A non-abelian tensor product and universal central extension of Leibniz n-algebra

J. M. Casas *

Abstract

A non-abelian tensor product for Leibniz n-algebras is introduced as a generalization of the non-abelian tensor product for Leibniz algebras introduced by Kurdiani and Pirashvili. We use it to construct the universal central extension of a perfect Leibniz n-algebra.

1 Introduction

In 1973 Nambu [13] proposed a generalization of the classical Hamiltonian formalism where the Poisson bracket is replaced by a n-linear skew-symmetric bracket $\{\ldots\}$ (the Nambu bracket) on the algebra of smooth functions on a manifold M. Within the framework of Nambu mechanics, the evolution of physical system is determined by $n-1$ functions $H_{1}, \ldots, H_{n-1} \in C^{\infty}(\mathrm{M})$ and the equation of motion of an observable $f \in C^{\infty}(\mathrm{M})$ is given by $d f / d t=\left\{H_{1}, \ldots, H_{n-1}, f\right\}$.

These ideas inspired novel mathematical structures by extending the binary Lie bracket to a n-bracket (see [3], [4], [5], [14], [17]).

In the 90 's Loday $[9,10]$ introduced a new kind of algebras, called Leibniz algebras, which are the non-skew-symmetric counterpart to Lie algebras. In brief, a Leibniz algebra \mathfrak{g} is a K-vector space equipped with a bilinear bracket $[-,-]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying the Leibniz identity

$$
\begin{equation*}
[x,[y, z]]=[[x, y], z]-[[x, z], y], \forall x, y, z \in \mathfrak{g} \tag{1}
\end{equation*}
$$

[^0]Obviously, if this bracket satisfies $[x, x]=0, \forall x \in \mathfrak{g}$, then the Leibniz identity is the Jacobi identity and a Leibniz algebra is a Lie algebra.

In this context, was natural to extend this concept to Nambu algebras, so in 2002 Casas, Loday and Pirashvili [2] introduced the concept of Leibniz n-algebra, suggested by Takhtajan in [16], and developed a cohomology theory for this kind of algebras, which was complemented in [1] with a homology with trivial coefficients theory.

In this way, in section 3, we construct a type of non-abelian tensor product of Leibniz n-algebras (as a generalization of the non-abelian tensor product for Leibniz algebras introduced by Kurdiani and Pirashvili [7]) which is essential in order to construct the universal central extension of a perfect Leibniz n-algebra.

To summarize, for a Leibniz n-algebra \mathcal{L} we define the Leibniz n-algebra $\mathcal{L}^{* n}:=$ $\operatorname{Coker}\left(\delta_{2}: \mathcal{L}^{\otimes(2 n-1)} \rightarrow \mathcal{L}^{\otimes n}\right)$ equipped with the bracket defined by formula (4) below. Then we achieve the exact sequence

$$
0 \rightarrow{ }_{n} H L_{1}(\mathcal{L}) \rightarrow \mathcal{L}^{* n} \xrightarrow{[-, \ldots,-]} \mathcal{L} \rightarrow{ }_{n} H L_{0}(\mathcal{L}) \rightarrow 0
$$

where ${ }_{n} H L_{\star}(-)$ denotes the Leibniz homology with trivial coefficients for Leibniz n-algebras [1]. In case of perfect Leibniz n-algebras, that is $\mathcal{L}=\left[\mathcal{L}, .^{n}, \mathcal{L}\right]$, we have that ${ }_{n} H L_{0}(\mathcal{L})=0$ and we proof that last sequence is the universal central extension of \mathcal{L}.

Previously we introduce in section 2 new concepts of Leibniz n-algebras as commutator n-sided ideal, derivations and semidirect product which are useful in section 3. Moreover we study the relationship between derivations and semidirect product achieving the exact sequence

$$
0 \rightarrow \operatorname{Der}(\mathcal{L}, \mathrm{M}) \rightarrow \operatorname{Der}(\mathcal{K}, \mathrm{M}) \rightarrow \operatorname{Hom}_{\mathcal{L}}\left(\mathcal{N}_{a b}, \mathrm{M}\right)
$$

associated to the exact sequence of Leibniz n-algebras $0 \rightarrow \mathcal{N} \rightarrow \mathcal{K} \rightarrow \mathcal{L} \rightarrow 0$, and the representatibility of derivation functor.

2 Preliminaries on Leibniz n-algebras

A Leibniz n-algebra is a K -vector space \mathcal{L} equipped with a n - linear bracket $[-, \ldots,-]$: $\mathcal{L}^{\otimes n} \rightarrow \mathcal{L}$ satisfying the following fundamental identity

$$
\begin{gather*}
{\left[\left[x_{1}, x_{2}, \ldots, x_{n}\right], y_{1}, y_{2}, \ldots, y_{n-1}\right]=} \\
\sum_{i=1}^{n}\left[x_{1}, \ldots, x_{i-1},\left[x_{i}, y_{1}, y_{2}, \ldots, y_{n-1}\right], x_{i+1}, \ldots, x_{n}\right] \tag{2}
\end{gather*}
$$

A morphism of Leibniz n-algebras is a linear map preserving the n-bracket. So we have defined the category of Leibniz n-algebras, denoted by ${ }_{n} \mathbf{L b}$. In case $n=2$ the identity (2) is the Leibniz identity (1), so a Leibniz 2-algebra is a Leibniz algebra [10], and we use $\mathbf{L b}$ instead of ${ }_{2} \mathbf{L b}$.

Leibniz $(n+1)$-algebras and Leibniz algebras are related by means of the Daletskii's functor [3] which assigns to a Leibniz $(n+1)$-algebra \mathcal{L} the Leibniz algebra
$\mathcal{D}_{n}(\mathcal{L})=\mathcal{L}^{\otimes n}$ with bracket

$$
\left[a_{1} \otimes \cdots \otimes a_{n}, b_{1} \otimes \cdots \otimes b_{n}\right]:=\sum_{i=1}^{n} a_{1} \otimes \cdots \otimes\left[a_{i}, b_{1}, \ldots, b_{n}\right] \otimes \cdots \otimes a_{n}
$$

Conversely, if \mathcal{L} is a Leibniz algebra, then also is a Leibniz n-algebra under the following n-bracket [2]

$$
\begin{equation*}
\left[x_{1}, x_{2}, \ldots, x_{n}\right]:=\left[x_{1},\left[x_{2}, \ldots,\left[x_{n-1}, x_{n}\right], \ldots\right]\right] \tag{3}
\end{equation*}
$$

Examples:

1. Examples of Leibniz algebras in [10] yield examples of Leibniz n-algebras with the bracket defined by equation (3).
2. A Lie triple system [8] is a vector space equipped with a bracket $[-,-,-]$ that satisfies the same identity (2) (particular case $n=3$) and, instead of skew-symmetry, satisfies the conditions

$$
[x, y, z]+[y, z, x]+[z, x, y]=0
$$

and

$$
[x, y, y]=0
$$

It is an easy exercise to verify that Lie triple systems are Leibniz 3 -algebras.
3. Let g be a Leibniz algebra with involution σ. This means that σ is an automorphism of g and $\sigma^{2}=i d$. Then

$$
\mathcal{L}:=\{x \in \mathrm{~g} \mid x+\sigma(x)=0\}
$$

is a Leibniz 3 -algebra with respect to the bracket

$$
[x, y, z]:=[x,[y, z]] .
$$

4. Let V be a $(\mathrm{n}+1)$-dimensional vector space with basis $\left\{\overrightarrow{e_{1}}, \overrightarrow{e_{2}}, \ldots, \overrightarrow{e_{n+1}}\right\}$. Then we define $\left[\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \ldots, \overrightarrow{x_{n}}\right]:=\operatorname{det}(A)$, where A is the following matrix

$$
\left(\begin{array}{cccc}
\overrightarrow{e_{1}} & \overrightarrow{e_{2}} & \ldots & e_{n+1} \\
x_{11} & x_{21} & \ldots & x_{(n+1) 1} \\
x_{12} & x_{22} & \ldots & x_{(n+1) 2} \\
\ldots & \ldots & \ldots & \ldots \\
x_{1 n} & x_{2 n} & \ldots & x_{(n+1) n}
\end{array}\right)
$$

Here $\overrightarrow{x_{i}}=x_{1 i} \overrightarrow{e_{1}}+x_{2 i} \overrightarrow{e_{2}}+\cdots+x_{(n+1) i} \overrightarrow{e_{n+1}}$. Easily one sees that V equipped with this bracket is a Leibniz n-algebra.
5. An associative trialgebra is a K-vector space A equipped with three binary operations: \dashv, \perp, \vdash (called left, middle and right, respectively), satisfying eleven associative relations [12]. Then A can be endowed with a structure of Leibniz 3 -algebra with respect to the bracket

$$
\begin{aligned}
{[x, y, z]=} & x \dashv(y \perp z)-(y \perp z) \vdash x-x \dashv(z \perp y)+(z \perp y) \vdash x \\
& =x \dashv(y \perp z-z \perp y)-(y \perp z-z \perp y) \vdash x
\end{aligned}
$$

for all $x, y, z \in \mathrm{~A}$.

Let \mathcal{L} be a Leibniz n-algebra. A subalgebra \mathcal{K} of \mathcal{L} is called n-sided ideal if $\left[l_{1}, l_{2}, \ldots, l_{n}\right] \in \mathcal{K}$ as soon as $l_{i} \in \mathcal{K}$ and $l_{1}, \ldots, l_{i-1}, l_{i+1}, \ldots, l_{n} \in \mathcal{L}$, for all $i=$ $1,2, \ldots, n$. This definition ensures that the quotient $\mathcal{L} / \mathcal{K}$ is endowed with a well defined bracket induced naturally by the bracket in \mathcal{L}.

A derivation of a Leibniz n-algebra \mathcal{L} is a linear map $d: \mathcal{L} \rightarrow \mathcal{L}$ for which the following identity holds:

$$
d\left[x_{1}, \ldots, x_{n}\right]=\sum_{i=1}^{n}\left[x_{1}, \ldots, d\left(x_{i}\right), \ldots, x_{n}\right]
$$

For instance, if we define the application $a d\left[y_{2}, \ldots, y_{n}\right]: \mathcal{L} \rightarrow \mathcal{L}, a d\left[y_{2}, \ldots, y_{n}\right](x)$ $=\left[x, y_{2}, \ldots, y_{n}\right]$, fundamental identity (2) means that $a d\left[y_{2}, \ldots, y_{n}\right]$ is a derivation.

Let \mathcal{M} and \mathcal{P} be n-sided ideals of a Leibniz n-algebra \mathcal{L}. The commutator ideal of \mathcal{M} and \mathcal{P}, denoted by $\left[\mathcal{M}, \mathcal{P}, \mathcal{L}^{n-2}\right]$, is the n-sided ideal of \mathcal{L} spanned by the brackets $\left[l_{1}, \ldots, l_{i}, \ldots, l_{j}, \ldots, l_{n}\right]$ as soon as $l_{i} \in \mathcal{M}, l_{j} \in \mathcal{P}$ and $l_{k} \in \mathcal{L}$ for all k different to i, j. Obviously $\left[\mathcal{M}, \mathcal{P}, \mathcal{L}^{n-2}\right] \subset \mathcal{M} \cap \mathcal{P}$. In the particular case $\mathcal{M}=\mathcal{P}=\mathcal{L}$ we obtain the definition of derived algebra of a Leibniz n-algebra \mathcal{L}.

For a Leibniz n-algebra \mathcal{L}, we define its centre as the n-sided ideal

$$
Z(\mathcal{L})=\left\{l \in \mathcal{L} \mid\left[l_{1}, \ldots, l_{i-1}, l, l_{i+1}, \ldots, l_{n}\right]=0, \forall l_{i} \in \mathcal{L}, i=1, \ldots, \hat{i}, \ldots, n\right\}
$$

The category ${ }_{n} \mathbf{L b}$ has zero object, products and coproducts and every morphism has image. From here, one can get the notion of centre (by Huq) [6] in a natural way. It is an easy exercise to show that $Z(\mathcal{L})$ coincides with this natural notion since is the maximal central subobject in the category ${ }_{n} \mathbf{L b}$.

An abelian Leibniz n-algebra is a Leibniz n-algebra with trivial bracket, that is, the commutator n-sided ideal $\left[\mathcal{L}^{n}\right]=[\mathcal{L}, \ldots, \mathcal{L}]=0$. It is clear that a Leibniz n-algebra \mathcal{L} is abelian if and only if $\mathcal{L}=Z(\mathcal{L})$. To any Leibniz n-algebra \mathcal{L} we can associate its largest abelian quotient $\mathcal{L}_{a b}$, i. e., the abelianization functor works from ${ }_{n} \mathbf{L b}$ to K-vector spaces category; clearly the kernel of the projection map $\pi: \mathcal{L} \rightarrow$ $\mathcal{L}_{a b}$ must contain the n-sided ideal $\left[\mathcal{L}^{n}\right]$. It is easy to verify that $\mathcal{L}_{a b} \cong \mathcal{L} /\left[\mathcal{L}^{n}\right]$.

An abelian extension of Leibniz n-algebras is an exact sequence $(\mathcal{K}): 0 \rightarrow \mathrm{M} \xrightarrow{\kappa}$ $\mathcal{K} \xrightarrow{\pi} \mathcal{L} \rightarrow 0$ of Leibniz n-algebras such that $\left[k_{1}, \ldots, k_{n}\right]=0$ as soon as $k_{i} \in \mathrm{M}$ and $k_{j} \in \mathrm{M}$ for some $1 \leq i, j \leq n$ (i. e., $\left[\mathrm{M}, \mathrm{M}, \mathcal{K}^{n-2}\right]=0$). Here $k_{1}, \ldots, k_{n} \in \mathcal{K}$. Clearly then M is an abelian Leibniz n-algebra. Let us observe that the converse is true only for $n=2$.

If (\mathcal{K}) is an abelian extension of Leibniz n-algebras, then M is equipped with n actions $[-, \ldots,-]: \mathcal{L}^{\otimes i} \otimes \mathrm{M} \otimes \mathcal{L}^{\otimes(n-1-i)} \rightarrow \mathrm{M}, 0 \leq i \leq n-1$, satisfying ($2 n-$ 1) equations, which are obtained from (2) by letting exactly one of the variables $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n-1}$ be in M and all the others in $\mathcal{L}[2]$.

A representation of a Leibniz n-algebra \mathcal{L} is a K-vector space M equipped with n actions of $[-, \ldots,-]: \mathcal{L}^{\otimes i} \otimes \mathrm{M} \otimes \mathcal{L}^{\otimes(n-1-i)} \rightarrow \mathrm{M}, 1 \leq i \leq n-1$, satisfying these $(2 n-1)$ axioms [2].

If we define the multilinear applications $\rho_{i}: \mathcal{L}^{\otimes n-1} \rightarrow \operatorname{End}_{K}(\mathrm{M})$ by

$$
\rho_{i}\left(l_{1}, \ldots, l_{n-1}\right)(m)=\left[l_{1}, \ldots, l_{i-1}, m, l_{i+1}, \ldots, l_{n-1}\right]
$$

$1 \leq i \leq n$, then the axioms of representation can be expressed by the following identities [1]:

1. For $2 \leq k \leq n$,

$$
\begin{gathered}
\rho_{k}\left(\left[l_{1}, \ldots, l_{n}\right], l_{n+1}, \ldots, l_{2 n-2}\right)= \\
\sum_{i=1}^{n} \rho_{i}\left(l_{1}, \ldots, \hat{l}_{i}, \ldots, l_{n}\right) \cdot \rho_{k}\left(l_{i}, l_{n+1}, \ldots, l_{2 n-2}\right)
\end{gathered}
$$

2. For $1 \leq k \leq n$,

$$
\begin{gathered}
{\left[\rho_{1}\left(l_{n}, \ldots, l_{2 n-2}\right), \rho_{k}\left(l_{1}, \ldots, l_{n-1}\right)\right]=} \\
\sum_{i=1}^{n-1} \rho_{k}\left(l_{1}, \ldots, l_{i-1},\left[l_{i}, l_{n}, \ldots, l_{2 n-2}\right], l_{i+1}, \ldots, l_{n-1}\right)
\end{gathered}
$$

being the bracket on $\operatorname{End}_{K}(\mathrm{M})$ the usual one for associative algebras.
A particular instance of representation is the case $\mathrm{M}=\mathcal{L}$, where the applications ρ_{i} are the adjoint representations

$$
a d_{i}\left(l_{1}, \ldots, l_{n-1}\right)(l)=\left[l_{1}, \ldots, l_{i-1}, l, l_{i+1}, \ldots, l_{n-1}\right]
$$

If the components of the representation $a d: \mathcal{L}^{\otimes n-1} \rightarrow \operatorname{End}_{K}(\mathcal{L})$ are $a d=$ $\left(a d_{1}, \ldots, a d_{n}\right)$, then Ker $a d=\left\{l \in \mathcal{L} \mid a d_{i}\left(l_{1}, \ldots, l_{n-1}\right)(l)=0, \forall\left(l_{1}, \ldots, l_{n-1}\right) \in\right.$ $\left.\mathcal{L}^{\otimes n-1}, 1 \leq i \leq n\right\}$, that is, Ker $a d$ is the centre of \mathcal{L}.

Definition 1. Let \mathcal{L} be a Leibniz n-algebra and M a representation of \mathcal{L}. A derivation from \mathcal{L} to M is a K-linear map $d: \mathcal{L} \rightarrow \mathrm{M}$ for which the following identity holds:

$$
d\left[l_{1}, \ldots, l_{n}\right]=\sum_{i=1}^{n}\left[l_{1}, \ldots, d\left(l_{i}\right), \ldots, l_{n}\right]
$$

Notice that this property of d is compatible with n-linearity and the fundamental identity (2). We denote by $\operatorname{Der}(\mathcal{L}, \mathrm{M})$ the K-vector space of all derivations from \mathcal{L} to M . When \mathcal{L} is regarded as representation of \mathcal{L}, then $\operatorname{Der}(\mathcal{L}, \mathcal{L})$ coincides with $\operatorname{Der}(\mathcal{L})$, the K-vector space of derivations of \mathcal{L}. If M is a trivial representation of \mathcal{L}, that is, the actions $[-, \ldots,-]: \mathcal{L}^{\otimes i} \otimes \mathrm{M} \otimes \mathcal{L}^{\otimes(n-1-i)} \rightarrow \mathrm{M}, 1 \leq i \leq n-1$, are trivial, then a derivation $d: \mathcal{L} \rightarrow \mathrm{M}$ is a homomorphism of Leibniz n-algebras.

Definition 2. Let \mathcal{L} be a Leibniz n-algebra and M a representation of \mathcal{L}. We define the semidirect product $\mathrm{M} \bowtie \mathcal{L}$ as the Leibniz n-algebra with underlying vector space $\mathrm{M} \oplus \mathcal{L}$ and bracket

$$
\left[\left(m_{1}, l_{1}\right), \ldots,\left(m_{n}, l_{n}\right)\right]=\left(\sum_{i=1}^{n}\left[l_{1}, \ldots, l_{i-1}, m_{i}, l_{i+1}, \ldots, l_{n}\right],\left[l_{1}, \ldots, l_{n}\right]\right)
$$

There is an obvious injective homomorphism of Leibniz n-algebras $i: \mathrm{M} \rightarrow \mathrm{M} \bowtie$ \mathcal{L} given by $i(m)=(m, 0), m \in \mathrm{M}$. There also is an obvious surjective homomorphism of Leibniz n-algebras $\pi: \mathrm{M} \bowtie \mathcal{L} \rightarrow \mathcal{L}$ given by $\pi(m, l)=l$. On the other hand, $i(\mathrm{M})$ is a n-sided ideal of $\mathrm{M} \bowtie \mathcal{L}$ with quotient \mathcal{L}, being the canonical projection π; thus the sequence $0 \rightarrow \mathrm{M} \xrightarrow{i} \mathrm{M} \bowtie \mathcal{L} \xrightarrow{\pi} \mathcal{L} \rightarrow 0$ is exact. Moreover $i(\mathrm{M})$ is a representation of $\mathrm{M} \bowtie \mathcal{L}$ via π, so the exact sequence is an abelian extension of Leibniz n-algebras which splits by means of $\sigma: \mathcal{L} \rightarrow \mathrm{M} \bowtie \mathcal{L}, \sigma(l)=(0, l), l \in \mathcal{L}$.

The projection $\theta: \mathrm{M} \bowtie \mathcal{L} \rightarrow \mathrm{M}, \theta(m, l)=m$, is a derivation, being M a representation of $\mathrm{M} \bowtie \mathcal{L}$ via π.

Theorem 1. Let \mathcal{L} be a Leibniz n-algebra and M a representation of \mathcal{L}. For every homomorphism of Leibniz n-algebras $f: \mathcal{Q} \rightarrow \mathcal{L}$ and every f-derivation $d: \mathcal{Q} \rightarrow \mathrm{M}$, there exists a unique homomorphism of Leibniz n-algebras $h: \mathcal{Q} \rightarrow \mathrm{M} \bowtie \mathcal{L}$ such that the following diagram is commutative

Conversely, every homomorphism of Leibniz n-algebras $h: \mathcal{Q} \rightarrow \mathrm{M} \bowtie \mathcal{L}$ determines a homomorphism of Leibniz n-algebras $f=\pi h: \mathcal{Q} \rightarrow \mathcal{L}$ and a f-derivation $d=\theta h: \mathcal{Q} \rightarrow \mathrm{M}$.

Proof. Define $h(x)=(d(x), f(x)), x \in \mathcal{Q}$. For converse, apply following lemma.
Lemma 1. Let $f: \mathcal{Q} \rightarrow \mathcal{L}$ be a homomorphism of Leibniz n-algebras and $d: \mathcal{L} \rightarrow \mathrm{M}$ a derivation, then $d f: \mathcal{Q} \rightarrow \mathrm{M}$ is a derivation, being M a representation of \mathcal{Q} via f.

Corollary 1. The set $\operatorname{Der}(\mathcal{L}, \mathrm{M})$ is in one-to-one correspondence with the set of homomorphisms of Leibniz n-algebras $h: \mathcal{L} \rightarrow \mathrm{M} \bowtie \mathcal{L}$ such that $\pi h=1_{\mathcal{L}}$.

If we denote by ${ }_{n} \mathrm{Leib} / \mathcal{L}$ the comma category over the Leibniz n-algebra \mathcal{L}, then there exists a natural equivalence between the functors

$$
\begin{aligned}
&{ }_{n} \operatorname{Leib} / \mathcal{L} \\
& \operatorname{Der}(-, \mathrm{M}) \stackrel{\eta}{\Rightarrow} \mid \operatorname{Hom}_{n \mathbf{L e i b} / \mathcal{L}}(-, \mathrm{M} \bowtie \mathcal{L} \rightarrow \mathcal{L}) \\
& \operatorname{Vect}_{K}
\end{aligned}
$$

that is, the functor $\operatorname{Der}(-, \mathrm{M})$ is representable.
Theorem 2. Let $0 \rightarrow \mathcal{N} \rightarrow \mathcal{K} \rightarrow \mathcal{L} \rightarrow 0$ be an exact sequence of Leibniz n-algebras and let M be a representation of \mathcal{L}, then

$$
0 \rightarrow \operatorname{Der}(\mathcal{L}, \mathrm{M}) \rightarrow \operatorname{Der}(\mathcal{K}, \mathrm{M}) \rightarrow \operatorname{Hom}_{\mathcal{L}}\left(\mathcal{N}_{a b}, \mathrm{M}\right)
$$

is natural exact sequence of K-vector spaces
Proof. Applying the left exact functor $\operatorname{Hom}_{n \mathbf{L e i b} / \mathcal{L}}(-, \mathrm{M} \bowtie \mathcal{L} \rightarrow \mathcal{L})$ to the exact sequence, we obtain the exact sequence

$$
\begin{gathered}
0 \rightarrow \operatorname{Hom}_{n} \operatorname{Leib} / \mathcal{L}(\mathcal{L}, \mathrm{M} \bowtie \mathcal{L} \rightarrow \mathcal{L}) \rightarrow \operatorname{Hom}_{n} \operatorname{Leib} / \mathcal{L}(\mathcal{K}, \mathrm{M} \bowtie \mathcal{L} \rightarrow \mathcal{L}) \\
\rightarrow \operatorname{Hom}_{n \operatorname{Leib} / \mathcal{L}}(\mathcal{N}, \mathrm{M} \bowtie \mathcal{L} \rightarrow \mathcal{L})
\end{gathered}
$$

By natural equivalence η, this sequence is

$$
0 \rightarrow \operatorname{Der}(\mathcal{L}, \mathrm{M}) \rightarrow \operatorname{Der}(\mathcal{K}, \mathrm{M}) \rightarrow \operatorname{Der}(\mathcal{N}, \mathrm{M})
$$

but $\operatorname{Der}(\mathcal{N}, \mathrm{M}) \cong \operatorname{Hom}(\mathcal{N}, \mathrm{M}) \cong \operatorname{Hom}_{\mathcal{L}}(\mathcal{N}, \mathrm{M}$, , since M is a trivial representation of \mathcal{N}.

Now we remember the (co)homology theory for Leibniz n-algebras developed in [1, 2].

Let \mathcal{L} be a Leibniz n-algebra and let M be a representation of \mathcal{L}. Then $\operatorname{Hom}(\mathcal{L}, M)$ is a $\mathcal{D}_{n-1}(\mathcal{L})$-representation as Leibniz algebras [2]. One defines the cochain complex ${ }_{n} C L^{*}(\mathcal{L}, M)$ to be $C L^{*}\left(\mathcal{D}_{n-1}(\mathcal{L}), \operatorname{Hom}(\mathcal{L}, M)\right)$. We also put ${ }_{n} H L^{*}(\mathcal{L}, M):=$ $H^{*}\left({ }_{n} C L^{*}(\mathcal{L}, M)\right)$. Thus, by definition one has ${ }_{n} H L^{*}(\mathcal{L}, M) \cong H L^{*}\left(\mathcal{D}_{n-1}(\mathcal{L})\right.$, $\operatorname{Hom}(\mathcal{L}, M))$. Here $C L^{\star}$ denotes the Leibniz complex and $H L^{\star}$ its homology, called Leibniz cohomology (see [10, 11] for more information).

In case $n=2$, this cohomology theory gives ${ }_{2} H L^{m}(\mathcal{L}, M) \cong H L^{m+1}(\mathcal{L}, M)$, $m \geq 1$ and ${ }_{2} H L^{0}(\mathcal{L}, M) \cong \operatorname{Der}(\mathcal{L}, M)$.

On the other hand, ${ }_{n} H L^{0}(\mathcal{L}, M) \cong \operatorname{Der}(\mathcal{L}, M)$ and ${ }_{n} H L^{1}(\mathcal{L}, M) \cong \operatorname{Ext}(\mathcal{L}, M)$, where $\operatorname{Ext}(\mathcal{L}, M)$ denotes the set of isomorphism classes of abelian extensions of \mathcal{L} by M [2].

Homology with trivial coefficients of a Leibniz n-algebra \mathcal{L} is defined in [1] as the homology of the Leibniz complex ${ }_{n} C L_{\star}(\mathcal{L}):=C L_{\star}\left(\mathcal{D}_{n-1}(\mathcal{L}), \mathcal{L}\right)$, where \mathcal{L} is endowed with a structure of $\mathcal{D}_{n-1}(\mathcal{L})$ symmetric corepresentation. We denote the homology groups of this complex by ${ }_{n} H L_{\star}(\mathcal{L})$.

When \mathcal{L} is a Leibniz 2-algebra, that is a Leibniz algebra, then we have that ${ }_{2} H L_{k}(\mathcal{L}) \cong H L_{k+1}(\mathcal{L}), k \geq 1$. Particularly, ${ }_{2} H L_{0}(\mathcal{L}) \cong H L_{1}(\mathcal{L}) \cong \mathcal{L} /[\mathcal{L}, \mathcal{L}]=\mathcal{L}_{a b}$. On the other hand, ${ }_{n} H L_{0}(\mathcal{L})=\mathcal{L}_{a b}$.

3 Universal central extensions of Leibniz n-algebras

Let \mathcal{L} be a Leibniz n-algebra. We can endowed the tensor $\mathcal{L}^{\otimes n}$ with a structure of Leibniz n-algebra by means of the following bracket:

$$
\begin{gather*}
{\left[x_{11} \otimes \cdots \otimes x_{n 1}, x_{12} \otimes \cdots \otimes x_{n 2}, \ldots, x_{1 n} \otimes \cdots \otimes x_{n n}\right]:=} \\
{\left[x_{11},\left[x_{12}, \ldots, x_{n 2}\right], \ldots,\left[x_{1 n}, \ldots, x_{n n}\right]\right] \otimes x_{21} \otimes \cdots \otimes x_{n 1}+} \\
x_{11} \otimes\left[x_{21},\left[x_{12}, \ldots, x_{n 2}\right], \ldots,\left[x_{1 n}, \ldots, x_{n n}\right]\right] \otimes \cdots \otimes x_{n 1}+\cdots+ \tag{4}\\
x_{11} \otimes \cdots \otimes x_{(n-1) 1} \otimes\left[x_{n 1},\left[x_{12}, \ldots, x_{n 2}\right], \ldots,\left[x_{1 n}, \ldots, x_{n n}\right]\right]
\end{gather*}
$$

In particular case $n=2$ we obtain a structure of Leibniz algebra on $\mathcal{L} \otimes \mathcal{L}$ which is the subject of [7].

Now we remember that the complex used in [1] in order to achieve the homology with trivial coefficients of a Leibniz n-algebra \mathcal{L} is

$$
\cdots \rightarrow \mathcal{L}^{\otimes k(n-1)+1} \xrightarrow{\delta_{k}} \mathcal{L}^{\otimes(k-1)(n-1)+1} \xrightarrow{\delta_{k-1}} \cdots \rightarrow \mathcal{L}^{\otimes 2 n-1} \xrightarrow{\delta_{2}} \mathcal{L}^{\otimes n} \xrightarrow{\delta_{1}} \mathcal{L}
$$

where the low differentials are

$$
\begin{gathered}
\delta_{2}\left(x_{1} \otimes \cdots \otimes x_{n} \otimes y_{1} \otimes \cdots \otimes y_{n-1}\right)=\left[x_{1}, \ldots, x_{n}\right] \otimes y_{1} \otimes \cdots \otimes y_{n-1}- \\
{\left[x_{1}, y_{1}, \ldots, y_{n-1}\right] \otimes x_{2} \otimes \cdots \otimes x_{n}-\cdots-x_{1} \otimes \ldots x_{n-1} \otimes\left[x_{n}, y_{1}, \ldots, y_{n-1}\right]}
\end{gathered}
$$

and $\delta_{1}: \mathcal{L}^{\otimes n} \rightarrow \mathcal{L}$ is the commutator map

$$
\delta_{1}\left(x_{1} \otimes \cdots \otimes x_{n}\right)=\left[x_{1}, \ldots, x_{n}\right]
$$

Definition 3. For a Leibniz n-algebra \mathcal{L}, let be

$$
Z^{\rightarrow}(\mathcal{L})=\left\{a \in \mathcal{L} \mid\left[x_{1}, a, \ldots, x_{n}\right]=\cdots=\left[x_{1}, x_{2}, \ldots, a\right]=0 ; x_{1}, \ldots, x_{n} \in \mathcal{L}\right\}
$$

Definition 4. For a Leibniz n-algebra \mathcal{L}, let $\mathcal{L}^{a n n}$ be the smallest n-sided ideal spanned by the elements of the form $\left[x_{1}, \ldots, x_{n}\right], x_{i} \in \mathcal{L}, i=1, \ldots, n$ as soon as $x_{i}=x_{j}$.

Lemma 2. $Z^{\rightarrow}(\mathcal{L})$ is a n-sided ideal of \mathcal{L}. Moreover it is verified that

$$
\left[\mathcal{L}, Z^{\rightarrow}(\mathcal{L}), \ldots, \mathcal{L}\right]=\cdots=\left[\mathcal{L}, \mathcal{L}, \ldots, Z^{\rightarrow}(\mathcal{L})\right]=0
$$

and

$$
\left[Z^{\rightarrow}(\mathcal{L}), \mathcal{L}, \ldots, \mathcal{L}\right] \subseteq \mathcal{L}^{a n n}
$$

Proof: The proof is straightforward and we leave it to the reader.
Lemma 3. The image of the differential $\delta_{2}: \mathcal{L}^{\otimes 2 n-1} \rightarrow \mathcal{L}^{\otimes n}$ is an abelian n-sided ideal of $\mathcal{L}^{\otimes n}$. Moreover $\operatorname{Im} \delta_{2} \subset Z^{\rightarrow}\left(\mathcal{L}^{\otimes n}\right)$.

Proof: The proof only uses the fundamental identity (2), the structure on $\mathcal{L}^{\otimes n}$ given by identity (4) and lemma 2.

Now we consider the vector space

$$
\mathcal{L}^{* n}=\mathcal{L} * . n . * \mathcal{L}:=\operatorname{Coker}\left(\delta_{2}: \mathcal{L}^{\otimes(2 n-1)} \rightarrow \mathcal{L}^{\otimes n}\right)
$$

which is equipped with a structure of Leibniz n-algebra induced by the bracket (4) defined on $\mathcal{L}^{\otimes n}$. We denote by $x_{1} * \cdots * x_{n}$ the image of $x_{1} \otimes \cdots \otimes x_{n} \in \mathcal{L}^{\otimes n}$ into $\mathcal{L}^{* n}$. Since

$$
\begin{gathered}
{\left[x_{1}, \ldots, x_{n}\right] * y_{2} * \cdots * y_{n}=} \\
{\left[x_{1}, y_{2}, \ldots, y_{n}\right] * x_{2} * \cdots * x_{n}+\cdots+} \\
x_{1} * \cdots * x_{n-1} *\left[x_{n}, y_{2}, \ldots, y_{n}\right]
\end{gathered}
$$

we see that

$$
\begin{gather*}
{\left[x_{11} * \cdots * x_{n 1}, x_{12} * \cdots * x_{n 2}, \ldots, x_{1 n} * \cdots * x_{n n}\right]=} \\
{\left[x_{11}, \ldots, x_{n 1}\right] *\left[x_{12}, \ldots, x_{n 2}\right] * \cdots *\left[x_{1 n}, \ldots x_{n n}\right]} \tag{5}
\end{gather*}
$$

Having in mind the definition of homology with trivial coefficients one has the exact sequence of Leibniz n-algebras

$$
\begin{equation*}
0 \rightarrow{ }_{n} H L_{1}(\mathcal{L}) \rightarrow \mathcal{L}^{* n} \xrightarrow{[-, \ldots,-]} \mathcal{L} \rightarrow{ }_{n} H L_{0}(\mathcal{L}) \rightarrow 0 \tag{6}
\end{equation*}
$$

Here ${ }_{n} H L_{0}(\mathcal{L})$ and ${ }_{n} H L_{1}(\mathcal{L})$ are abelian Leibniz n-algebras. Moreover one can show that ${ }_{n} H L_{1}(\mathcal{L})$ is a central subalgebra of $\mathcal{L}^{* n}$.
Proposition 1. Let \mathcal{L} be a free Leibniz n-algebra, then the homomorphism

$$
[-, \ldots,-]: \mathcal{L}^{* n} \rightarrow \mathcal{L}
$$

is injective.
Proof. In $(6){ }_{n} H L_{1}(\mathcal{L})=0($ see theorem $2[1])$.

Given n-sided ideals \mathcal{M}_{i}^{\prime} of \mathcal{L} such that $\mathcal{M}_{i}^{\prime} \subseteq \mathcal{M}_{i}$, being $\mathcal{M}_{i} n$-sided ideals of $\mathcal{L}, i=1, \ldots, n$, then there exists a canonical homomorphism $i: \mathcal{M}_{1}^{\prime} * \cdots * \mathcal{M}_{n}^{\prime} \rightarrow$ $\mathcal{M}_{1} * \cdots * \mathcal{M}_{n}$, where $\mathcal{M}_{1} * \cdots * \mathcal{M}_{n}$ means the smallest ideal of $\mathcal{L} * . n . * \mathcal{L}$ spanned by the elements $m_{1} * \cdots * m_{n}$ with $m_{i} \in \mathcal{M}_{i}, i=1, \ldots, n$. We shall denote the image of this homomorphism by $\left(\mathcal{M}_{1}^{\prime} * \cdots * \mathcal{M}_{n}^{\prime}\right)_{\mathcal{M}_{1}, \ldots, \mathcal{M}_{n}}$.

Proposition 2. Let \mathcal{K} be a n-sided ideal of \mathcal{L} which is contained in $\cap_{i=1}^{n} \mathcal{M}_{i}$. Then there is a canonical isomorphism

$$
\frac{\mathcal{M}_{1}}{\mathcal{K}} * \cdots * \frac{\mathcal{M}_{n}}{\mathcal{K}} \cong \frac{\mathcal{M}_{1} * \cdots * \mathcal{M}_{n}}{\sum_{i=1}^{n}\left(\mathcal{M}_{1} * \cdots * \mathcal{M}_{i-1} * \mathcal{K} * \mathcal{M}_{i+1} * \cdots * \mathcal{M}_{n}\right)_{\mathcal{M}_{1}, \ldots, \mathcal{M}_{n}}}
$$

Proof. The canonical map

$$
\Phi: \frac{\mathcal{M}_{1}}{\mathcal{K}} * \cdots * \frac{\mathcal{M}_{n}}{\mathcal{K}} \rightarrow \frac{\mathcal{M}_{1} * \cdots * \mathcal{M}_{n}}{\sum_{i=1}^{n}\left(\mathcal{M}_{1} * \cdots * \mathcal{M}_{i-1} * \mathcal{K} * \mathcal{M}_{i+1} * \cdots * \mathcal{M}_{n}\right)_{\mathcal{M}_{1}, \ldots, \mathcal{M}_{n}}}
$$

is a well defined homomorphism of Leibniz n-algebras. On the other hand, the canonical map

$$
\sigma: \mathcal{M}_{1} * \cdots * \mathcal{M}_{n} \rightarrow \frac{\mathcal{M}_{1}}{\mathcal{K}} * \cdots * \frac{\mathcal{M}_{n}}{\mathcal{K}}
$$

is a homomorphism of Leibniz n-algebras which annihilates

$$
\sum_{i=1}^{n}\left(\mathcal{M}_{1} * \cdots * \mathcal{M}_{i-1} * \mathcal{K} * \mathcal{M}_{i+1} * \cdots * \mathcal{M}_{n}\right)_{\mathcal{M}_{1}, \ldots, \mathcal{M}_{n}}
$$

Then σ induces

$$
\Sigma: \frac{\mathcal{M}_{1} * \cdots * \mathcal{M}_{n}}{\sum_{i=1}^{n}\left(\mathcal{M}_{1} * \cdots * \mathcal{M}_{i-1} * \mathcal{K} * \mathcal{M}_{i+1} * \cdots * \mathcal{M}_{n}\right)_{\mathcal{M}_{1}, \ldots, \mathcal{M}_{n}}} \rightarrow \frac{\mathcal{M}_{1}}{\mathcal{K}} * \cdots * \frac{\mathcal{M}_{n}}{\mathcal{K}}
$$

and moreover Σ is inverse of Φ.
Theorem 3. Let \mathcal{L} be a Leibniz n-algebra, then

$$
{ }_{n} H L_{1}(\mathcal{L}) \cong \operatorname{Ker}\left(\mathcal{L}^{* n} \stackrel{[-, \ldots,-]}{\longrightarrow} \mathcal{L}\right)
$$

Proof. See exact sequence (6).
If $0 \rightarrow \mathcal{R} \rightarrow \mathcal{F} \rightarrow \mathcal{L} \rightarrow 0$ is a free presentation of a Leibniz n-algebra \mathcal{L} (always there exist free presentations of a Leibniz n-algebra, see [1]), then having in mind Propositions 1 and 2 we obtain the following isomorphism

$$
\begin{equation*}
\mathcal{L}^{* n} \cong \frac{\mathcal{F}}{\mathcal{R}} * . n . * \frac{\mathcal{F}}{\mathcal{R}} \cong \frac{\mathcal{F}^{* n}}{\sum_{i=1}^{n}(\mathcal{F} * \cdots * \mathcal{R} * \ldots \mathcal{F})_{\mathcal{F} * \cdots * \mathcal{F}}} \cong \frac{\left[\mathcal{F}, . .^{n}, \mathcal{F}\right]}{[\mathcal{R}, \mathcal{F},, n-1, \mathcal{F}]} \tag{7}
\end{equation*}
$$

Now we consider a perfect Leibniz n-algebra \mathcal{L}, that is $\mathcal{L}=\left[\mathcal{L},{ }^{n}\right.$., $\left.\mathcal{L}\right]$, equivalently ${ }_{n} H L_{0}(\mathcal{L})=0$, then exact sequence (6) is the central extension

$$
\begin{equation*}
0 \rightarrow{ }_{n} H L_{1}(\mathcal{L}) \rightarrow \mathcal{L}^{* n} \xrightarrow{[-, \ldots,-]} \mathcal{L} \rightarrow 0 \tag{8}
\end{equation*}
$$

The following results are devoted to show that exact sequence (8) is the universal central extension of \mathcal{L}. Firstly we remember some results about (see [1]).

Definition 5. A central extension (\mathcal{K}) of Leibniz n-algebras is an extension of Leibniz n-algebras $(\mathcal{K}): 0 \rightarrow M \rightarrow \mathcal{K} \xrightarrow{\pi} \mathcal{L} \rightarrow 0$ for which $\left[M, \mathcal{K}^{n-1}\right]=0$.

This central extension is called universal if for every central extension (\mathcal{K}^{\prime}): $0 \rightarrow M \rightarrow \mathcal{K}^{\prime} \xrightarrow{\pi^{\prime}} \mathcal{L} \rightarrow 0$ there exists a unique homomorphism $h: \mathcal{K} \rightarrow \mathcal{K}^{\prime}$ such that $\pi^{\prime} h=\pi$.

Note that a central extension is an abelian extension and that equips M with a structure of trivial \mathcal{L}-representation.

Theorem 4. 1. If $(\mathcal{K}): 0 \rightarrow \mathrm{M} \rightarrow \mathcal{K} \xrightarrow{\pi} \mathcal{L} \rightarrow 0$ is a central extension with $\mathcal{K} a$ perfect Leibniz n-algebra and every central extension of \mathcal{K} splits, then (\mathcal{K}) is universal.
2. A Leibniz n-algebra \mathcal{L} admits a universal central extension if and only if \mathcal{L} is perfect.
3. The kernel of the universal central extension is canonically isomorphic to ${ }_{n} H L_{1}(\mathcal{L}, K)$.

Lemma 4. Let $\varphi: \mathcal{L} \rightarrow \mathcal{M}$ be a surjective homomorphism of Leibniz n-algebras. Then the canonical homomorphism $\varphi * . n . * \varphi: \mathcal{L}^{* n} \rightarrow \mathcal{M}^{* n}$ is surjective and its kernel is the n-sided ideal

$$
\operatorname{Im}(\operatorname{Ker}(\varphi) * \mathcal{L} * \cdots * \mathcal{L}+\cdots+\mathcal{L} * \cdots * \mathcal{L} * \operatorname{Ker}(\varphi) \rightarrow \mathcal{L} * \mathcal{L} * \cdots * \mathcal{L})
$$

Lemma 5. Let $0 \rightarrow \mathcal{N} \rightarrow \mathcal{H} \xrightarrow{\pi} \mathcal{L} \rightarrow 0$ be a central extension of Leibniz n-algebras, being \mathcal{H} a perfect Leibniz n-algebra. Let $0 \rightarrow \mathcal{M} \rightarrow \mathcal{K} \xrightarrow{\sigma} \mathcal{L} \rightarrow 0$ be another central extension of Leibniz n-algebras. If there exists a homomorphism of Leibniz n-algebras $\phi: \mathcal{H} \rightarrow \mathcal{K}$ such that $\sigma \phi=\pi$, then ϕ is unique.

Proof. Let $\phi, \psi: \mathcal{H} \rightarrow \mathcal{K}$ be two homomorphisms of Leibniz n-algebras such that $\sigma \phi=\pi$ and $\sigma \psi=\pi$. Then for any $h \in \mathcal{H}$ there exists $m \in \mathcal{M}$ such that $\phi(h)=\psi(h)+m$. From here, ϕ and ψ coincide on commutators $\left[h_{1}, \ldots, h_{n}\right] \in \mathcal{H}$ thanks to centrality of \mathcal{M} on \mathcal{K}. Since \mathcal{H} is a perfect Leibniz n-algebra, it is spanned by commutators, so $\phi=\psi$.

Theorem 5. Let \mathcal{L} be a perfect Leibniz n-algebra, then

$$
\begin{equation*}
0 \rightarrow{ }_{n} H L_{1}(\mathcal{L}) \rightarrow \mathcal{L}^{* n} \stackrel{[-, \ldots,-]}{\rightarrow} \mathcal{L} \rightarrow 0 \tag{9}
\end{equation*}
$$

is the universal central extension of \mathcal{L}.
Proof. Let $(\mathcal{H}): 0 \rightarrow \mathcal{M} \rightarrow \mathcal{K} \xrightarrow{\sigma} \mathcal{L} \rightarrow 0$ be an arbitrary central extension of \mathcal{L}. The homomorphism of Leibniz n-algebras $\tau: \mathcal{K}^{* n} \rightarrow \mathcal{K}, \tau\left(x_{1} * \cdots * x_{n}\right)=\left[x_{1}, \ldots, x_{n}\right]$, can be factored throughout the homomorphism $\sigma * .{ }^{n} . * \sigma: \mathcal{H}^{* n} \rightarrow \mathcal{L}^{* n}$ by lemma 4 and centrality of $\mathcal{M}=\operatorname{Ker}(\sigma)$. This provides a homomorphism $\phi: \mathcal{L}^{* n} \rightarrow \mathcal{H}$ such that $\sigma . \phi\left(l_{1} * \cdots * l_{n}\right)=\left[l_{1}, \ldots, l_{n}\right]$, for all $l_{1}, \ldots, l_{n} \in \mathcal{L}$.

On the other hand, \mathcal{L} perfect implies that $\mathcal{L}^{* n}$ is perfect since $\left[\mathcal{L}^{* n}, \ldots, \mathcal{L}^{* n}\right]=$ $[\mathcal{L}, \ldots, \mathcal{L}] * \cdots *[\mathcal{L}, \ldots, \mathcal{L}]$. Now lemma 5 ends the proof.

Having in mind formula (7), then we can write the universal central extension of a perfect Leibniz n-algebra \mathcal{L} as follows

$$
0 \rightarrow{ }_{n} H L_{1}(\mathcal{L}) \rightarrow \frac{[\mathcal{F}, . n ., \mathcal{F}]}{[\mathcal{R}, \mathcal{F}, \stackrel{n-1}{ }, \mathcal{F}]} \xrightarrow{[-, \ldots,-]} \mathcal{L} \rightarrow 0
$$

From here we can deduce that ${ }_{n} H L_{1}(\mathcal{L}) \cong(\mathcal{R} \cap[\mathcal{F},, \mathcal{F}]) /[\mathcal{R}, \mathcal{F}, \underline{n-1}, \mathcal{F}]$, being $0 \rightarrow \mathcal{R} \rightarrow \mathcal{F} \rightarrow \mathcal{L} \rightarrow 0$ a free presentation of a Leibniz n-algebra \mathcal{L}. This result was obtained in [1] using other techniques.

In the universal central extension (9), ${ }_{n} H L_{1}(\mathcal{L})$ can be considered as a trivial representation of \mathcal{L}. By Theorem 3 in [1] (Theorem of Universal Coefficient) we have that

$$
{ }_{n} H L^{1}\left(\mathcal{L},{ }_{n} H L_{1}(\mathcal{L})\right) \cong \operatorname{Hom}\left({ }_{n} H L_{1}(\mathcal{L}),{ }_{n} H L_{1}(\mathcal{L})\right)
$$

But it is well-known the bijection (see [2])

$$
{ }_{n} H L^{1}\left(\mathcal{L},{ }_{n} H L_{1}(\mathcal{L})\right) \cong \operatorname{Ext}\left(\mathcal{L},{ }_{n} H L_{1}(\mathcal{L})\right)
$$

One can see that the universal central extension corresponds to the element

$$
I d_{n} H L_{1}(\mathcal{L}) \in H o m\left({ }_{n} H L_{1}(\mathcal{L}),{ }_{n} H L_{1}(\mathcal{L})\right)
$$

References

[1] J. M. Casas, Homology with trivial coefficients of Leibniz n-algebras, Comm. in Algebra, Vol. 31, No. 3, pp. 1377-1386 (2003).
[2] J. M. Casas, J.-L. Loday and T. Pirashvili, Leibniz n-algebras, Forum Math Vol. 14 (2), 189-207 (2002).
[3] Y. I. Daletskii and L. A. Takhtajan, Leibniz and Lie algebras structures for Nambu algebra, Letters in Math. Physics 39, 127-141, (1997)
[4] V. T. Filippov, n-Lie algebras, Sib. Mat. Zh., Vol. 26, No. 6, 126-140 (1985).
[5] P. Gautheron, Some remarks concerning Nambu mechanics, Letters in Math. Physics 37, 103-116, (1996).
[6] S. A. Huq, Commutator, nilpotency and solvability in categories, Quart. J. Math. Oxford 2 (19) (1968), 363-389.
[7] R. Kurdiani and T. Pirashvili, A Leibniz algebra structure on the second tensor power, J. of Lie Theory Vol. 12 (2002), 583-596.
[8] W. Lister, A structure theory of Lie triple systems. Trans. Amer. Math. Soc. 72 (1952), 217-242.
[9] J.-L. Loday, Cyclic homology, Grundl. Math. Wiss. Bd. 301, Springer (1992).
[10] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, L'Enseignement Mathématique 39, 269-292, (1993).
[11] J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann. 296, 139-158, (1993).
[12] J.-L. Loday and M. O. Ronco, Trialgebras and families of polytopes, To appear in Proceedings of the Algebraic Topology Conference, Northwestern University; math. AT/0205043
[13] Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D 3 (7), 2405-2412, (1973).
[14] J. Stasheff, The (secret?) homological algebra of the Batalin-Vilkovisky approach. In "Secondary calculus and cohomological physics" (Moscow, 1997), 195-210, Contemp. Math., 219, Amer. Math. Soc., Providence, RI, 1998.
[15] L. A. Takhtajan, On fundation of the generalized NAMBU mechanics, Comm. Math, Phys. 160, N. 2, 295-315, (1994).
[16] L. A. Takhtajan, A higher order analog of the Chevalley-Eilenberg complex and the deformation theory of n-gebras, St. Petersburg Math. J. Vol. 6, No. 2, 429438, (1995).
[17] A. Vinogradov and M. Vinogradov, On multiple generalizations of Lie algebras and Poisson manifolds. In "Secondary calculus and cohomological physics" (Moscow, 1997), 273-287, Contemp. Math., 219, Amer. Math. Soc., Providence, RI, 1998.

Dpto. Matemática Aplicada I, Universidad de Vigo
E. U. I. T. Forestal, Campus Universitario A Xunqueira

36005 Pontevedra, Spain
E-mail address: jmcasas@uvigo.es

[^0]: *Supported by MCYT, Grant BSFM2003-04686-C02-02 (European FEDER support included). Received by the editors March 2003. Communicated by M. Van den Bergh.
 2000 Mathematics Subject Classification : 17 A 32.
 Key words and phrases : Leibniz n-algebra, Leibniz (co)homology, universal central extension, commutator.

