
A non-abelian tensor product and universal

central extension of Leibniz n-algebra

J. M. Casas ∗

Abstract
A non-abelian tensor product for Leibniz n-algebras is introduced as a gen-

eralization of the non-abelian tensor product for Leibniz algebras introduced
by Kurdiani and Pirashvili. We use it to construct the universal central ex-
tension of a perfect Leibniz n-algebra.

1 Introduction

In 1973 Nambu [13] proposed a generalization of the classical Hamiltonian formalism
where the Poisson bracket is replaced by a n-linear skew-symmetric bracket {. . . }
(the Nambu bracket) on the algebra of smooth functions on a manifold M. Within the
framework of Nambu mechanics, the evolution of physical system is determined by
n−1 functions H1, . . . , Hn−1 ∈ C∞(M) and the equation of motion of an observable
f ∈ C∞(M) is given by df/dt = {H1, . . . , Hn−1, f}.

These ideas inspired novel mathematical structures by extending the binary Lie
bracket to a n-bracket (see [3], [4], [5], [14], [17]).

In the 90’s Loday [9, 10] introduced a new kind of algebras, called Leibniz alge-
bras, which are the non-skew-symmetric counterpart to Lie algebras. In brief, a Leib-
niz algebra g is a K-vector space equipped with a bilinear bracket [−,−] : g×g → g

satisfying the Leibniz identity

[x, [y, z]] = [[x, y], z]− [[x, z], y],∀x, y, z ∈ g (1)
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Obviously, if this bracket satisfies [x, x] = 0,∀x ∈ g, then the Leibniz identity is the
Jacobi identity and a Leibniz algebra is a Lie algebra.

In this context, was natural to extend this concept to Nambu algebras, so in
2002 Casas, Loday and Pirashvili [2] introduced the concept of Leibniz n-algebra,
suggested by Takhtajan in [16], and developed a cohomology theory for this kind of
algebras, which was complemented in [1] with a homology with trivial coefficients
theory.

In this way, in section 3, we construct a type of non-abelian tensor product of
Leibniz n-algebras (as a generalization of the non-abelian tensor product for Leibniz
algebras introduced by Kurdiani and Pirashvili [7]) which is essential in order to
construct the universal central extension of a perfect Leibniz n-algebra.

To summarize, for a Leibniz n-algebra L we define the Leibniz n-algebra L∗n :=
Coker(δ2 : L⊗(2n−1) → L⊗n) equipped with the bracket defined by formula (4) below.
Then we achieve the exact sequence

0 → nHL1(L) → L∗n [−,...,−]−→ L → nHL0(L) → 0

where nHL?(−) denotes the Leibniz homology with trivial coefficients for Leibniz
n-algebras [1]. In case of perfect Leibniz n-algebras, that is L = [L, n. . .,L], we have
that nHL0(L) = 0 and we proof that last sequence is the universal central extension
of L.

Previously we introduce in section 2 new concepts of Leibniz n-algebras as com-
mutator n-sided ideal, derivations and semidirect product which are useful in section
3. Moreover we study the relationship between derivations and semidirect product
achieving the exact sequence

0 → Der(L,M) → Der(K,M) → HomL(Nab,M)

associated to the exact sequence of Leibniz n-algebras 0 → N → K → L → 0, and
the representatibility of derivation functor.

2 Preliminaries on Leibniz n-algebras

A Leibniz n-algebra is a K-vector space L equipped with a n- linear bracket [−, . . . ,−] :
L⊗n → L satisfying the following fundamental identity

[[x1, x2, . . . , xn], y1, y2, . . . , yn−1] =

n∑
i=1

[x1, . . . , xi−1, [xi, y1, y2, . . . , yn−1], xi+1, . . . , xn] (2)

A morphism of Leibniz n-algebras is a linear map preserving the n-bracket. So
we have defined the category of Leibniz n-algebras, denoted by nLb. In case n = 2
the identity (2) is the Leibniz identity (1), so a Leibniz 2-algebra is a Leibniz algebra
[10], and we use Lb instead of 2Lb.

Leibniz (n+ 1)-algebras and Leibniz algebras are related by means of the Dalet-
skii’s functor [3] which assigns to a Leibniz (n + 1)-algebra L the Leibniz algebra
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Dn(L) = L⊗n with bracket

[a1 ⊗ · · · ⊗ an, b1 ⊗ · · · ⊗ bn] :=
n∑

i=1

a1 ⊗ · · · ⊗ [ai, b1, . . . , bn]⊗ · · · ⊗ an

Conversely, if L is a Leibniz algebra, then also is a Leibniz n-algebra under the
following n-bracket [2]

[x1, x2, . . . , xn] := [x1, [x2, . . . , [xn−1, xn], . . . ]] (3)

Examples:

1. Examples of Leibniz algebras in [10] yield examples of Leibniz n-algebras with
the bracket defined by equation (3).

2. A Lie triple system [8] is a vector space equipped with a bracket [−,−,−]
that satisfies the same identity (2) (particular case n = 3) and, instead of
skew-symmetry, satisfies the conditions

[x, y, z] + [y, z, x] + [z, x, y] = 0

and
[x, y, y] = 0.

It is an easy exercise to verify that Lie triple systems are Leibniz 3-algebras.

3. Let g be a Leibniz algebra with involution σ. This means that σ is an auto-
morphism of g and σ2 = id. Then

L := {x ∈ g | x+ σ(x) = 0}

is a Leibniz 3-algebra with respect to the bracket

[x, y, z] := [x, [y, z]].

4. Let V be a (n+1)-dimensional vector space with basis {→e1,
→
e2, . . . ,

→
en+1}. Then

we define [
→
x1,

→
x2, . . . ,

→
xn] := det(A), where A is the following matrix

→
e1

→
e2 . . .

→
en+1

x11 x21 . . . x(n+1)1

x12 x22 . . . x(n+1)2

. . . . . . . . . . . .
x1n x2n . . . x(n+1)n


Here

→
xi= x1i

→
e1 +x2i

→
e2 + · · · + x(n+1)i

→
en+1. Easily one sees that V equipped

with this bracket is a Leibniz n-algebra.

5. An associative trialgebra is a K-vector space A equipped with three binary op-
erations: a,⊥,` (called left, middle and right, respectively), satisfying eleven
associative relations [12]. Then A can be endowed with a structure of Leibniz
3-algebra with respect to the bracket

[x, y, z] = x a (y ⊥ z)− (y ⊥ z) ` x− x a (z ⊥ y) + (z ⊥ y) ` x

= x a (y ⊥ z − z ⊥ y)− (y ⊥ z − z ⊥ y) ` x
for all x, y, z ∈ A.
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Let L be a Leibniz n-algebra. A subalgebra K of L is called n-sided ideal if
[l1, l2, . . . , ln] ∈ K as soon as li ∈ K and l1, . . . , li−1, li+1, . . . , ln ∈ L, for all i =
1, 2, . . . , n. This definition ensures that the quotient L/K is endowed with a well
defined bracket induced naturally by the bracket in L.

A derivation of a Leibniz n-algebra L is a linear map d : L → L for which the
following identity holds:

d[x1, . . . , xn] =
n∑

i=1

[x1, . . . , d(xi), . . . , xn]

For instance, if we define the application ad[y2, . . . , yn] : L → L, ad[y2, . . . , yn](x)
= [x, y2, . . . , yn], fundamental identity (2) means that ad[y2, . . . , yn] is a derivation.

LetM and P be n-sided ideals of a Leibniz n-algebra L. The commutator ideal of
M and P , denoted by [M,P ,Ln−2], is the n-sided ideal of L spanned by the brackets
[l1, . . . , li, . . . , lj, . . . , ln] as soon as li ∈ M, lj ∈ P and lk ∈ L for all k different to
i, j. Obviously [M,P ,Ln−2] ⊂ M ∩ P. In the particular case M = P = L we
obtain the definition of derived algebra of a Leibniz n-algebra L.

For a Leibniz n-algebra L, we define its centre as the n-sided ideal

Z(L) = {l ∈ L | [l1, . . . , li−1, l, li+1, . . . , ln] = 0,∀li ∈ L, i = 1, . . . , î, . . . , n}

The category nLb has zero object, products and coproducts and every morphism
has image. From here, one can get the notion of centre (by Huq) [6] in a natural
way. It is an easy exercise to show that Z(L) coincides with this natural notion
since is the maximal central subobject in the category nLb.

An abelian Leibniz n-algebra is a Leibniz n-algebra with trivial bracket, that
is, the commutator n-sided ideal [Ln] = [L, . . . ,L] = 0. It is clear that a Leibniz
n-algebra L is abelian if and only if L = Z(L). To any Leibniz n-algebra L we can
associate its largest abelian quotient Lab, i. e., the abelianization functor works from

nLb to K-vector spaces category; clearly the kernel of the projection map π : L →
Lab must contain the n-sided ideal [Ln]. It is easy to verify that Lab

∼= L/[Ln].
An abelian extension of Leibniz n-algebras is an exact sequence (K) : 0 → M

κ→
K π→ L → 0 of Leibniz n-algebras such that [k1, . . . , kn] = 0 as soon as ki ∈ M and
kj ∈ M for some 1 ≤ i, j ≤ n (i. e., [M,M,Kn−2] = 0). Here k1, . . . , kn ∈ K. Clearly
then M is an abelian Leibniz n-algebra. Let us observe that the converse is true only
for n = 2.

If (K) is an abelian extension of Leibniz n-algebras, then M is equipped with
n actions [−, . . . ,−] : L⊗i⊗ M ⊗L⊗(n−1−i) → M, 0 ≤ i ≤ n − 1, satisfying (2n −
1) equations, which are obtained from (2) by letting exactly one of the variables
x1, . . . , xn, y1, . . . , yn−1 be in M and all the others in L [2].

A representation of a Leibniz n-algebra L is a K-vector space M equipped with
n actions of [−, . . . ,−] : L⊗i⊗ M ⊗L⊗(n−1−i) → M, 1 ≤ i ≤ n − 1, satisfying these
(2n− 1) axioms [2].

If we define the multilinear applications ρi : L⊗n−1 → EndK(M) by

ρi(l1, . . . , ln−1)(m) = [l1, . . . , li−1,m, li+1, . . . , ln−1]

1 ≤ i ≤ n, then the axioms of representation can be expressed by the following
identities [1]:
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1. For 2 ≤ k ≤ n,
ρk([l1, . . . , ln], ln+1, . . . , l2n−2) =

n∑
i=1

ρi(l1, . . . , l̂i, . . . , ln) · ρk(li, ln+1, . . . , l2n−2)

2. For 1 ≤ k ≤ n,
[ρ1(ln, . . . , l2n−2), ρk(l1, . . . , ln−1)] =

n−1∑
i=1

ρk(l1, . . . , li−1, [li, ln, . . . , l2n−2], li+1, . . . , ln−1)

being the bracket on EndK(M) the usual one for associative algebras.

A particular instance of representation is the case M =L, where the applications
ρi are the adjoint representations

adi(l1, . . . , ln−1)(l) = [l1, . . . , li−1, l, li+1, . . . , ln−1]

If the components of the representation ad : L⊗n−1 → EndK(L) are ad =
(ad1, . . . , adn), then Ker ad = {l ∈ L | adi(l1, . . . , ln−1)(l) = 0,∀(l1, . . . , ln−1) ∈
L⊗n−1, 1 ≤ i ≤ n}, that is, Ker ad is the centre of L.

Definition 1. Let L be a Leibniz n-algebra and M a representation of L. A deriva-
tion from L to M is a K-linear map d : L → M for which the following identity
holds:

d[l1, . . . , ln] =
n∑

i=1

[l1, . . . , d(li), . . . , ln]

Notice that this property of d is compatible with n-linearity and the fundamental
identity (2). We denote by Der(L,M) the K-vector space of all derivations from
L to M. When L is regarded as representation of L, then Der(L,L) coincides with
Der(L), the K-vector space of derivations of L. If M is a trivial representation of
L, that is, the actions [−, . . . ,−] : L⊗i⊗ M ⊗L⊗(n−1−i) → M, 1 ≤ i ≤ n − 1, are
trivial, then a derivation d : L → M is a homomorphism of Leibniz n-algebras.

Definition 2. Let L be a Leibniz n-algebra and M a representation of L. We define
the semidirect product M on L as the Leibniz n-algebra with underlying vector space
M⊕ L and bracket

[(m1, l1), . . . , (mn, ln)] = (
n∑

i=1

[l1, . . . , li−1,mi, li+1, . . . , ln], [l1, . . . , ln])

There is an obvious injective homomorphism of Leibniz n-algebras i : M → M on
L given by i(m) = (m, 0),m ∈ M. There also is an obvious surjective homomorphism
of Leibniz n-algebras π : M on L → L given by π(m, l) = l. On the other hand,
i(M) is a n-sided ideal of M on L with quotient L, being the canonical projection

π; thus the sequence 0 → M
i→ M on L π→ L → 0 is exact. Moreover i(M) is a

representation of M on L via π, so the exact sequence is an abelian extension of
Leibniz n-algebras which splits by means of σ : L → M on L, σ(l) = (0, l), l ∈ L.

The projection θ : M on L → M, θ(m, l) = m, is a derivation, being M a repre-
sentation of M on L via π.
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Theorem 1. Let L be a Leibniz n-algebra and M a representation of L. For every
homomorphism of Leibniz n-algebras f : Q → L and every f -derivation d : Q → M,
there exists a unique homomorphism of Leibniz n-algebras h : Q → M on L such that
the following diagram is commutative

Q

0 M M on L L 0- - - -�

@
@@R

�
��	 ?
d h f

i

θ
π

Conversely, every homomorphism of Leibniz n-algebras h : Q → M on L deter-
mines a homomorphism of Leibniz n-algebras f = πh : Q → L and a f -derivation
d = θh : Q → M.

Proof. Define h(x) = (d(x), f(x)), x ∈ Q. For converse, apply following lemma.�

Lemma 1. Let f : Q → L be a homomorphism of Leibniz n-algebras and d : L → M
a derivation, then df : Q → M is a derivation, being M a representation of Q via f .

Corollary 1. The set Der(L,M) is in one-to-one correspondence with the set of
homomorphisms of Leibniz n-algebras h : L → M on L such that πh = 1L.

If we denote by nLeib/L the comma category over the Leibniz n-algebra L, then
there exists a natural equivalence between the functors

nLeib/L

VectK

? ?

η
Der(−,M) HomnLeib/L(−,M on L → L)⇒

that is, the functor Der(−,M) is representable.

Theorem 2. Let 0 → N → K → L → 0 be an exact sequence of Leibniz n-algebras
and let M be a representation of L, then

0 → Der(L,M) → Der(K,M) → HomL(Nab,M)

is natural exact sequence of K-vector spaces

Proof. Applying the left exact functor HomnLeib/L(−,M on L → L) to the exact
sequence, we obtain the exact sequence

0 → HomnLeib/L(L,M on L → L) → HomnLeib/L(K,M on L → L)

→ HomnLeib/L(N ,M on L → L)

By natural equivalence η, this sequence is

0 → Der(L,M) → Der(K,M) → Der(N ,M)

but Der(N ,M) ∼= Hom(N ,M) ∼= HomL(Nab,M), since M is a trivial representation
of N . �
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Now we remember the (co)homology theory for Leibniz n-algebras developed in
[1, 2].

Let L be a Leibniz n-algebra and letM be a representation of L. ThenHom(L,M)
is a Dn−1(L)-representation as Leibniz algebras [2]. One defines the cochain com-
plex nCL

∗(L,M) to be CL∗(Dn−1(L),Hom(L,M)). We also put nHL
∗(L,M) :=

H∗(nCL
∗(L,M)). Thus, by definition one has nHL

∗(L,M) ∼= HL∗(Dn−1(L),
Hom(L,M)). Here CL? denotes the Leibniz complex and HL? its homology, called
Leibniz cohomology (see [10, 11] for more information).

In case n = 2, this cohomology theory gives 2HL
m(L,M) ∼= HLm+1(L,M),

m ≥ 1 and 2HL
0(L,M) ∼= Der(L,M).

On the other hand, nHL
0(L,M) ∼= Der(L,M) and nHL

1(L,M) ∼= Ext(L,M),
where Ext(L,M) denotes the set of isomorphism classes of abelian extensions of L
by M [2].

Homology with trivial coefficients of a Leibniz n-algebra L is defined in [1] as the
homology of the Leibniz complex nCL?(L) := CL?(Dn−1(L),L), where L is endowed
with a structure of Dn−1(L) symmetric corepresentation. We denote the homology
groups of this complex by nHL?(L).

When L is a Leibniz 2-algebra, that is a Leibniz algebra, then we have that

2HLk(L) ∼= HLk+1(L), k ≥ 1. Particularly, 2HL0(L) ∼= HL1(L) ∼= L/[L,L] = Lab.
On the other hand, nHL0(L) = Lab.

3 Universal central extensions of Leibniz n-algebras

Let L be a Leibniz n-algebra. We can endowed the tensor L⊗n with a structure of
Leibniz n-algebra by means of the following bracket:

[x11 ⊗ · · · ⊗ xn1, x12 ⊗ · · · ⊗ xn2, . . . , x1n ⊗ · · · ⊗ xnn] :=

[x11, [x12, . . . , xn2], . . . , [x1n, . . . , xnn]]⊗ x21 ⊗ · · · ⊗ xn1+

x11 ⊗ [x21, [x12, . . . , xn2], . . . , [x1n, . . . , xnn]]⊗ · · · ⊗ xn1 + · · ·+ (4)

x11 ⊗ · · · ⊗ x(n−1)1 ⊗ [xn1, [x12, . . . , xn2], . . . , [x1n, . . . , xnn]]

In particular case n = 2 we obtain a structure of Leibniz algebra on L⊗L which
is the subject of [7].

Now we remember that the complex used in [1] in order to achieve the homology
with trivial coefficients of a Leibniz n-algebra L is

· · · → L⊗k(n−1)+1 δk→ L⊗(k−1)(n−1)+1 δk−1→ · · · → L⊗2n−1 δ2→ L⊗n δ1→ L

where the low differentials are

δ2(x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yn−1) = [x1, . . . , xn]⊗ y1 ⊗ · · · ⊗ yn−1−

[x1, y1, . . . , yn−1]⊗ x2 ⊗ · · · ⊗ xn − · · · − x1 ⊗ . . . xn−1 ⊗ [xn, y1, . . . , yn−1]

and δ1 : L⊗n → L is the commutator map

δ1(x1 ⊗ · · · ⊗ xn) = [x1, . . . , xn]
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Definition 3. For a Leibniz n-algebra L, let be

Z→(L) = {a ∈ L | [x1, a, . . . , xn] = · · · = [x1, x2, . . . , a] = 0;x1, . . . , xn ∈ L}

Definition 4. For a Leibniz n-algebra L, let Lann be the smallest n-sided ideal
spanned by the elements of the form [x1, . . . , xn], xi ∈ L, i = 1, . . . , n as soon as
xi = xj.

Lemma 2. Z→(L) is a n-sided ideal of L. Moreover it is verified that

[L, Z→(L), . . . ,L] = · · · = [L,L, . . . , Z→(L)] = 0

and
[Z→(L),L, . . . ,L] ⊆ Lann

Proof: The proof is straightforward and we leave it to the reader. �

Lemma 3. The image of the differential δ2 : L⊗2n−1 → L⊗n is an abelian n-sided
ideal of L⊗n. Moreover Im δ2 ⊂ Z→(L⊗n).

Proof: The proof only uses the fundamental identity (2), the structure on L⊗n

given by identity (4) and lemma 2. �

Now we consider the vector space

L∗n = L∗ n. . . ∗L := Coker(δ2 : L⊗(2n−1) → L⊗n)

which is equipped with a structure of Leibniz n-algebra induced by the bracket (4)
defined on L⊗n. We denote by x1 ∗ · · · ∗ xn the image of x1 ⊗ · · · ⊗ xn ∈ L⊗n into
L∗n. Since

[x1, . . . , xn] ∗ y2 ∗ · · · ∗ yn =

[x1, y2, . . . , yn] ∗ x2 ∗ · · · ∗ xn + · · ·+
x1 ∗ · · · ∗ xn−1 ∗ [xn, y2, . . . , yn]

we see that
[x11 ∗ · · · ∗ xn1, x12 ∗ · · · ∗ xn2, . . . , x1n ∗ · · · ∗ xnn] =

[x11, . . . , xn1] ∗ [x12, . . . , xn2] ∗ · · · ∗ [x1n, . . . xnn] (5)

Having in mind the definition of homology with trivial coefficients one has the exact
sequence of Leibniz n-algebras

0 → nHL1(L) → L∗n [−,...,−]−→ L → nHL0(L) → 0 (6)

Here nHL0(L) and nHL1(L) are abelian Leibniz n-algebras. Moreover one can show
that nHL1(L) is a central subalgebra of L∗n.

Proposition 1. Let L be a free Leibniz n-algebra, then the homomorphism

[−, . . . ,−] : L∗n → L

is injective.

Proof. In (6) nHL1(L) = 0 (see theorem 2 [1]). �
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Given n-sided ideals M′
i of L such that M′

i ⊆ Mi, being Mi n-sided ideals of
L, i = 1, . . . , n, then there exists a canonical homomorphism i : M′

1 ∗ · · · ∗ M′
n →

M1 ∗ · · · ∗Mn, where M1 ∗ · · · ∗Mn means the smallest ideal of L∗ n. . . ∗L spanned
by the elements m1 ∗ · · ·∗mn with mi ∈Mi, i = 1, . . . , n. We shall denote the image
of this homomorphism by (M′

1 ∗ · · · ∗M′
n)M1,...,Mn .

Proposition 2. Let K be a n-sided ideal of L which is contained in ∩n
i=1Mi. Then

there is a canonical isomorphism

M1

K
∗ · · · ∗ Mn

K
∼=

M1 ∗ · · · ∗Mn∑n
i=1 (M1 ∗ · · · ∗Mi−1 ∗ K ∗Mi+1 ∗ · · · ∗Mn)M1,...,Mn

Proof. The canonical map

Φ :
M1

K
∗ · · · ∗ Mn

K
→ M1 ∗ · · · ∗Mn∑n

i=1 (M1 ∗ · · · ∗Mi−1 ∗ K ∗Mi+1 ∗ · · · ∗Mn)M1,...,Mn

is a well defined homomorphism of Leibniz n-algebras. On the other hand, the
canonical map

σ : M1 ∗ · · · ∗Mn →
M1

K
∗ · · · ∗ Mn

K
is a homomorphism of Leibniz n-algebras which annihilates

n∑
i=1

(M1 ∗ · · · ∗Mi−1 ∗ K ∗Mi+1 ∗ · · · ∗Mn)M1,...,Mn

Then σ induces

Σ :
M1 ∗ · · · ∗Mn∑n

i=1 (M1 ∗ · · · ∗Mi−1 ∗ K ∗Mi+1 ∗ · · · ∗Mn)M1,...,Mn

→ M1

K
∗ · · · ∗ Mn

K

and moreover Σ is inverse of Φ. �

Theorem 3. Let L be a Leibniz n-algebra, then

nHL1(L) ∼= Ker(L∗n [−,...,−]→ L)

Proof. See exact sequence (6). �

If 0 → R→ F → L → 0 is a free presentation of a Leibniz n-algebra L (always
there exist free presentations of a Leibniz n-algebra, see [1]), then having in mind
Propositions 1 and 2 we obtain the following isomorphism

L∗n ∼=
F
R
∗ n. . . ∗F

R
∼=

F∗n∑n
i=1(F ∗ · · · ∗ R ∗ . . .F)F∗···∗F

∼=
[F , n. . .,F ]

[R,F , n−1. . . ,F ]
(7)

Now we consider a perfect Leibniz n-algebra L, that is L = [L, n. . .,L], equiva-
lently nHL0(L) = 0, then exact sequence (6) is the central extension

0 → nHL1(L) → L∗n [−,...,−]−→ L → 0 (8)

The following results are devoted to show that exact sequence (8) is the universal
central extension of L. Firstly we remember some results about (see [1]).
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Definition 5. A central extension (K) of Leibniz n-algebras is an extension of Leib-
niz n-algebras (K) : 0 →M → K π→ L → 0 for which [M,Kn−1] = 0.

This central extension is called universal if for every central extension (K′) :

0 → M → K′ π′→ L → 0 there exists a unique homomorphism h : K → K′ such that
π′h = π.

Note that a central extension is an abelian extension and that equips M with a
structure of trivial L-representation.

Theorem 4. 1. If (K) : 0 → M → K π→ L → 0 is a central extension with K a
perfect Leibniz n-algebra and every central extension of K splits, then (K) is
universal.

2. A Leibniz n-algebra L admits a universal central extension if and only if L is
perfect.

3. The kernel of the universal central extension is canonically isomorphic to

nHL1(L, K).

Lemma 4. Let ϕ : L → M be a surjective homomorphism of Leibniz n-algebras.
Then the canonical homomorphism ϕ∗ n. . . ∗ϕ : L∗n → M∗n is surjective and its
kernel is the n-sided ideal

Im(Ker(ϕ) ∗ L ∗ · · · ∗ L+ · · ·+ L ∗ · · · ∗ L ∗Ker(ϕ) → L ∗ L ∗ · · · ∗ L)

Lemma 5. Let 0 → N → H π→ L → 0 be a central extension of Leibniz n-algebras,
being H a perfect Leibniz n-algebra. Let 0 → M → K σ→ L → 0 be another
central extension of Leibniz n-algebras. If there exists a homomorphism of Leibniz
n-algebras φ : H → K such that σφ = π, then φ is unique.

Proof. Let φ, ψ : H → K be two homomorphisms of Leibniz n-algebras such
that σφ = π and σψ = π. Then for any h ∈ H there exists m ∈ M such that
φ(h) = ψ(h) + m. From here, φ and ψ coincide on commutators [h1, . . . , hn] ∈ H
thanks to centrality ofM on K. Since H is a perfect Leibniz n-algebra, it is spanned
by commutators, so φ = ψ.

Theorem 5. Let L be a perfect Leibniz n-algebra, then

0 → nHL1(L) → L∗n [−,...,−]→ L → 0 (9)

is the universal central extension of L.

Proof. Let (H) : 0 →M→ K σ→ L → 0 be an arbitrary central extension of L.
The homomorphism of Leibniz n-algebras τ : K∗n → K, τ(x1∗· · ·∗xn) = [x1, . . . , xn],
can be factored throughout the homomorphism σ∗ n. . . ∗σ : H∗n → L∗n by lemma 4
and centrality of M = Ker(σ). This provides a homomorphism φ : L∗n → H such
that σ.φ(l1 ∗ · · · ∗ ln) = [l1, . . . , ln], for all l1, . . . , ln ∈ L.

On the other hand, L perfect implies that L∗n is perfect since [L∗n, . . . ,L∗n] =
[L, . . . ,L] ∗ · · · ∗ [L, . . . ,L]. Now lemma 5 ends the proof. �
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Having in mind formula (7), then we can write the universal central extension
of a perfect Leibniz n-algebra L as follows

0 → nHL1(L) → [F , n. . .,F ]

[R,F , n−1. . . ,F ]

[−,...,−]→ L → 0

From here we can deduce that nHL1(L) ∼= (R∩ [F , n. . .,F ])/[R,F , n−1. . . ,F ], being
0 → R→ F → L → 0 a free presentation of a Leibniz n-algebra L. This result was
obtained in [1] using other techniques.

In the universal central extension (9), nHL1(L) can be considered as a trivial
representation of L. By Theorem 3 in [1] (Theorem of Universal Coefficient) we
have that

nHL
1(L, nHL1(L)) ∼= Hom(nHL1(L), nHL1(L))

But it is well-known the bijection (see [2])

nHL
1(L, nHL1(L)) ∼= Ext(L, nHL1(L))

One can see that the universal central extension corresponds to the element

IdnHL1(L) ∈ Hom(nHL1(L), nHL1(L))
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