d(x, y) = 1 + d(π(x), y) for every point y ∈ F .

Proof. Since d(x, π(x)) = 1, d(π(x), y) − 1 ≤ d(x, y) ≤ d(π(x), y) + 1. If d(x, y) =
d(π(x), y) − 1 or d(x, y) = d(π(x), y), then the unique point z on the line x π(x)
nearest to y satisfies d(y, z) = d(y, π(x)) − 1. Hence z ∈ C(π(x), y) ⊆ F . Since
z, π(x) ∈ F , also the point x of the line z π(x) belongs to F , a contradiction. Hence
d(x, y) = 1 + d(π(x), y). �
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Lemma 2 Let F be a big geodetically closed sub near polygon of S. If x and y are
two collinear points outside F such that xy is disjoint with F , then d(π(x), π(y)) = 1.
For every line L outside F , π(L) := {π(x)|x I L} is a line of F .

Proof. Since xy is disjoint with F , d(x, π(y)) = 2. Hence d(π(x), π(y)) = 1 by
Lemma 1. Since π(L) is a set of mutually collinear points, there exists a line L′

in F containing π(L). Suppose that there exists a point z ∈ L′ \ π(L), then z has
distance 2 to at least two points of L. Hence z is collinear with a unique point z′ of
L, contradicting z 6∈ π(L). As a consequence L′ = π(L). �

Lemma 3 Let F be a big geodetically closed sub near polygon of S. If x and
y are two points outside F such that C(x, y) is disjoint with F , then d(x, y) =
d(π(x), π(y)).

Proof. Every shortest path between x and y projects to a path of length d(x, y)
between π(x) and π(y). Hence d(x, y) − 2 ≤ d(π(x), π(y)) ≤ d(x, y). If d(x, y) −
2 = d(π(x), π(y)) or d(x, y) − 1 = d(π(x), π(y)), then d(x, π(y)) ≤ d(x, y). Hence
there exists a unique point z on the line y π(y) at distance d(x, y) − 1 from x.
Now z ∈ C(x, y) since there exists a shortest path between x and y containing
z. Since z, y ∈ C(x, y), also π(y) ∈ C(x, y), contradicting our assumption. Hence
d(x, y) = d(π(x), π(y)). �

By Lemmas 2 and 3, we then have:

Corollary 1 Let F be a big geodetically closed sub near polygon of S. Then every
geodetically closed sub near polygon F ′ disjoint with F projects to a (not necessarily
geodetically closed) sub near polygon π(F ′) of F isomorphic to F ′. Moreover, this
projection preserves the distances.

Lemma 4 (Lemma 4.5 of [1]) If F is a big geodetically closed sub near 2(n−1)-
gon of a dense near 2n-gon S, n ≥ 2, then the following are equivalent:

(a) S ∼= F × L;

(b) tS = tF + 1;

(c) every quad meeting F in a line is a grid.

Lemma 5 Let S be a dense near polygon, let F be a big geodetically closed sub near
polygon of S and let x be an arbitrary point of F . Then every geodetically closed
sub near polygon F ′ through x either is contained in F or intersects F in a big
geodetically closed sub near polygon of F ’

Proof. Suppose that F ′ 6⊆ F . Clearly F ∩ F ′ is geodetically closed. If y is a point
of F ′ \ F , then y is collinear with a unique point π(y) of F . By Lemma 1, π(y) lies
on a shortest path between y and x. Hence π(y) ∈ F ∩F ′. This proves that F ∩F ′

is big in F ′. �
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Lemma 6 (Lemma 5 of [6]) Let S be a dense near 2n-gon, n ≥ 2, let F denote
a geodetically closed sub near 2(n− 1)-gon of S and let x denote an arbitrary point
of F . Then F is big in S if and only if every quad through x either is contained in
F or intersects F in a line.

Lemma 7 For each i ∈ {1, 2}, let Si be a dense near polygon, let Fi be a big
geodetically closed sub near polygon of Si and let xi be a point of Fi. Suppose that
there exists an isomorphism φ from F1 to F2 mapping x1 to x2 and a bijection θ
from the set of lines of S1 through x1 to the set of lines of S2 through x2 such that
the following holds for all lines K, L and M through x1:

(a) if K is contained in F1, then θ(K) = φ(K);

(b) K, L and M are contained in a quad if and only if θ(K), θ(L) and θ(M) are
contained in a quad.

Then G(S1, x) ∼= G(S2, x2).

Proof. Let A be a geodetically closed sub near polygon of S1 through x1. If A is
contained in F1, then we define µ(A) := φ(A). If A is not contained in F1, then we
define µ(A) = C(θ(K), φ(A∩F1)) where K is any line of A through x1 not contained
in F1. This is a good definition. If K ′ is another line with this property, then K, K ′

and C(K, K ′)∩F1 are contained in the same quad. By (a) and (b) also θ(K), θ(K ′)
and φ(C(K, K ′)∩F1) are in the same quad and since φ(C(K, K ′)∩F1) ⊆ φ(A∩F1),
C(θ(K), φ(A∩F1)) = C(θ(K ′), φ(A∩F1)). If A is a near 2i-gon, i ∈ {1, . . . , n− 1},
then also µ(A) is a near 2i-gon. Clearly, µ is an incidence preserving bijection
between the set of objects of G(S1, x) and the set of objects of G(S2, x2). �

Suppose now that every line of S is incident with exactly three points. For every big
geodetically closed sub near 2(n − 1)-gon F of S, we can then define the following
permutation RF on the point set of S: if x ∈ F , then we put RF(x) := x; if x 6∈ F ,
then we put RF(x) equal to unique third point of the line x π(x). By Section 4 of
[1], RF is an automorphism of order 2 of S. We call RF the reflection about F .

2.3 GQ’s with three points on every line

If S is a generalized quadrangle with only lines of size 3, then one of the following
possibilities occurs, see e.g. [8].

• S is degenerate: S consists of k ≥ 2 lines of size 3 through a point.

• S is isomorphic to the (3 × 3)-grid, i.e. to the direct product of two lines of
size 3. The (3× 3)-grid has order (2, 1).

• S is isomorphic to W (2): the points and lines of W (2) are the totally isotropic
points and lines of a symplectic polarity in PG(3, 2). The generalized quad-
rangle W (2) has order (2, 2), or shortly order 2.
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• S is isomorphic to Q(5, 2): the points and lines of Q(5, 2) are the points
and lines lying on a nonsingular elliptic quadric in PG(5, 2). The generalized
quadrangle Q(5, 2) has order (2, 4).

In the sequel, a quad which is isomorphic to a grid, W (2) or Q(5, 2) will be called
a grid-quad, a W (2)-quad or a Q(5, 2)-quad, respectively.

2.4 The point-quad relation

If (x,Q) is a point-quad pair of a near polygon S, then one of the following possi-
bilities occurs, see Proposition 2.6 of [9].

(i) There exists a unique point x′ in Q nearest to x and d(x, y) = d(x, x′)+d(x′, y)
for every point y ∈ Q. In this case the pair (x,Q) is called classical.

(ii) The points in Q nearest to x form an ovoid of Q, i.e. a set of points of Q
intersecting each line in exactly on point. In this case the pair (x,Q) is called
ovoidal.

(iii) Q is thin and can be regarded as a complete bipartite graph. The set of points
in Q nearest to x is a proper subset of size at least two of one of the two ovoids
of Q. In this case the pair (x,Q) is called thin-ovoidal.

Lemma 8 Let S be a dense near 2n-gon with a Q(5, 2)-quad Q. If F is a geodeti-
cally closed sub near 2(n−1)-gon of S, then one of the following possibilities occurs:

(a) F and Q are disjoint;

(b) F and Q intersect in a line;

(c) Q ⊆ F .

Proof. Suppose that Q and F have a point x in common. Since F is dense, it
contains a point y at maximal distance n − 1 from x, see e.g. [2]. Since Q(5, 2)
has no ovoids, see e.g. Theorem 3.4.1 of [8], the pair (y,Q) must be classical. If
y′ denotes the unique point of Q nearest to y, then d(y, z) = d(y, y′) + d(y′, z) for
every point z of Q and hence d(y, y′) ≤ n− 2. Since d(y, x) = n− 1, y′ 6= x. Since
d(y, x) = d(y, y′) + d(y′, x), y′ ∈ C(x, y) and hence C(x, y′) ⊆ C(x, y) = F . Since
x 6= y′, C(x, y′) is either Q or a line of Q. This proves our lemma. �

2.5 Admissible spreads in near polygons

For two lines K and L of a near polygon, let d(K, L) denote the minimal distance
between a point of K and a point of L. By Lemma 1 of [2], one of the following
possibilities occurs:

(a) there exist unique points k ∈ K and l ∈ L such that d(K, L) = d(k, l);



Near polygons having a big sub near polygon isomorphic to Gn 327

(b) for every point k ∈ K there exists a unique point l ∈ L such that d(K, L) =
d(k, l).

If condition (b) is satisfied, then K and L are called parallel. A spread of a near
polygon is a set of lines partitioning the point set. A spread is called admissible if
every two lines of it are parallel. Clearly, every spread of a generalized quadrangle
is admissible.

2.6 The near polygons Gn

Let the vector space V (2n, 4), n ≥ 1, with base B = {ē0, . . . , ē2n−1} be equipped
with the nonsingular Hermitian form (x̄, ȳ) = x0y

2
0 + x1y

2
1 + . . . + x2n−1y

2
2n−1, let

H = H(2n − 1, 4) denote the corresponding Hermitian variety in PG(2n − 1, 4),
and let ζ denote the Hermitian polarity associated with H. For every vector x̄ of
V (2n, 4), we have x̄ =

∑
(x̄, ēi) ēi. The support Sp of a point p = 〈x̄〉 of PG(2n−1, 4)

is the set of all i ∈ {0, . . . , 2n− 1} for which (x̄, ēi) 6= 0. The number |Sp| is called
the weight of p and is equal to the number of nonzero coordinates. A point of
PG(2n− 1, 4) belongs to H if and only if its weight is even. A subspace π on H is
said to be good if it is generated by a (possibly empty) set Gπ ⊆ H of points whose
supports are two by two disjoint. If π is good, then Gπ is uniquely determined.
Let Y , respectively Y ′, denote the set of all good subspaces of dimension n − 1,
respectively n − 2. With I denoting the reverse containment, we then can define
an incidence structure Gn = (Y, Y ′, I). In [7] it was shown that Gn is a dense near

2n-gon of order (2, 3n2−n−2
2

) containing 3n·(2n)!
2n·n!

points. The near polygon G1 is the
line of size 3 and G2 is the generalized quadrangle Q(5, 2). We recall some properties
of Gn, n ≥ 3, see [7] for proofs.

• The near polygon Gn, n ≥ 3, has grid-quads, W (2)-quads and Q(5, 2)-quads.

• The automorphism group of Gn, n ≥ 3, acts transitively on the set of points.
Hence, there exists a linear space L(Gn) and a rank n − 1 geometry G(Gn)
such that L(Gn, x) ∼= L(Gn) and G(Gn, x) ∼= G(Gn) for every point x of Gn.

• The automorphism group Aut(Gn), n ≥ 3, has two orbits on the set of lines:
the set of so-called special lines and the set of ordinary lines.

• Each point of Gn is contained in n special lines and 3n(n−1)
2

ordinary lines.
Each special line of Gn is contained in n − 1 Q(5, 2)-quads, 0 W (2)-quads

and 3 (n−1)(n−2)
2

grid-quads. Each ordinary line of Gn is contained in a unique

Q(5, 2)-quad, 3(n− 2) W (2)-quads and 3 (n−2)(3n−7)
2

grid-quads.

• If L1, . . . , Lk, are k ≥ 1 special lines through a fixed point, then C(L1, . . . , Lk) ∼=
Gk. Conversely, if F is a geodetically closed sub near polygon of Gn isomor-
phic to Gk, k ≥ 2, and if x is an arbitrary point of F , then precisely k from
the n special lines through x are contained in F .

• Gn has big geodetically closed sub near polygons isomorphic to Gn−1 and every
big geodetically closed sub near polygon of Gn is isomorphic to Gn−1.
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• For every i ∈ {0, . . . , 2n−1}, the set Bi of those good subspaces of Y ′ which are
contained in 〈ēi〉ζ is an admissible spread of Gn. Conversely, every admissible
spread of Gn, n ≥ 3, is of this form. The admissible spreads Bi, i ∈ {0, . . . , 2n−
1}, are precisely those spreads S of Gn which satisfy the following properties:
(C1) every line of S is special, (C2) if a grid-quad Q of Gn contains one line
of S, then it contains precisely 3 lines of S.

2.7 Glued near polygons

By ”glueing” near polygons it is possible to derive new near polygons. This proce-
dure was described in [4] for generalized quadrangles and in [5] for the general case.
We recall the construction.

Let A1 and A2 be two near polygons both with constant line size s+1, and sup-
pose that their respective diameters d1 and d2 are at least 2. Let Si = {L(i)

1 , . . . , L(i)
αi
},

i ∈ {1, 2}, be an admissible spread of Ai. In Si, a special line L
(i)
1 is chosen which

we will call the base line. For every i ∈ {1, 2}, for all j, k ∈ {1, . . . , αi} and for

every x ∈ L
(i)
j , let p

(i)
j,k(x) denote the unique point L

(i)
k nearest to x. We put

Φ
(i)
j,k := p

(i)
k,1◦p

(i)
j,k◦p

(i)
1,j. For every i ∈ {1, 2}, the group ΠSi

(L
(i)
1 ) := 〈Φ(i)

j,k|1 ≤ j, k ≤ αi〉
is called the group of projectivities of L

(i)
1 with respect to Si.

For every bijection θ between L
(1)
1 and L

(2)
1 , we consider the following graph Γ

with vertex set L
(1)
1 × S1 × S2. Two vertices (x, L

(1)
i1 , L

(2)
j1 ) and (y, L

(1)
i2 , L

(2)
j2 ) are

adjacent if and only if exactly one of the following three conditions is satisfied:

(A) L
(1)
i1 = L

(1)
i2 , L

(2)
j1 = L

(2)
j2 and x 6= y;

(B) L
(2)
j1 = L

(2)
j2 , d(L

(1)
i1 , L

(1)
i2 ) = 1 and Φ

(1)
i1,i2(x) = y;

(C) L
(1)
i1 = L

(1)
i2 , d(L

(2)
j1 , L

(2)
j2 ) = 1 and Φ

(2)
j1,j2 ◦ θ(x) = θ(y).

By [5], the graph Γ has diameter d1 + d2 − 1 and every two adjacent vertices are
contained in a unique maximal clique. Considering these maximal cliques as lines,
we obtain a partial linear space A1 ⊗ A2. If A1 ⊗ A2 is a near polygon, then it
is called a glued near polygon. This happens precisely when the condition in the
following theorem is satisfied.

Theorem 2 (Theorem 14 of [5]) The partial linear space A1⊗A2 is a glued near

polygon if and only if the commutator [ΠS1(L
(1)
1 ), θ−1ΠS2(L

(2)
1 )θ] is the trivial group

of permutations of L
(1)
1 .

Let us also mention the following result from [7].

Theorem 3 (Corollary 4 of [7]) For all positive integers m, n ≥ 2, there exists a
unique glued near polygon of the form Gm ⊗Gn.
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3 Dense near hexagons with three points on each line

A near hexagon of order (s, t) is said to have parameters (s, t, T2) if T2 = {t2(x, y) |
d(x, y) = 2}. Here t2(x, y) + 1 denotes the number of common neighbours of x and
y. If s ≥ 2 and 0 6∈ T2, then the near hexagon is dense. If there is a unique near
hexagon with parameters (s, t, T2), then we will denote it by NH(s, t, T2).

Theorem 4 ([1]) There are 11 dense near hexagons S with three points on each
line. Each of these near hexagons is uniquely determined by its parameters:

S big quads other quads local spaces

NH(2, 2, {1}) grid — C2,2

NH(2, 3, {1, 2}) grid, W (2) — C2,3

NH(2, 5, {1, 4}) grid, Q(5, 2) — C2,5

NH(2, 5, {1, 2}) W (2) grid PG(2, 2)−

NH(2, 6, {2}) W (2) — PG(2, 2)
NH(2, 8, {1, 4}) Q(5, 2) grid C5,5

NH(2, 11, {1, 2, 4}) Q(5, 2) grid, W (2) L(G3)
NH(2, 11, {1}) — grid K12

NH(2, 14, {2}) — W (2) PG(3, 2)
NH(2, 14, {2, 4}) Q(5, 2) W (2) W (2)+

NH(2, 20, {4}) Q(5, 2) — PG(2, 4)

We now define some of the above-mentioned linear spaces: (i) the (h, k)-cross Ch,k is
the unique linear space on h + k− 1 vertices containing a line of length h and a line
of length k which intersect in a point; all other lines have size 2, (ii) PG(2, 2)− is
the linear space obtained from PG(2, 2) by deleting a point, (iii) K12 is the complete
graph on 12 vertices, (iv) W (2)+ is the linear space obtained from W (2) by regarding
the 6 ovoids of W (2) also as lines. (Notice that any two noncollinear points of W (2)
are contained in a unique ovoid.) The linear space L(G3) is the unique linear space
on 12 points containing three lines of size 5, twelve lines of size 3 and nine lines of
size 2. Removing the three points of L(G3) which are incident with two lines of size
5, we obtain the affine plane of order 3.

We have met some of the above-mentioned near hexagons before. With L denoting
the line of size 3, we have NH(2, 2, {1}) ∼= L×L×L, NH(2, 3, {1, 2}) ∼= W (2)×L,
NH(2, 5, {1, 4}) ∼= Q(5, 2)×L, NH(2, 8, {1, 4}) ∼= G2⊗G2 and NH(2, 11, {1, 2, 4}) ∼=
G3.

4 Proof of the Main Theorem

In this section we will determine all near 2n-gons S = (P ,L, I), n ≥ 4, that satisfy
the following properties:

(A) every two points at distance 2 have at least two common neighbours;

(B) S has a big geodetically closed sub near 2(n− 1)-gon F isomorphic to Gn−1.
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We will prove by induction that every such S is isomorphic to either Gn, Gn−1⊗G2

or Gn−1×L for some line L. Every line of F is incident with three points. If not all
lines of S are incident with three points, then by Theorem 1, S ∼= A×B where A is
a near polygon with only lines of size 3 and where B is a near polygon with no lines
of size 3. Since A contains a sub near polygon isomorphic to Gn−1, we necessarily
have A ∼= Gn−1 and B ∼= L for some line L with |L| 6= 3. Hence S ∼= Gn−1 × L and
we are done. From now on we assume that every line of S is incident with exactly
s + 1 = 3 points. The near 2n-gon S is then dense and geodetically closed sub near
polygons exist. We put t + 1 = tS + 1. If t = tF + 1, then S ∼= Gn−1 × L, |L| = 3,
by Lemma 4. We suppose therefore that t > tF + 1.

Lemma 9 If a Q(5, 2)-quad Q intersects F in a line, then this line is a special line
of F ∼= Gn−1.

Proof. Suppose that L := Q ∩ F is an ordinary line of F . By Section 2.6, L is
contained in a W (2)-quad R ⊂ F . By Lemma 5, the W (2)-quad R is big in the hex
H := C(Q,R). By Theorem 4, none of the near hexagons with a big W (2)-quad
contains a Q(5, 2)-quad. This contradicts the fact that Q ⊂ H. Hence L is a special
line of F . �

Lemma 10 No hex H isomorphic to NH(2, 11, {1}), NH(2, 14, {2}), NH(2, 14,
{2, 4}) or NH(2, 20, {4}) meets F .

Proof. Suppose the contrary. By Lemma 5, H∩F is a big quad of H. By Theorem
4, we then have: (i) H ∼= NH(2, 14, {2, 4}) or H ∼= NH(2, 20, {4}), and (ii) Q :=
H∩F ∼= Q(5, 2). By Section 2.6, the Q(5, 2)-quad Q contains an ordinary line K of
F . By (i), H has a Q(5, 2)-quad through K different from Q. This quad contradicts
Lemma 9. �

Lemma 11 Every point x of F is contained in a Q(5, 2)-quad which intersects F
in a line. Hence t ≥ tF + 4.

Proof. Since t > tF + 1, there exist two lines K and L through x not contained in
F . Since F is big in S, C(K, L) intersects F in a line M ; hence C(K, L) ∼= W (2)
or C(K, L) ∼= Q(5, 2). Suppose that C(K, L) ∼= W (2). By Section 2.6, there exists
a Q(5, 2)-quad Q ⊂ F through M . The hex H := C(K,R) contains a Q(5, 2)-quad
and a W (2)-quad. By Theorem 4 and Lemma 10, H is isomorphic to G3 and hence
contains a Q(5, 2)-quad through x different from Q. This proves our lemma. �

First Case: t = tF + 4

Let P2 denote the set of all Q(5, 2)-quads meeting F in a line. By Lemma 11 and the
fact that t = tF+4, it follows that every point x ∈ F is contained in a unique element
of P2. If y is an arbitrary point outside F , then Qy := Qπ(y) is the unique element of
P2 through y. Hence P2 is a partition of the point set of S in Q(5, 2)-quads. Clearly
the set S1 := {Q ∩ F|Q ∈ P2} is a spread S1 of F .
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Lemma 12 The spread S1 is an admissible spread of F .

Proof. Since F ∼= Gn−1, we need to verify the two conditions (C1) and (C2) men-
tioned in Section 2.6. Property (C1) is exactly Lemma 9. We now proof that also
(C2) is satisfied. Let K be an arbitrary line of S1, let Q denote the unique quad
of P2 through K and let R be an arbitrary grid-quad of F through K. The hex
H := C(Q,R) has a Q(5, 2)-quad and a big grid-quad and hence is isomorphic to
Q(5, 2)× L by Theorem 4. As a consequence H contains three quads of P2 and the
two lines of R disjoint from K also belong to S1. �

Lemma 13 Every geodetically closed sub near 2(n−1)-gon isomorphic to G2⊗Gn−2

meets F .

Proof. Let F ′ be a geodetically closed sub near 2(n−1)-gon isomorphic to G2⊗Gn−2

and disjoint from F . The near hexagon S has vS = (1+2 ·(t−tF)) · |F| = 3n+1·(2n−2)!
2n−1·(n−1)!

points. The total number of points at distance at most 1 from F ′ equals (1 + 2(t−
tF ′)) · |F ′|. Since this number is precisely vS , also F ′ is big in S. Applying Corollary

1 twice, we see that F ∼= F ′. From 3(n−1)2−(n−1)−2
2

= tF = tF ′ = 3(n−2)2−(n−2)−2
2

+ 4,
it then follows that n = 3, but this contradicts our assumption n ≥ 4. �

Lemma 14 Every point y of S is contained in a unique big geodetically closed sub
near polygon Fy satisfying:

(i) Fy
∼= F ;

(ii) Fy = F or Fy ∩ F = ∅.

Proof. Suppose that y is contained in two such sub near polygons F1 and F2. Since
F3 := F1 ∩ F2 is big in F1, F3

∼= Gn−2 by Section 2.6. Hence t ≥ tF1 + tF2 − tF3

or tF2 − tF3 ≤ 4. Since tF2 − tF3 = 3n − 5, n ≤ 3, a contradiction. So, it suffices
to show that y is contained in at least one big geodetically closed sub near polygon
satisfying (i) and (ii). This trivially holds if y ∈ F , so we suppose that y 6∈ F .
By Lemma 9, Qy intersects F in a special line K. If L1, . . . , Ln−2 denote the other
special lines of F through π(y), then F4 := C(L1, . . . , Ln−2) is isomorphic to Gn−2.
Put F5 := C(L1, . . . , Ln−2, y π(y)). Since tF5 = tF4 + 1, F5

∼= F4 × L. Hence y is
contained in a geodetically closed sub near 2(n− 2)-gon F ′

y isomorphic to Gn−2. By
Lemma 8 every geodetically closed sub near 2(n − 1)-gon through F ′

y intersect Qy

in a line. Hence there are exactly five geodetically closed sub near 2(n − 1)-gons
through F ′

y. One of them is F5. Let F6 denote one of the four others. The projection
of F6 on F is distance-preserving and since the projection C(L1, . . . , Ln−2) of F ′

y is
big in F , also F ′

y is big in F6. If n = 4, then F ′
y
∼= Q(5, 2) and hence F6

∼= G3 or
F6

∼= G2 × L by Theorem 4, Lemma 10 and Lemma 13. If n ≥ 5, then F ′
y
∼= Gn−2

and hence F6
∼= Gn−1 or F6

∼= Gn−2 × L by the induction hypothesis and Lemma
13. Suppose now that all the five geodetically closed sub near 2(n−1)-gons through
F ′

y are isomorphic to Gn−2 × L. Then t = tF ′
y

+ 5 or tF = tF ′
y

+ 1, a contradiction
since tF − tF ′

y
= 3n− 5 and n ≥ 4. Hence there exists a geodetically closed sub near

2(n− 1)-gon through F ′
y isomorphic to Gn−1. Our lemma now follows since y ∈ F ′

y.
�
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The geodetically closed sub near 2(n− 1)-gons Fy, y ∈ P , determine a partition P1

of S in sub near polygons isomorphic to Gn−1. Every quad of P2 intersects each sub
near polygon of P1 in a line and the set S of all lines obtained this way is a spread
of S.

Lemma 15 The spread S is admissible.

Proof. Take two arbitrary lines L1 and L2 of S. Let F ′ denote the unique elements
of P1 through L1 and let Q′ denote the unique element of P2 through L2. If L2 is
contained in F ′, then L1 and L2 are parallel by Lemma 12 (applied to F ′ instead
of F). If L2 is not contained in F ′, then by Lemma 1 d(x, L1) = 1 + d(πF ′(x), L1)
for every point x on L2. Since πF ′(L2) = Q′ ∩ F ′ belongs to S, πF ′(L2) and L1 are
parallel. Hence, d(x, L1) is independent of the chosen point x ∈ L2. This proves
that L1 and L2 are parallel and that S is admissible. �

Theorem 5 The near polygon S is isomorphic to G2 ⊗Gn−1.

Proof. Put A1 := F and let A2 be any quad of P2. Above we defined the admissible
spread S1 of A1. If we intersect A2 with all elements of P1, then we obtain an
admissible spread S2 in A2. We consider the line K := A1 ∩A2 as base line in both
S1 and S2 and we put θ equal to the trivial permutation of K. With these choices,
we can define a glued incidence structure A1 ⊗ A2, see Section 2.7. We will prove
that S ∼= A1 ⊗ A2. For every point x of S, we put φ(x) := (x′,Qx ∩ A1,Fx ∩ A2)
where x′ denotes the unique element of K nearest to x. Clearly φ(x) is a point of
A1 ⊗A2. Conversely, suppose that (y, L1, L2) is a point of A1 ⊗A2. Let Q′ denote
the unique element of P2 through L1, let F ′ denote the unique element of P1 through
L2 and let x denote the unique point on the line Q′ ∩F ′ nearest to y. Since K and
Q′ ∩F ′ are parallel, φ(x) := (y, L1, L2). Obviously, x is the only point of S which is
mapped to (y, L1, L2) by φ. Hence φ is a bijection between the point sets of S and
A1 ⊗ A2. Take now two collinear points x and y in S and put φ(x) = (x′, L1, L2)
and φ(y) = (y′, M1, M2). If the line xy belongs to S, then L1 = M1, L2 = M2 and
x′ 6= y′; hence also φ(x) and φ(y) are collinear. If xy ⊂ Fx and xy 6⊂ Qx, then
L2 = M2 and d(L1, M1) = 1 since d(π(x), π(y)) = 1 by Lemma 2. By Lemma 1,
x′ (resp. y′) is the unique point of K nearest to π(x) (resp. π(y)). The condition
d(π(x), π(y)) = 1 is equivalent with condition (B) of Section 2.7. Hence φ(x) and
φ(y) are collinear points in A1 ⊗A2. Finally, suppose that xy 6⊂ Fx and xy ⊂ Qx.
Clearly L1 = M1. Let x′′ and y′′ denote the unique points of A2 nearest to x and
y. Notice that these points exist since (x,A2) and (y,A2) are classical. (Recall that
A2

∼= Q(5, 2) has no ovoids.) Now, Fx and Fy are big and different, and so the
projection of Fx on Fy is an isomorphism. As a consequence, the unique point x′′ of
A2∩Fx nearest to x is mapped by this isomorphism on the unique point y′′ of A2∩Fy

nearest to y. Hence d(x′′, y′′) = 1 and d(L2, M2) = 1. The condition d(x′′, y′′) = 1
is equivalent with condition (C) of Section 2.7. Hence φ(x) and φ(y) are collinear
points in A1 ⊗ A2. Summarizing we find that φ is an adjacency preserving map
between the collinearity graphs of S and A1⊗A2. Since both graphs have the same
valency, they are isomorphic. As a consequence also S and A1⊗A2 are isomorphic.
(Notice that the lines of a near polygon correspond with the maximal cliques of its
collinearity graph.) The theorem now follows from Theorem 3. �
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Second Case: t > tF + 4

Put δ := t− tF .

Lemma 16 We have δ ≤ 3n − 2. If equality holds, then no hex isomorphic to
G2 ⊗G2 meets F .

Proof. By Lemmas 9 and 11 there exists a Q(5, 2)-quad Q which intersects F in a
special line K. By Theorem 4 and Lemma 10, every hex H through Q is isomorphic
to either G2 ×L, G2 ⊗G2 or G3. In the first case H∩F is a grid. In the two other
cases H ∩ F is a Q(5, 2)-quad. Let λ1, respectively λ2, denote the number of hexes
through Q which are isomorphic to G2⊗G2, respectively G3. By Section 2.6, F has
n−2 Q(5, 2)-quads through K and hence λ1+λ2 = n−2. Counting over all hexes H
through Q, we find that δ = tQ+

∑
(tH−tQ−tH∩F) = 4+3λ2 ≤ 4+3(n−2) = 3n−2.

The lemma now immediately follows. �

Lemma 17 If a W (2)-quad Q intersects F in a line, then this line is an ordinary
line of F ∼= Gn−1.

Proof. Suppose that Q ∩ F is a special line and let x ∈ Q ∩ F . If R is one of the
n− 2 Q(5, 2)-quads of F through Q∩F , then the hex C(Q,R) has W (2)-quads and
Q(5, 2)-quads. By Theorem 4 and Lemma 10, it then follows that C(Q,R) ∼= G3.
Hence the hex C(Q,R) contains exactly five lines through x which are not contained
in Q ∪ R. Summing over all possible R, we find that δ ≥ 2 + 5(n − 2) = 5n − 8.
Together with δ ≤ 3n− 2, this implies that n ≤ 3, a contradiction. Hence Q∩F is
an ordinary line. �

Lemma 18 Every point x of F is contained in a W (2)-quad which intersects F in
a line.

Proof. By Lemma 11, there exists a Q(5, 2)-quad Q through x intersecting F in a
line. Since t > tF + 4, there exists a line K through x not contained in Q ∪ F . By
Theorem 4 and Lemma 10, the hex H = C(Q, K), which intersects F in a big quad,
is isomorphic to G3. The required W (2)-quad can now be chosen in the hex H. �

Lemma 19 We have δ ≥ 3n − 2. If equality holds, then no hex isomorphic to
NH(2, 6, {2}) meets F .

Proof. Let Q denote a W (2)-quad intersecting F in an ordinary line K. By Section
2.6, K is contained in a unique Q(5, 2)-quad and 3(n − 3) W (2)-quads of F . If T
is the unique Q(5, 2)-quad, then the hex H := C(Q, T ) is isomorphic to G3. If T is
one of the 3(n − 3) W (2)-quads of F through K, then H = C(Q, T ) is isomorphic
to either NH(2, 5, {1, 2}) or NH(2, 6, {2}). Hence δ = tQ +

∑
(tH − tQ − tH∩F) ≥

2 + 5 + 3(n− 3) = 3n− 2. The lemma now immediately follows. �

From Lemmas 16 and 19, we then have:
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Corollary 2 The following holds:

• δ = 3n − 2, t = δ + tF = 3n2−n−2
2

, |P| = (2δ + 1) · |F| = 3n·(2n)!
2n·n!

and |L| =
|P|·(t+1)

3
= 3n−1(2n)!(3n−1)

2n+1(n−1)!
;

• no hex isomorphic to G2 ⊗G2 meets F ;

• no hex isomorphic to NH(2, 6, {2}) meets F .

Lemma 20 (a) Every special line L of F ∼= Gn−1 is contained in a unique Q(5, 2)-
quad which is not contained in F .

(b) Let x ∈ F . All the Q(5, 2)-quads through x which are not contained in F have
a common line Ax in common.

Proof.

(a) Suppose that the line L is contained in two such Q(5, 2)-quads Q and R.
The hex C(Q,R) intersects F in a big quad, which is necessarily isomorphic
to Q(5, 2). The line L of C(Q,R) is then contained in at least three Q(5, 2)-
quads and hence C(Q,R) must be isomorphic to NH(2, 20, {4}), contradicting
Lemma 10. Hence L is contained in at most one Q(5, 2)-quad which is not
contained in F . We will now prove that L is contained in a unique such
Q(5, 2)-quad. Let x ∈ L and let T denote an arbitrary Q(5, 2)-quad through
x which intersects F in a special line. We may suppose that L 6= T ∩ F . The
hex C(T , L) has at least two Q(5, 2) quads through the line T ∩ F (namely
T and C(T ∩ F , L)) and hence is isomorphic to G3 by Theorem 4, Lemma 10
and Corollary 2. Let T ′ denote the unique Q(5, 2)-quad of C(T , L) through x
different from T and C(T ∩F , L). Then L ⊂ T ′ since T ′ ∩F is a special line.

(b) Let T1, T2 and T3 denote three different Q(5, 2)-quads through x which are not
contained in F . By the proof of (a), we know that T1 and T2 are contained
in a G3-hex H3. Hence T1 and T2 intersect in a line M3. In a similar way one
can define hexes H1 and H2, and lines M1 and M2. Now, H1 ∩ H2 ∩ H3 =
(H1 ∩H2) ∩ (H1 ∩H3) = T3 ∩ T2 = M1. Similarly M2 = M3 = H1 ∩H2 ∩H3.
Hence, all Q(5, 2)-quads through x not contained in F have a common line
Ax. �

Corollary 3 Let x ∈ F . The n − 1 Q(5, 2)-quads through Ax partition the set of
lines through x which are not contained in F ∪ Ax.

Proof. The n − 1 Q(5, 2)-quads through Ax determine 1 + 3(n − 1) = 3n − 2 lines
through x which are not contained in F . The result now follows since δ = 3n− 2. �
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Lemma 21 For every x ∈ F , G(S, x) is isomorphic to G(Gn).

Proof. Let F ′ denote a geodetically closed sub near 2(n−1)-gon of Gn isomorphic to
Gn−1, let x′ ∈ F ′ and let Ax′ denote the unique special line through x′ not contained
in F ′. Since Aut(Gn−1) acts transitively on the set of points of Gn−1, there exists
an isomorphism φ from F to F ′ mapping x to x′. For every line K of F through
x, we define θ(K) = φ(K). We will now extend θ in such a way it determines an
isomorphism between L(S, x) and L(Gn, x

′). Our result then follows from Lemma
7.

Extension of θ. We put θ(Ax) = Ax′ . Let K and K ′ denote two arbitrary special
lines of F through x. Let K, Ax, L1, L2 and L3 denote the five lines of C(K, Ax)
through x. Similarly, let K ′, Ax, L′

1, L′
2 and L′

3 denote the five lines of C(K ′, Ax)
through x. Let θ(L1) be one of the three lines of C(θ(K), Ax′) through x′ different
from θ(K) and Ax′ . Now, let M be an arbitrary line through x not contained in
F∪C(K, Ax). The quad C(L1, M) is a W (2)-quad and intersects F in an ordinary line
N . The quad C(Ax, M) is a Q(5, 2)-quad and intersects F in a special line N ′. The
hex C(Ax, L1, M) is isomorphic to G3 and intersects F in the Q(5, 2)-quad C(K, N ′).
Clearly N is contained in C(K, N ′). The hex C(Ax′ , θ(K), θ(N ′)) is isomorphic to
G3 and contains the lines θ(L1) and θ(N). The quad C(θ(L1), θ(N)) is isomorphic
to W (2) and we put θ(M) equal to the unique line of C(θ(L1), θ(N)) through x′

different from θ(L1) and θ(M). Clearly θ(M) ∈ C(Ax′ , θ(N
′)). We already defined

θ(L) for all lines L through x different from L2 and L3. For each i ∈ {2, 3}, the quad
C(Li, L

′
1) is isomorphic to W (2) and intersects F in a line P . Again C(θ(P ), θ(L′

1))
is a W (2)-quad and we put θ(Li) equal to the unique line of C(θ(P ), θ(L′

1)) through
x′ different from θ(P ) and θ(L′

1). Clearly, θ(Li) ∈ C(Ax′ , θ(K)). One easily sees
that θ is a bijection between the set of lines of S through x and the set of lines of
Gn through x′.

A linear space on a certain set of points is completely determined if all lines of
size at least three are know. The linear spaces L(S, x) and L(Gn, x

′) each contain
n(n−1)

2
lines of size 5 and 3n(n−1)(n−2)

2
lines of size 3. So, in order to prove that θ

determines an isomorphism, it suffices to verify that θ maps lines of size r ∈ {3, 5}
in L(S, x) to lines of size r in L(Gn, x

′). By construction (see above), this holds
for the lines of size 5. So, let δ = {M1, M2, M3} denote a line of size 3 in L(S, x)
and let Qδ denote the W (2)-quad corresponding with it. We will now prove that
{θ(M1), θ(M2), θ(M3)} is a line of size 3 in L(Gn, x

′). This trivially holds if Qδ ⊂ F .
Suppose therefore that M1, M2 are outside F and that M3 is inside F . We may also
suppose that M1 6= L1 6= M2. One of the following cases certainly occurs.

(I) The case M1, M2 ∈ {L2, L3, L
′
1, L

′
2, L

′
3}.

Let L′′
1, L′′

2 and L′′
3 denote the three lines of C(K, K ′) through x different from

K and K ′. The set {L1, L2, L3, L
′
1, L

′
2, L

′
3, L

′′
1, L

′′
2, L

′′
3} together with the subsets

{L1, L2, L3}, {L′
1, L

′
2, L

′
3}, {L′′

1, L
′′
2, L

′′
3}, {Li, L

′
j, C(Li, L

′
j) ∩ F}, i, j ∈ {1, 2, 3}, de-

fine an affine plane A of order 3. In a similar way, an affine plane A′ can be defined
on the set {θ(L1), . . . , θ(L

′′
3)}. The set {θ(L1), . . . , θ(L

′′
3)} also carries the structure of

an affine plane Aθ if one considers all subsets of the form {θ(P1), θ(P2), θ(P3)} where
{P1, P2, P3} is a line of A. Now, A′ and Aθ have the following eight lines in common:
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{θ(L1), θ(L2), θ(L3)}, {θ(L′
1), θ(L

′
2), θ(L

′
3)}, {θ(L′′

1), θ(L
′′
2), θ(L

′′
3)}, {θ(L1), θ(L

′
1),

C(θ(L1), θ(L
′
1)) ∩ F ′}, {θ(L1), θ(L

′
2), C(θ(L1), θ(L

′
2)) ∩ F ′}, {θ(L1), θ(L

′
3), C(θ(L1),

θ(L′
3))∩F ′}, {θ(L2), θ(L

′
1), C(θ(L2), θ(L

′
1))∩F ′}, {θ(L3), θ(L

′
1), C(θ(L3), θ(L

′
1))∩F ′}.

Hence A′ = Aθ. This is precisely what we needed to prove.

(II) The case {M1, M2} ∩ {L1, L2, L3} = ∅.
The quad C(Ax, Mi), i ∈ {1, 2}, intersects F in a special line Pi. Clearly, P1 6= P2.
The W (2)-quad C(L1, Mi), i ∈ {1, 2}, intersects F in an ordinary line Ni which is
contained in the Q(5, 2)-quad C(Pi, K). Since Ni is ordinary, C(Pi, K) is the unique
Q(5, 2) quad through Ni. Since C(P1, K) 6= C(P2, K), C(N1, N2) is not a Q(5, 2)-
quad. The hex H = C(L1, M1, M2) intersects F in the quad C(N1, N2). The line M3

belongs to C(N1, N2) and is different from N1 and N2. Hence C(N1, N2) ∼= W (2).
Since also C(θ(N1), θ(N2)) ∼= W (2), the lines θ(N1), θ(N2) and θ(M3) are precisely
the three lines of C(θ(N1), θ(N2)) through x′. Since C(θ(L1), θ(M1)) ∩ F ′ = θ(N1),
C(θ(L1), θ(M2)) ∩ F ′ = θ(N2) and C(θ(L1), θ(M1), θ(M2)) ∩ F = C(θ(N1), θ(N2)),
we necessarily have that C(θ(M1), θ(M2)) ∩ F ′ = θ(M3). This is precisely what we
needed to prove.

(III) The case {M1, M2} ∩ {L′
1, L

′
2, L

′
3} = ∅.

By (I) and (II), θ maps the lines {L′
1, M1, C(L′

1, M1) ∩ F} and {L′
1, M2, C(L′

1, M2)∩
F} of L(S, x) to lines of L(Gn, x

′). With a similar reasoning as in (II), we then
derive that also {M1, M2, C(M1, M2) ∩ F} is mapped to a line of L(Gn, x

′). �

Lemma 22 Every point y of S is contained in a big geodetically closed sub near
polygon isomorphic to Gn−1. Hence G(S, y) ∼= G(Gn).

Proof. We may suppose that y 6∈ F , then y is collinear with a unique point π(y) of F .
Call a line L through π(y) special if it is not contained in a W (2)-quad and ordinary
otherwise. Since G(S, π(y)) ∼= G(Gn), there are precisely n special lines L1, . . . , Ln

through π(y). We may suppose that y π(y) ⊂ C(L1, L2). For every i ∈ {2, . . . , n},
we put Fi := C(L1, . . . , Li). Since G(S, π(y)) ∼= G(Gn), we have the following for
every i ∈ {2, . . . , n− 1}:

(i) Fi is a dense geodetically closed sub near polygon of order (2, 3i2−3i−2
2

);

(ii) every quad of Fi+1 through π(y) either is contained in Fi or intersects Fi in a
line.

By (i) and Theorem 4, F2
∼= Q(5, 2) and F3

∼= G3. Suppose now that Fi
∼= Gi

for a certain i ∈ {3, n − 2}. By (ii) and Lemma 6, Fi is big in Fi+1. By our
Main Theorem (recall that our proof is by induction) it then follows that Fi+1 is
isomorphic to either Gi+1, Gi ⊗ G2 or Gi × L. By (i), we have Fi+1

∼= Gi+1. Now,
y ∈ Fn−1 and Fn−1

∼= Gn−1 is big in S. By Lemma 21 applied to Fn−1 instead of
F , G(S, y) ∼= G(Gn). �

Call a line L of S special if it is not contained in a W (2)-quad, and ordinary otherwise.
Since G(S, y) ∼= G(Gn) for every point y of S, every point of S is incident with n
special lines and 3

2
n(n − 1) ordinary lines. Let Vk, k ∈ {1, . . . , n}, denote the set
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of all geodetically closed sub near 2k-gons generated by k special lines through a
fixed point. If F ∈ Vk, k ∈ {1, . . . , n − 1}, then a similar reasoning as in the proof
of Lemma 22 gives that F ∼= Gk. Together with Corollary 2 this implies that every

element of Vk, k ∈ {1, . . . , n}, has mk := 3k·(2k)!
2k·k!

points.

Lemma 23 A subgrid G1 of Q ∼= Q(5, 2) defines a unique partition {G1, G2, G3} of
Q into three subgrids.

Proof. For a point x of Q, let x⊥ denote the set of points of Q collinear with x.
Call two vertices x, y ∈ Q \ G1 equivalent if x⊥ ∩ G1 and y⊥ ∩ G1 are equal or
disjoint. There are two equivalence classes C2 and C3 each containing 9 points. A
point x ∈ Ci is contained in three lines meeting G1 and two lines which are entirely
contained in Ci. So, each Ci contains 9·2

3
= 6 lines. Clearly, a grid Gi is formed by

the 9 points and 6 lines in Ci. The uniqueness of {G1, G2, G3} is also obvious. �

Lemma 24 Let M1, M2 and M3 be three mutual disjoint lines in a subgrid G of S.
If M1 and M2 are special, then also M3 is special.

Proof. There exists an element F ∈ Vn−1 through M2 not containing G. Since
RF ∈ Aut(S), M3 = RF(M1) is special. �

Lemma 25 Every Q(5, 2)-quad Q of S can be partitioned into three grids, such that
a line of Q is special if and only if it is contained in one of these grids.

Proof. If x ∈ Q, then G(S, x) ∼= Gn and hence exactly two from the five lines
of Q ∼= Q(5, 2) through x are special. Since Q contains 27 points, it has exactly
27·2
3

= 18 special lines. Consider a special line L ⊆ Q and let M1, M2 and M3

denote the three special lines of Q intersecting L in a point. By Lemma 24, M1, M2

and M3 are contained in a grid G1. Let G2 and G3 denote the subgrids of Q as in
Lemma 23. At most 10 from the 18 special lines meet G1; hence G2 ∪ G3 contains
two intersecting special lines N1 and N2. We may suppose that N1, N2 ⊆ G3. For
every line P of G2, there exists a unique i ∈ {1, 2, 3} and a unique j ∈ {1, 2} such
that P , Mi and Nj are contained in a grid. Hence by Lemma 24, every line of G2

is special. Since Q contains exactly 12 special lines disjoint from G2, all lines of G1

and G3 are special. This proves our lemma. �

Define the following relation R on the set V := Vn−1. For two elements v1, v2 ∈ V ,
we say that (v1, v2) ∈ R if exactly one of the following holds:

(i) v1 = v2

(ii) v1 ∩ v2 = ∅ and every line meeting v1 and v2 is special.
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Lemma 26 The relation R is an equivalence relation and every equivalence class
contains exactly 3 elements.

Proof. Let v ∈ V be arbitrary. Every point a ∈ v is contained in a unique special
line La = {a, a1, a2} not contained in v, and we define Ωa := {va1 , va2} where vai

denotes the unique element of V through ai not containing La. It suffices to prove
that Ωa = Ωb for all a, b ∈ v.

Suppose first that d(a, b) = 1. Let c denote the unique third point on the line ab
and let v′ denote an element of V through c not containing ab. Since Rv′ ∈ Aut(S),
Rv′(La) is a special line through b and hence equal to Lb. As a consequence Lb is
contained in the quad Q := C(b, La). Since La is special, Q is not isomorphic to
W (2). Suppose that Q is a grid. Since vai

is big, Q∩vai
is a line that meets Lb. Since

Lb ∩ vai
6= ∅, i ∈ {1, 2}, Ωb = {va1 , va2} = Ωa. Suppose that Q is a Q(5, 2)-quad.

Since Q ∈ V2 and v, va1 , va2 ∈ V , Q ∩ v, Q ∩ va1 and Q ∩ va2 are special lines (see
Lemma 9). By Lemma 25, the unique line through b intersecting Q ∩ vai

is special
and hence equal to Lb. Since Lb ∩ vai

6= ∅, i ∈ {1, 2}, Ωb = {va1 , va2} = Ωa.

If a and b are not collinear, consider then a path a = c0, . . . , ck = b of length
k = d(a, b) between a and b. Then Ωa = Ωc0 = · · · = Ωck

= Ωb. �

Lemma 27 Let v1, v2 and v3 be three different elements of V for which (v1, v2) ∈ R.
Then v1 ∩ v3 6= ∅ if and only if v2 ∩ v3 6= ∅.

Proof. If a ∈ v1 ∩ v3, then v3 necessarily contains the unique special line La through
a not contained in v1. Since La ∩ v2 6= ∅, the lemma follows. �

Lemma 28 Let v1, v2, v3, v4 ∈ V such that (vi, vj) 6∈ R for all i, j ∈ {1, 2, 3, 4} with
i 6= j. If v1 ∩ v2 = ∅ and v3 = Rv2(v1), then v4 intersects at least one of v1, v2 and
v3.

Proof. Since every point of S is contained in n elements of V , we have |V | = mn·n
mn−1

=

3n(2n− 1).

(i) Let N1 denote the number of elements of V intersecting v1, v2 and v3. Every
line intersecting v1 and v2 is ordinary and hence is contained in n−2 elements
of V . Each of these n− 2 elements intersects v1 in an element of Vn−2. Hence
N1 = mn−1·(n−2)

mn−2
= 3(n− 2)(2n− 3).

(ii) Let N2 denote the number of elements of V \{v1} meeting v1 and disjoint from
v2 and v3. By (i), every point of v1 is contained in n− 2 elements of V which
intersect v2 and v3. Hence every point of v1 is contained in a unique element
of V \ {v1} disjoint from v2 and v3. This element intersects v1 in an element
of Vn−2. Hence N2 = mn−1

mn−2
= 3(2n− 3).

(iii) There are N3 = 9 elements of V belonging to one of the equivalence classes
determined by v1, v2 and v3.

The lemma now follows since N1 + 3N2 + N3 = |V |. �
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Let Γ be the graph whose vertices are the equivalence classes determined by R with
two classes γ1 and γ2 adjacent if and only if v1 ∩ v2 = ∅ for every v1 ∈ γ1 and every
v2 ∈ γ2. The graph Γ has |V |

3
=

(
2n
2

)
vertices.

Lemma 29 The graph Γ is regular with valency k(Γ) = 4(n− 1).

Proof. Let v be a fixed element of V . From the 3n(2n−1) elements in V , 3 are con-

tained in the equivalence class of v, and mn−1·(n−1)
mn−2

= 3(n−1)(2n−3) intersect v in an

element of Vn−2. By Lemma 27 it then follows that k(Γ) = 3n(2n−1)−3(n−1)(2n−3)−3
3

=
4(n− 1). �

Lemma 30 Every 2 adjacent vertices γ1 and γ2 of Γ are contained in two maximal
cliques, one of size 3 and one of size 2n− 1.

Proof. Let v1 ∈ γ1, v2 ∈ γ2, let v3 denote the reflection of v2 about v1 and let
γ3 denote the equivalence class of v3. By Lemma 28, {γ1, γ2, γ3} is a maximal
clique. Let C 6= {γ1, γ2, γ3} denote another maximal clique through γ1 and γ2. If
γ4 ∈ C \ {γ1, γ2}, then every v4 ∈ γ4 intersects v3. By the proof of Lemma 28, there
are N2 = 3(2n−3) mutually disjoint elements in V \{v3} which intersect v3 and are
disjoint from v1 ∪ v2. By Lemma 27, these elements of V correspond to N2

3
= 2n− 3

vertices of Γ. The maximal clique C necessarily consists of γ1, γ2 and these 2n− 3
vertices of Γ. This proves our lemma. �

Lemma 31 There is a bijective correspondence between the maximal cliques of size
2n− 1 in Γ and the elements of B = {ē0, . . . , ē2n−1}. There is a bijective correspon-
dence between the vertices of Γ and the pairs of the set B.

Proof. The graph Γ has |Γ|·k(Γ)
(2n−1)·(2n−2)

= 2n maximal cliques of size 2n−1, proving the

first part of the lemma. Since every vertex of Γ is contained in k(Γ)
2n−2

= 2 maximal
cliques, it corresponds with a subset of size 2 of B. By Lemma 30, every pair of B
corresponds to at most one vertex of Γ. The second part of the lemma now follows
since there are as many vertices in Γ as there are pairs in B.

Lemma 32 Let v1, v2 denote two nonequivalent disjoint elements of V , let v3 denote
the reflection of v2 around v1, and let γk, k ∈ {1, 2, 3}, denote the equivalence
class determined by vk. Then there exist f̄1, f̄2, f̄3 ∈ B such that γj, j ∈ {1, 2, 3},
corresponds to {f̄j, f̄j+1}, where indices are taken modulo 3.

Proof. Let γ1 correspond to {f̄1, f̄2} ⊆ B, γ2 to {ḡ1, ḡ2} ⊆ B and γ3 to {h̄1, h̄2} ⊆ B.
Since γ1, γ2 and γ3 are not contained in a maximal clique of size 2n− 1, {f̄1, f̄2} ∩
{ḡ1, ḡ2} ∩ {h̄1, h̄2} = ∅. Since there is a unique maximal clique of size 2n − 1
through γ1 and γ2, |{f̄1, f̄2} ∩ {ḡ1, ḡ2}| = 1. Similarly, |{f̄1, f̄2} ∩ {h̄1, h̄2}| = 1 and
|{ḡ1, ḡ2} ∩ {h̄1, h̄2}| = 1. The lemma now immediately follows. �

We define X as the set of all points of weight 2 in PG(2n − 1, 4) with respect to a
fixed reference system.
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Lemma 33 The point-line geometry ∆ with point set V and line set
{{v1, v2, Rv2(v1)}|v1, v2 ∈ V, v1 ∩ v2 = ∅} is isomorphic to the point-line geome-
try ∆′ whose points are the elements of X and whose lines are those lines L of
PG(2n− 1, 4) for which |L ∩X| = 3 (natural incidence).

Proof. We first construct a bijection between V and X. For every i ∈ {1, . . . , 2n−1},
the equivalence class corresponding to {ē0, ēi} contains three elements of V which
can labeled with the three elements of the set {〈ē0 +αēi〉|α ∈ GF(4)∗} ⊆ X. For all
i, j ∈ {1, 2, . . . , 2n−1} with i < j and every α ∈ GF (4)∗, the reflection of 〈ē0 +αēj〉
(regarded as element of V ) around 〈ē0 + ēi〉 is labeled with the element 〈ēi + αēj〉
of X. In this way, we have a bijection between V and X.

For all i, j ∈ {1, 2, . . . , 2n− 1} with i < j, we now define a binary operation ⊗ij

on GF(4)∗ in the following way: 〈ēi +(α⊗ij β)ēj〉 is the reflection of 〈ē0 +βēj〉 about
〈ē0 +αēi〉. Clearly ⊗ij determines a latin square of order 3 on the set GF(4)∗. Since
1 ⊗ij α = α for every α ∈ GF (4)∗, we necessarily have α ⊗ij β = αεij · β for some
εij ∈ {+1,−1}.

Let i, j, k ∈ {1, . . . , 2n − 1} such that i < j < k and let α, β, γ ∈ GF(4)∗. Put
v = 〈ē0 + γēi〉, v1 = 〈ē0 + αēj〉, v2 = 〈ē0 + βēk〉 and v3 = 〈ēj + (αεjk · β)ēk〉.
Since v3 = Rv1(v2) and Rv ∈ Aut(S), the reflection of Rv(v2) around Rv(v1) equals
Rv(v3). Hence, the reflection of 〈ēi + (γεij · α)ēj〉 around 〈ēi + (γεik · β)ēk〉 equals
〈ēj + (αεjk · β)ēk〉. In particular, the reflection of 〈ēi + αēj〉 around 〈ēi + βēk〉 equals
〈ēj + (αεjk · β)ēk〉. Hence (γεij · α)εjk · (γεik · β) = (αεjk · β) or εijεjk = −εik. Putting
ε11 = −1, we have that ε1jεjk = −ε1k for all j, k ∈ {1, . . . , 2n− 1} with j < k.

For a point v ∈ V with label 〈ēi+αēj〉, i < j, we put θ(v) := 〈ēi+αε1j ēj〉. Clearly
θ is a bijection between V and X. Now, choose i, j and k such that 0 ≤ i < j < k ≤
2n− 1, and let α, β ∈ GF(4)∗. Since v1 := θ−1(〈ēi + αēj〉) and v2 := θ−1(〈ēi + βēk〉)
have respective labels 〈ēi + αε1j ēj〉 and 〈ēi + βε1k ēk〉, the reflection v3 of v2 around
v1 has label 〈ēj + (αε1jεjkβε1k)ēk〉. Hence θ(v3) = 〈ēj + (αε1jεjkε1kβε1kε1k)ēk〉 = 〈ēj +
(α−1β)ēk〉. It is now easily seen that θ is an isomorphism between ∆ and ∆′. �

Recall that Gn = (Y, Y ′, I), where Y is the set of all good subspaces of dimension
n − 1 and where Y ′ is the set of all good subspaces of dimension n − 2. We take
the following facts from [7]: (a) if π ∈ Y , then Gπ consists of n elements of X, (b) if
π ∈ Y ′ is a special line of Gn, then Gπ consists of n− 1 elements of X, (c) if π ∈ Y ′

is an ordinary line of Gn, then Gπ consists of n− 2 elements of X and one point of
weight 4.

Every point x of S is contained in n elements v1, . . . , vn of V . Since vi ∩ vj 6= ∅,
the supports of θ(vi) and θ(vj) are disjoint. We define φ(x) := 〈θ(v1), . . . , θ(vn)〉.
Clearly φ(x) ∈ Y .

Lemma 34 The map φ : P 7→ Y is bijective.

Proof. Let π ∈ Y , then {v1, . . . , vn} := θ−1(X ∩ π) is a set of n elements of V and
v1∩· · ·∩vn is a geodetically closed sub near polygon. Since a line of S is contained in
at most n−1 elements of V , |v1∩· · ·∩vn| ≤ 1. If π = φ(x), then {x} = v1∩· · ·∩vn,

proving that φ is injective. Since |Y | = |P| = 3n·(2n)!
2n·n!

, φ necessarily is bijective. �

For a line L = {x1, x2, x3} of S, we put φ′(L) = φ(x1) ∩ φ(x2) ∩ φ(x3).
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Lemma 35 For every line L, φ′(L) ∈ Y ′.

Proof. (A) Suppose that L is special. Let v1, . . . , vn−1 denote the n− 1 elements of
V through L, and let wi, i ∈ {1, 2, 3}, denote the unique element of V through xi

not containing L. Clearly φ′(L) = 〈θ(v1), . . . , θ(vn−1)〉 ∈ Y ′.
(B) Suppose that L is an ordinary line. Let v1, . . . , vn−2 denote those elements of V
through L, and let ui and wi denote the two elements of V through xi not containing
L. We may suppose that u3 = Ru1(u2). Then w2 = Rw1(u3) and w3 = Ru1(w2).
Putting θ(u1) = 〈ē0 + αē1〉, θ(w1) = 〈ē2 + βē3〉 and θ(u2) = 〈ē1 + γē2〉, we find
θ(u3) = 〈ē0 + αγē2〉, θ(w2) = 〈ē0 + αβγē3〉 and θ(w3) = 〈ē1 + βγē3〉. One easily
calculates that φ′(L) = 〈θ(v1), . . . , θ(vn−2), 〈ē0 + αē1 + αγē2 + αβγē3〉〉 ∈ Y ′. �

Lemma 36 The map φ′ : L 7→ Y ′ is bijective.

Proof. Let π′ ∈ Y ′. If π′ = φ′(L), then necessarily L = {φ−1(π)|π ∈ Y and π′ ⊂ π}.
Hence φ is injective. Since |L| = |Y ′| = 3n−1(2n)!(3n−1)

2n+1(n−1)!
, φ′ is bijective. �

Now, a point x and a line L of S are incident if and only if φ(x) and φ′(L) are
incident in Gn. This proves that S ∼= Gn.
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