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Abstract

In this paper, we establish the existence and non-existence results of pos-
itive solutions for the (n-1,1) three-point boundary value problems consisting
of the equation

u(n) + λa(t)f(u(t)) = 0, t ∈ (0, 1)

and one of the following boundary value conditions

u(1) = βu(η), u(i)(0) = 0 for i = 1, 2, · · · , n− 1

and
u(n−1)(1) = βu(n−1)(η), u(i)(0) = 0 for i = 0, 1, ·, n− 2,

where η ∈ [0, 1), β ∈ [0, 1) and a : (0, 1) → R may change sign. f(0) > 0,
λ > 0 is a parameter. Our approach is based on the Leray-Schauder fixed
point Theorem. This paper is motivated by Eloe and Henderson [6].

1 Introduction

Three-point boundary value problems for the differential equations were presented
by Il’in and Moiseev [10,11]. Motivated by the study of Il’in and Moiseev, in recent
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years, Gupta in [1,2] and Ma in [3,4,5] studied certain three-point boundary value
problems for nonlinear second order ordinary differential equations. On the other
hand, the solvability of boundary value problems for higher order ordinary differen-
tial equations has been discussed extensively in the literature in the past ten years,
we refer to the monograph [8] and the recent paper [6]. To the best of our knowledge,
existence and nonexistence theorems of positive solutions for three-point boundary
value problem of higher order ordinary differential equations, however, have not
been found in the known literature especially when the coefficient changes sign.

In this paper, we study the existence of positive solutions of the following (n-1,1)
three-point boundary value problem consisting of the differential equation

u(n) + λa(t)f(u(t)) = 0, t ∈ (0, 1) (1)

and one of the following boundary value conditions

u(1) = βu(η), u(i)(0) = 0 for i = 1, 2, · · · , n− 1, (2)

and

u(n−1)(1) = βu(n−1)(η), u(i)(0) = 0 for i = 0, 1, ·, n− 2, (3)

where η ∈ (0, 1), β ∈ [0, 1) and a : (0, 1) → R. f(0) > 0, λ > 0 is a parameter. For
the case where β = 0, (1)-(2) becomes{

u(n) + λa(t)f(u) = 0, 0 < t < 1,
u(i)(0) = u(1) = 0, i = 1, 2, · · · , n− 1.

(4)

BVP(4) was studied by Eloe nd Henderson [6]. In [6], it was proved that BVP(4)
has positive solutions under the following assumptions (A) and (B) or (A) and (C).

(A): a : [0, 1] → [0, +∞), f : [0, +∞) → [0, +∞) are continuous.

(B): limx→0
f(x)

x
= 0 and limx→+∞

f(x)
x

= +∞(super-linear).

(C): limx→0
f(x)

x
= +∞ and limx→+∞

f(x)
x

= 0(sub-linear).
BVP(1)-(2) also contains as special case the following BVP{

u′′(t) + λf(t, u) = 0, 0 < t < 1,
u(0) = u(1)− βu(η) = 0.

(5)

In [5], Ma proved that BVP(5) has positive solutions under the conditions 0 <
β < 1/η, (A) and (B) or (A) and (C). Very recently, the authors in [9] proved that
BVP(5) has at least three positive solutions by imposing conditions on f .

In this paper, we make the following assumptions.

(A1): M = 1
(1−β)(n−1)!

> 0.

(A2): f : [0, +∞) → [0, +∞) is continuous and f(0) > 0.
(A3): a : [0, 1] → R is continuous and there is k > 1 such that

∫ 1

0
G(t, s)a+(s)ds ≥ k

∫ 1

0
G(t, s)a−(s)ds for t ∈ [0, 1]
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where a+(t) = max{0, a(t)} and a−(t) = max{0,−a(t)}, G(t, s) is defined by

G(t, s) =
1

(1− β)(n− 1)!



−(1− β)(t− s)n−1 + (1− s)n−1

−(1− β)β(η − s)n−1, 0 ≤ s ≤ t ≤ η < 1
or 0 ≤ s ≤ η < t ≤ 1,

(1− s)n−1 − β(1− β)(η − s)n−1, 0 ≤ t ≤ s ≤ η < 1,
(1− s)n−1, 0 ≤ t ≤ η ≤ s ≤ 1

or 0 ≤ η ≤ t ≤ s ≤ 1,
−(1− β)(t− s)n−1 + (1− s)n−1, 0 ≤ η ≤ s ≤ t ≤ 1

for BVP(1) and (2) and

G(t, s) =
1

(1− β)(n− 1)!



(β − 1)(t− s)n−1 + tn−1(1− s)
−βtn−1(η − s), 0 ≤ s ≤ η ≤ t ≤< 1

or 0 ≤ s ≤ t ≤ η < 1,
(β − 1)(t− s)n−1 + tn−1(1− s), 0 ≤ η ≤≤ s ≤ t ≤ 1,
tn−1(1− s), 0 ≤ t ≤ η ≤ s ≤ 1

or 0 ≤ η ≤ t ≤ s ≤ 1,
tn−1(1− s)− βtn−1(η − s), 0 ≤ t ≤ s ≤ η < 1

for BVP(1) and (3), respectively.

2 Main Results

In this section, we present the main results of this paper. The proofs of Theorems
will be given in Section 3.

Theorem 1. Let (A1)− (A3) hold. Then there is a positive number λ∗ such that
BVP(1) and (2) has at least one positive solution for λ ∈ (0, λ∗).

Theorem 2. Let (A1), (A2) and (A3) hold. Then there is a positive number λ∗

such that BVP(1) and (3) has at least one positive solution for λ ∈ (0, λ∗).

Theorem 3. Suppose the following conditions are satisfied:
(i) mint∈[0,1]

∫ 1
0 G(t, s)a−(s)ds > 0;

(ii) There are constants 1 ≤ θ < k and µ > 0 such that, for any a > 0,

µa ≤ f(x) ≤ θµa for 0 ≤ x ≤ a;

(iii) λ >
(
(k − θ)µ mint∈[0,1]

∫ 1
0 G(t, s)a−(s)ds

)−1
.

Then BVP(1) and (2) has no positive solution.



220 Y. Liu – W. Ge

Theorem 4. Suppose the following conditions are satisfied:
(i) mint∈[0,1]

∫ 1
0 G(t, s)a−(s)ds > 0;

(ii) There are constants 1 ≤ θ < k and µ > 0 such that, for any a > 0,

µa ≤ f(x) ≤ θµa for 0 ≤ x ≤ a;

(iii) λ >
(
(k − θ)µ mint∈[0,1]

∫ 1
0 G(t, s)a−(s)ds

)−1
.

Then BV P (1) and (2) has no positive solution.

Our Theorems are new and different from [3-6] and [9] and are easy to check,
Particularly, we don’t need the assumptions that f is either super-linear or sub-
linear, which was supposed in [3-6].

By the way, the proofs of the theorems is based on the Leray-Schauder fixed
point Theorem and motivated by [12,13]. In [12], Hai studied the existence of
positive solutions for elliptic equation

∆u + λa(t)g(u) = 0, u|∂Ω = 0

where a may change sign. We note that the techniques in our paper are well know
for elliptic problems and Sturm-Liuville problem, see [7,8] and the references cited
therein.

3 Proofs of Theorems

In order prove Theorem 1, we need the following Lemmas.
Lemma 1. Suppose that M 6= 0. Then for y ∈ C[0, 1], the problem{

u(n) + y(t) = 0, t ∈ (0, 1),
u(1) = βu(η), u(i)(0) = 0 for i = 1, 2, · · · , n− 1

(6)

has unique solution

u(t) =
∫ 1

0
G(t, s)y(s)ds

where G(t, s) is defined in section 1.
Proof . To the purpose, we let

u(t) = −
∫ t

0

t− s)n−1

(n− 1)!
y(s)ds + B +

n−1∑
i=1

Ait
i. (7)

Since u(i)(0) = 0 for i = 1, 2, · · · , n−1, one gets Ai = 0 for i = 1, 2, · · · , n−1. Now,
we solve B. By u(1) = βu(η), it follows that

−β
∫ η

0

(η − s)n−1

(n− 1)!
y(s)ds + βB = −

∫ 1

0

(1− s)n−1

(n− 1)!
y(s)ds + B.

Solving the above equations, we get

B =
1

(1− β)(n− 1)!

[∫ 1

0
(1− s)n−1y(s)ds− β

∫ η

0
(η − s)n−1y(s)ds

]
.
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Substituting Ai and B into (7), one has

u(t) = −
∫ t

0

(t− s)n−1

(n− 1)!
y(s)ds

+
1

(1− β)(n− 1)!
[
∫ 1

0
(1− s)n−1y(s)ds− β

∫ η

0
(η − s)n−1y(s)ds]

=
∫ 1

0
G(t, s)y(s)ds.

Lemma 2. Let M > 0. If y ∈ C[0, 1] and y(t) ≥ 0, then the unique solution of (6)
satisfies u(t) ≥ 0 for all t ∈ [0, 1].
Proof . It suffices to prove that

G(t, s) ≥ 0, for (t, s) ∈ [0, 1]× [0, 1]. (8)

This is simple and then omitted.
Lemma 3. Suppose that (A1)− (A3) hold. Then for every 0 < δ < 1, there exists
a positive number λ such that, for λ ∈ (0, λ), the equation{

u(n) + λa+(t)f(u(t)) = 0, t ∈ (0, 1),
u(1) = βu(η), u(i)(0) = 0 for i = 1, 2, · · · , n− 1

(9)

has a positive solution uλ with ||uλ|| → 0 as λ → 0 and

uλ ≥ λδf(0)||p(t)||, (10)

where

p(t) =
∫ 1

0
G(t, s)a+(s)ds.

Proof . We know that p(t) ≥ 0 for t ∈ [0, 1] and (9) is equivalent to the integral
equation

u(t) = λ
∫ 1

0
G(t, s)a+(s)f(u(s))ds := Tu(t) (11)

where u ∈ X := C[0, 1]. It is easy to prove that T is completely continuous, TX ⊂ X
and the fixed points of T are solutions of (9). We shall apply the Leray-Schauder
fixed point Theorem to prove T has at least one fixed point for small λ.
Let ε > 0 be such that

f(t) ≥ δf(0) for 0 ≤ t ≤ ε. (12)

Suppose that

0 < λ <
ε

2||p||f(ε)
:= λ,

where f(t) = max0≤s≤t f(s). Since

lim
t→0+

f(t)

t
= +∞,

together with f(ε)/ε < 1/(2||p||λ), then there is rλ ∈ (0, ε) such that

f(rλ)

rλ

=
1

2λ||p||
.
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We note that this implies rλ → 0 as λ → 0.
Now, consider the homotopy equation

u = θTu, θ ∈ (0, 1).

Let u ∈ X and θ ∈ (0, 1) be such that u = θTu. We claim that ||u|| 6= rλ. In fact,

u(t) = θλ
∫ 1

0
G(t, s)a+(s)f(u(s))ds.

Set

w(t) = θλ
∫ 1

0
G(t, s)a+(s)f(||u||)ds ≤ θλf(||u||)p(t).

Then by f(u) ≤ f(||u||), we know that u(t) ≤ w(t) for all t ∈ R. Moreover, we have

||u|| ≤ λ||p||f(||u||),

i.e.,
f(||u||)
||u||

≥ 1

λ||p||
,

which implies that ||u|| 6= rλ. Thus by Leray-Schauder fixed point Theorem, T has
a fixed point uλ with

||uλ|| ≤ rλ < ε.

Moreover, combining (11) and (12), we get

uλ ≥ λδf(0)p(t), t ∈ R. (13)

This completes the proof.
Proof of Theorem 1. Let

q(t) =
∫ 1

0
G(t, s)a−(s)ds. (14)

Then q(t) ≥ 0. Since p(t)/q(t) ≥ k > 1. Choosing d ∈ (0, 1) such that kd > 1, there
is c > 0 such that |f(y)| ≤ kdf(0) for y ∈ [0, c], then

q(t)|f(y)| ≤ dp(t)f(0) t ∈ R y ∈ [0, c].

Fix δ ∈ (d, 1) and let λ∗ > 0 be such that

||uλ||+ λδf(0)||p|| ≤ c, λ ∈ (0, λ∗), (15)

where uλ is given by Lemma 3 and

|f(x)− f(y)| ≤ f(0)
δ − d

2
(16)

for x, y ∈ [−c, c] with |x− y| ≤ λ∗δf(0)||p||.

Let λ ∈ (0, λ∗), we consider, for y ∈ C[0, 1], the following equation{
w(n) + λa+(t)[f(uλ + y)− f(uλ)]− λa−(t)f(uλ + y) = 0, 0 < t < 1,
w(1) = βw(η), w(i)(0) = 0 for i = 1, 2, · · · , n− 1.

(17)
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For each y ∈ C[0, 1], let w = Ty be the solution of (17). We look for a solution yλ

of the form uλ + yλ such that yλ solves the following equation{
y(n) + λa+(t)[f(uλ + y)− f(uλ)]− λa−(t)f(uλ + y) = 0, 0 < t < 1,
y(1) = βy(η), y(i)(0) = 0 for i = 1, 2, · · · , n− 1.

It is easy to check that T is completely continuous. Let y ∈ X and θ ∈ (0, 1) be
such that y = θTy, then we have

y(n) + λθa+(t)[f(uλ + y)− f(uλ)]− λθa−(t)f(uλ + y) = 0, 0 < t < 1.

We claim that ||y|| 6= λδf(0)||p||. Suppose to the contrary that ||y|| = λδf(0)||p||.
Then by (15) and (16), we get

||uλ + y|| ≤ ||uλ||+ ||y|| ≤ c (18)

and

|f(uλ + y)− f(uλ) ≤ f(0)
δ − d

2
. (19)

Using (12) and q(t)|f(y)| ≤ dp(t)f(0), we get

|y(t)| = λ
∣∣∣∣∫ 1

0
G(t, s)a+(s)[f(uλ(s) + y(s))− f(uλ(s))]ds

+λ
∫ 1

0
G(t, s)a−(s)f(uλ(s) + y(s))ds

∣∣∣∣
≤ λ

∫ 1

0
G(t, s)a+(s)f(0)

δ − d

2
ds + λ

∫ 1

0
G(t, s)a−(s)

p(t)

q(t)
df(0)ds

≤ λ
δ − d

2
p(t)f(0) + λdf(0)p(t)

= λ
δ + d

2
f(0)p(t).

In particular,

||y|| ≤ λ
δ + d

2
f(0)||p|| < λδf(0)||p|| (20)

a contradiction and the claim is proved. Thus by Leray-Schauder fixed point Theo-
rem, T has a fixed point yλ with

||yλ|| ≤ λδf(0)||p||.

Using Lemma 3 and (20), we obtain

uλ(t) ≥ uλ − ||yλ||

≥ λδf(0)p(t)− λ
δ + d

2
f(0)p(t)

= λ
δ − d

2
f(0)p(t) > 0,

i.e. uλ is a positive T-periodic solution. The proof of Theorem 1 is complete.
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Proof of Theorem 2. Similarly, let y ∈ C[0, 1]. then the unique solution of the
equation {

u(n) + y(t) = 0, t ∈ (0, 1),
u(n−1)(1) = βu(n−1)(η), u(i)(0) = 0 for i = 0, 1, 2, · · · , n− 2

(21)

has unique solution

u(t) =
∫ 1

0
G(t, s)y(s)ds

where G(t, s) is defined as follows.

G(t, s) =
1

(1− β)(n− 1)!



(β − 1)(t− s)n−1 + tn−1(1− s)
−βtn−1(η − s), 0 ≤ s ≤ η ≤ t ≤< 1

or 0 ≤ s ≤ t ≤ η < 1,
(β − 1)(t− s)n−1 + tn−1(1− s), 0 ≤ η ≤≤ s ≤ t ≤ 1,
tn−1(1− s), 0 ≤ t ≤ η ≤ s ≤ 1

or 0 ≤ η ≤ t ≤ s ≤ 1,
tn−1(1− s)− βtn−1(η − s), 0 ≤ t ≤ s ≤ η < 1.

It is easy to see that if y(t) ≥ 0, then u(t) ≥ 0 for all t ∈ [0, 1]. The remainder of
the proof is similar to those in Theorem 1 and then omitted.

Proof of Theorem 3. To the contrary, u(t) is a positive solution of BVP(1) and
(2), suppose ||u|| = a > 0. Then 0 ≤ u(t) ≤ a for t ∈ [0, 1]. Hence we have

u(t) = λ
∫ 1

0
G(t, s)a(s)f(u(s))ds

= λ
(∫ 1

0
G(t, s)a+(s)f(u(s))ds−

∫ 1

0
G(t, s)a−(s)f(u(s))ds

)
≥ λ

(
µa

∫ 1

0
G(t, s)a+(s)ds− θµa

∫ 1

0
G(t, s)a−(s)ds

)
≥ λ

(
kµa

∫ 1

0
G(t, s)a−(s)ds− θµa

∫ 1

0
G(t, s)a−(s)ds

)
= λ(k − θ)µa

∫ 1

0
G(t, s)a−(s)ds

> a = ||u||,

which is a contradiction. Hence BVP(1) and (2) has no positive solution.

Proof of Theorem 4. It is similar to that of Theorem 3 and is omitted.
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