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Abstract

It is shown that the center of a unital primitive locally A-pseudoconvex
Hausdorff algebra over C and of a unital topologically primitive locally pseu-
doconvex Fréchet algebra over C are topologically isomorphic to C.

It is well known (see [9], Corollary 2.4.5; see also [5], Proposition 3, p. 127, and [4],
Theorem 2.6.26 (ii), p. 255) that the center of a unital primitive Banach algebra
over C is topologically isomorphic to C. Similar result holds for unital primitive
spectral algebras over C (see the proof of Theorem 6.7 in [7] or [8], Theorem 4.2.11);
for unital primitive p-Banach algebras over C (see [3], Corollary 9.3.7); for unital
primitive locally m-convex Q-algebras over C (see [10], Corollary 2) and for unital
primitive locally A-convex algebras over C in which all maximal ideals are closed
(see [11], Theorem 3).

In the present paper we will show that the center of any unital primitive locally
A-pseudoconvex Hausdorff algebra over C and of any unital topologically primitive
locally pseudoconvex Fréchet algebra over C is topologically isomorphic to C.
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1 Introduction

1. Let X be a linear topological space over K (over R or C), A an algebra over
K and L(X) the set of all endomorphisms on X. The addition of elements and
the scalar multiplication in L(X) we define pointwise and the multiplication of
elements in L(X) by the composition (that is, if f, g ∈ L(X) and λ ∈ K, then
(f + g)(x) = f(x) + g(x), (λf)(x) = λf(x) and (fg)(x) = f(g(x)) for each x ∈ X).
Then L(X) is an algebra over K.

Let π be a representation of A on X (that is, a homomorphism or anti-homomor-
phism of A into L(X)). If we define on X a left module multiplication π· by a π·x=
π(a)(x) and a right module multiplication ·π similarly by x ·πa = π(a)(x) for each
a ∈ A and x ∈ X, then X becomes respectively a left A-module, which we denote
by πX, and a right A-module, which we denote by Xπ.

The left1 A-module πX is nontrivial if A π ·X 6= {θX}, where θX is the zero
element of X, and is irreducible if πX is a nontrivial left A-module in which πX
and {θX} are the only A-submodules of πX. A representation π of A on X is
irreducible if πX is an irreducible left A-module (respectively Xπ is an irreducible
right A-module).

2. Let A be a locally pseudoconvex space over K. Then A has a base {Uα : α ∈
A} of neighbourhoods of zero which consists of balanced (that is, µa ∈ Uα if a ∈ Uα

and |µ| 6 1) and pseudoconvex (that is,

Uα + Uα ⊂ 2
1

kα Uα

for a kα ∈ (0, 1]) sets Uα. It is well known (see [12], p. 4, or [3], p. 189) that
the topology of A we can give by a family {pα : α ∈ A} of kα-homogeneous semi-
norms. In particular, when A is a locally pseudoconvex algebra over K in which
for each a ∈ A and α ∈ A there are positive numbers M(a, α) and N(a, α) such
that pα(ab) 6 M(a, α)pα(b) and pα(ba) 6 N(a, α)pα(b) for all b ∈ A, then A is a
locally absorbingly pseudoconvex or locally A-pseudoconvex algebra. Furthermore, if
all seminorms pα satisfy the condition pα(ab) 6 pα(a)pα(b) for all a, b ∈ A, then A
is a locally multiplicatively pseudoconvex or locally m-pseudoconvex algebra. In case,
when kα = 1 for each α ∈ A, then A is a locally convex (respectively locally A-convex
and locally m-convex) algebra. Moreover, if A has a unit element and the set of all
invertible elements InvA of A is open, then A is a Q-algebra.

3. Let now A be a locally pseudoconvex algebra over K, the topology of which
has been given by a family {pα : α ∈ A} of kα-homogeneous seminorms, M a closed
maximal regular left (right) ideal of A, A −M the quotient space of A modulo M
endowed with the quotient topology and πM the canonical homomorphism from A
onto A − M . Similarly as in [3], p. 108-109, it is easy to show that the quotient
topology on A − M coincides with the topology defined on A − M by the family
{ṗα : α ∈ A} of kα-homogeneous seminorms, where

ṗα(πM(a)) = inf{pα(a + m) : m ∈ M} (1)

for each a ∈ A and α ∈ A. The algebraic operations in A−M we define, as usual,
by x1 + x2 = πM(a1 + a2) and µx1 = πM(µa1) for each x1, x2 ∈ A−M and µ ∈ K,

1Nontriviality and irreducibility of the right A-module Xπ are defined similarly.
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where a1 and a2 are arbitrary elements of the M -cosets x1 and x2 respectively. Then
A−M is a locally pseudoconvex space.

Let now A and B be two locally pseudoconvex spaces, the topologies of which
have been given by families {pα : α ∈ A} and {qβ : β ∈ B} of kα-homogeneous and
rβ-homogeneous seminorms respectively. Then a linear mapping T from A into B is
continuous if and only if for each β ∈ B there exist an index α ∈ A and a constant
Cαβ > 0 such that

qβ(T (a)) 6 Cαβpα(a)
rβ
kα (2)

for each a ∈ A (see [3], p. 192).
In particular, when A is a locally pseudoconvex Fréchet algebra over K, then

the topology of A we can define by such family {pv : v ∈ N} of kv-homogeneous
seminorms (here kv ∈ (0, 1] for each v ∈ N) which satisfies the condition

pv(ab) 6 pv+1(a)
kv

kv+1 pv+1(b)
kv

kv+1 (3)

for each a, b ∈ A and v ∈ N (see [3], p. 207). In this case A − M is a locally
pseudoconvex Fréchet space for each closed maximal regular left (right) ideal M of
A.

4. Let A be a topological algebra over K. For each element a ∈ A and each
maximal regular left2 ideal M of A let LM

a be a mapping from A−M into A−M
defined by LM

a (x) = ax for each x ∈ A−M and let LM be a mapping from A into
L(A−M) defined by LM(a) = LM

a for each a ∈ A. Then LM is a representation of
A on A − M . Since a LM

·x = LM
a (x) = ax for each a ∈ A and x ∈ A − M , then

LM
(A −M) is an irreducible left A-module. Indeed, A LM

· (A −M) is not trivial,
because any right regular unit element for M belongs to A. If Y is a nontrivial
A-submodule of LM

(A−M), then

K = {a ∈ A : πM(a) ∈ Y }

is closed with respect to the addition and the multiplications over K and A. Since
M ⊂ K and K \M is not empty, then K = A. But then πM(u) ∈ Y and A−M =
AπM(u) ⊂ Y (u is a right unit of A modulo M). It means that Y = A−M . Hence

LM
(A−M) is irreducible. Thus, LM is an irreducible representation of A on A−M .

Herewith,

kerLM = {a ∈ A : aA ⊂ M}

if M is a maximal regular left ideal and

kerLM = {a ∈ A : Aa ⊂ M}

if M is a maximal regular right ideal of A. In both cases kerLM is called a primitive
ideal. A topological algebra A is a primitive algebra if there is a maximal regular
left (or right) ideal M ⊂ A such that kerLM = {θA} and is a topologically primitive
algebra if this ideal M is closed. In these cases LM is an isomorphism from A into
L(A−M). Since LM

(A−M) is an irreducible left (and (A−M)LM
is an irreducible

2The case, when M is a maximal regular right ideal of A, is similar.
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right) A-module for each maximal regular left (respectively right) ideal M of A,
then3

DM
A = {T ∈ L(A−M) : a[T (x)] = T (ax) for each a ∈ A and x ∈ A−M}

is a division subalgebra of L(A−M) for each maximal left (respectively right) ideal
M of A by Schur’s lemma (see, for example, [5], p. 127).

For each closed maximal regular left ideal M of A and a0 6∈ M let

LM(a0) = {a ∈ A : aa0 ∈ M}.

Then LM(a0) is a closed (proper) left ideal of A. If J is a left ideal of A such that
LM(a0) ⊂ J and J \ LM(a0) is not empty, then JπM(a0) is a left A-submodule of
A −M and JπM(a0) 6= {θA−M}. Since LM

(A −M) is irreducible, then JπM(a0) =
A −M . Therefore there is an element e ∈ J such that ea0 − a0 ∈ M . Hence from
(a − ae)a0 = a(a0 − ea0) ∈ M follows that a − ae ∈ L(a0) ⊂ J for each a ∈ A,
because of which a = (a− ae) + ae ∈ J for each a ∈ A. It means that A = J , which
is not possible. Therefore, LM(a0) is a closed maximal regular left ideal of A.

In the same way it is easy to show that the set {a ∈ A : a0a ∈ M} is a closed
maximal regular right ideal of A for each closed maximal regular right ideal M of
A.

2 Description of DM
A

To describe the set DM
A in case of locally pseudoconvex algebra A over C, we need

the following

Lemma 1. (see [5], p. 127) Let A be an algebra over K, M a maximal regular left
(right) ideal of A, a0 ∈ A \ M and πL the canonical homomorphism from A onto
A − LM(a0). For each y ∈ A − LM(a0) let U be a mapping from A − LM(a0) into
A−M defined by

U(y) = aπM(a0) (respectively U(y) = πM(a0)a),

where a is any element of A for which y = πL(a). Then U is a module isomorphism
from A− LM(a0) onto A−M .

Proof. If a, b ∈ A are such that πL(a) = πL(b), then4 (a − b)a0 ∈ M . Hence
aπM(a0) = bπM(a0). Thus the mapping U is a well defined linear mapping. If
U(πL(a)) = θA−M , then a ∈ LM(a0). Therefore πL(a) = θA−LM (a0). It means that U
is injective. For all b ∈ A and πL(a) ∈ A− LM(a0) we have that

U(bπL(a)) = U(πL(ba)) = b(aπM(a0)) = b(U(πL(a))).

So U is a module isomorphism which is surjective because LM
(A−M) is irreducible.

�

3If M is a maximal regular right ideal of A, then

DM
A = {T ∈ L(A−M) : [T (x)]a = T (xa) for each a ∈ A and x ∈ A−M}.

4Here and later we present proofs of results only for left ideals, because all the proofs for right
ideals are similar.
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Theorem 1. Let A be a locally m-pseudoconvex Hausdorff algebra over C with a
unit element or a locally pseudoconvex Fréchet algebra over C with a unit element.
If M is a closed maximal left (right) ideal of A, then DM

A is topologically isomorphic
to C.

Proof. a) Let A be a locally m-pseudoconvex Hausdorff algebra, topology of which
has been given by a saturated family {pα : α ∈ A} of kα-homogeneous submulti-
plicative seminorms (here kα ∈ (0, 1] for each α ∈ A), M a closed maximal left
ideal of A, πM the canonical homomorphism from A onto A−M , πL the canonical
homomorphism from A onto A− LM(a0) for a fixed a0 ∈ A \M and U the module
isomorphism from A− LM(a0) onto A−M defined by Lemma 1. Then

U−1 ◦ T ◦ U ∈ L(A− LM(a0))

for each T ∈ DM
A . Moreover, if y = πL(a) = πL(a′) and

(U−1 ◦ T )(πM(a0)) = πL(bT ),

then
(U−1 ◦ T ◦ U)(y) = U−1[T (aπM(a0))] = U−1[T (a′πM(a0))] =

U−1[a′T (πM(a0))] = a′[(U−1 ◦ T )(πM(a0))] = a′πL(bT ).

For each α ∈ A and a ∈ A let

p̃α(πL(a)) = inf{pα(a + l) : l ∈ LM(a0)}. (4)

Then {p̃α : α ∈ A} is the family of kα-homogeneous seminorms on A−LM(a0) which
defines the quotient topology on it. Herewith, for each nonzero x ∈ A − LM(a0)
there is an index α0 ∈ A such that p̃α0(x) > 0, because A − LM(a0) is a Hausdorff
space. Since

p̃α[(U−1 ◦ T ◦ U)(y)] = p̃α(a′πL(bT )) = p̃α(πL(a′bT )) =

inf{pα(a′bT + l) : l ∈ LM(a0)} 6 inf{pα(a′(bT + l)) : l ∈ LM(a0)} 6

pα(a′)p̃α(πL(bT ))

for each a′ ∈ a + LM(a0), then taking the infimum over all elements of a + LM(a0),
we have

p̃α[(U−1 ◦ T ◦ U)(y)] 6 Kα,T p̃α(y)

for each α ∈ A and y ∈ A − LM(a0), where Kα,T > p̃α(πL(bT )) for each α ∈ A.
Taking this into account, for each α ∈ A we can define kα-homogeneous seminorms
rα on DM

A by
rα(T ) = sup

p̃α(πL(a))61

p̃α[(U−1 ◦ T ◦ U)(πL(a))]

for each T ∈ DM
A . Then rα is a kα-homogeneous seminorm on DM

A for each α ∈ A.
To show that every rα is submultiplicative, for each a ∈ A let µa = n (for any fixed
n ∈ N) if p̃α(πL(a)) = 0 and µa = (p̃α(πL(a)))−1 if p̃α(πL(a)) > 0. Then

p̃α(πL(µ
1

kα
a a)) 6 1.
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Therefore from

pα[(U−1 ◦ T ◦ U)(πL(µ
1

kα
a a))] 6 rα(T )

follows that
pα[(U−1 ◦ T ◦ U)(πL(a))] 6 rα(T ) p̃α(πL(a)) (5)

for each a ∈ A (if p̃α(πL(a)) = 0, then from

pα[(U−1 ◦ T ◦ U)(πL(a))] 6
1

n
rα(T )

follows that p̃α[(U−1 ◦ T ◦ U)(πL(a))] = 0). Hence

rα(T1 ◦ T2) = sup
p̃α(πL(a))61

pα[(U−1 ◦ (T1 ◦ T2) ◦ U)(πL(a))] =

sup
p̃α(πL(a))61

pα{(U−1 ◦ T1 ◦ U)[(U−1 ◦ T2 ◦ U)(πL(a))]} 6

rα(T1) sup
p̃α(πL(a))61

pα[(U−1 ◦ T2 ◦ U)(πL(a))] 6 rα(T1)rα(T2)

for each T1, T2 ∈ DM
A .

Let now T be a nonzero element of DM
A . Then U−1 ◦ T ◦U is a nonzero element

of L(A−M). Therefore there is an element a ∈ A such that (U−1 ◦ T ◦ U)(πL(a))
is nonzero in A− LM(a0). Taking this into account, there is an index α0 ∈ A such
that

0 < p̃α0 [(U
−1 ◦ T ◦ U)(πL(a))] 6 rα0(T ) p̃α0(πL(a))

by (5). Hence rα0(T ) > 0. Consequently, DM
A is a locally m-pseudoconvex Haus-

dorff division algebra in the topology defined on DM
A by the family {rα : α ∈ A}

of kα-homogeneous submultiplicative seminorms and therefore DM
A is topologically

isomorphic to C (see [1], Corollary 1, or [2], Theorem 3.2).
b) Let now A be a locally pseudoconvex Fréchet algebra over C and {pv : v ∈ N}

a family of kv-homogeneous seminorms on A with kv ∈ (0, 1] for each v ∈ N, which
defines the topology of A. We can assume that the system {pv : v ∈ N} satisfies the
condition (3) for each v ∈ N and each a, b ∈ A. Let again M be a closed maximal left
ideal of A, πM the canonical homomorphism from A onto A−M and πL the canonical
homomorphism from A onto A−LM(a0) for some a0 ∈ A\M . Let {ṗv : v ∈ N} and
{p̃v : v ∈ N} denote the families of kv-homogeneous seminorms (defined by (1) and
(4)), which define the quotient topologies on A−M and A−LM(a0) respectively, and
let U be the module isomorphism from A−LM(a0) onto A−M defined by Lemma
1. Then A−M and A− LM(a0) are locally pseudoconvex Fréchet spaces (because
M and LM(a0) are closed linear subspaces of A), U−1 ◦ T ◦ U ∈ L(A− LM(a0)) for
each T ∈ DM

A and

ṗv(U(πL(a))) = ṗv(a
′πM(a0)) = ṗv(πM(a′a0)) =

inf{pv(a
′a0 + m) : m ∈ M} 6 inf{pv(a

′(a0 + m)) : m ∈ M} 6

pv+1(a
′)

kv
kv+1 inf{pv+1(a0 + m)

kv
kv+1 : m ∈ M} 6

pv+1(a
′)

kv
kv+1 ṗv+1(πM(a0))

kv
kv+1
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for each a′ ∈ a + LM(a0) by (3). Hence

ṗv(U(πL(a))) 6 Cv,M p̃v+1(πL(a))
kv

kv+1

for each πL(a) ∈ A− LM(a0) and v ∈ N, where

Cv,M > p̃v+1(πM(a0))
kv

kv+1

for all v ∈ N. Therefore U is a continuous mapping by (2).
Let now a ∈ A and y ∈ A − M . Then there is an element b ∈ A such that

y = πM(b). Since

ṗv(LM(a)(y)) = ṗv(πM(ab)) = inf{pv(ab + m) : m ∈ M} 6

inf{pv(a(b + m)) : m ∈ M} 6

pv+1(a)
kv

kv+1 inf{pv+1(b + m)
kv

kv+1 : m ∈ M} 6

Mv(a)ṗv+1(y)
kv

kv+1

by (3), where

Mv(a) > pv+1(a)
kv

kv+1

for all v ∈ N, then LM(a) is a continuous mapping for each a ∈ A by (2).

Defining seminorms rv on DM
A similarly as above by

rv(T ) = sup
p̃v(πL(a))61

p̃v[(U
−1 ◦ T ◦ U)(πL(a))]

for each T ∈ DM
A and v ∈ N, then DM

A (in the topology defined by the family
{rv : v ∈ N}) is a metrizable locally pseudoconvex division algebra over C. To show
that DM

A is complete, let (Tn) be a Cauchy sequence in DM
A . Then for each v ∈ N

and ε > 0 there is a number N = N(v, ε) ∈ N such that rv(Tm − Tn) < ε whenever
m > n > N . Hence

p̃v[(U
−1 ◦ (Tm − Tn) ◦ U)(πL(a))] < εp̃v(πL(a)) (6)

whenever m > n > N for each y = πL(a) ∈ A − LM(a0) by the inequality (5).
Therefore ((U−1 ◦ Tn ◦ U)(y)) is a Cauchy sequence in A − LM(a0) for each y ∈
A− LM(a0). Since A− LM(a0) is complete, then the sequence ((U−1 ◦ Tn ◦ U)(y))
converges in A − LM(a0) for each y ∈ A − LM(a0). It means that for each a ∈ A
there exists the limit

T (πL(a)) = lim
n→∞

(U−1 ◦ Tn ◦ U)(πL(a)). (7)

It is easy to show that T is a module homomorphism from A − LM(a0) into A −
LM(a0). Therefore U ◦ T ◦U−1 ∈ L((A−M)LM

). To show that U ◦ T ◦U−1 ∈ DM
A ,

let x be an arbitrary element of A−M . Then there is an element b ∈ A such that
U−1(x) = πL(b). Since U is a continuous module isomorphism from A − LM(a0)
onto A−M and LM(a) is continuous for each a ∈ A, then

a[(U ◦ T ◦ U−1)(x)] = (aU)[T (U−1(x))] = (aU)[T (πL(b))] =
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(LM(a) ◦ U)[ lim
n→∞

(U−1 ◦ Tn ◦ U)(πL(b))] = lim
n→∞

(LM(a) ◦ Tn)(x) =

lim
n→∞

a[Tn(x)] = lim
n→∞

Tn(ax) = lim
n→∞

Tn[a(U(πL(b)))] =

lim
n→∞

Tn[U(πL(ab))] = U [ lim
n→∞

(U−1 ◦ Tn ◦ U)(πL(ab))] =

(U ◦ T )[πL(ab)] = (U ◦ T )[aπL(b)] = (U ◦ T )[a(U−1(x))] =

(U ◦ T )[U−1(ax)] = (U ◦ T ◦ U−1)(ax)

for each a ∈ A and x ∈ A−M . Consequently, U ◦ T ◦ U−1 ∈ DM
A .

If now m →∞ in (6), then

p̃v[(T − U−1 ◦ Tn ◦ U)(πL(a))] 6 εp̃v(πL(a)) (8)

by (7) whenever n > N for each πL(a) ∈ A− LM(a0). Therefore

rv(U ◦ T ◦ U−1 − Tn) = sup
p̃v(πL(a))61

p̃v[(T − (U−1 ◦ Tn ◦ U))(πL(a))] 6

sup
p̃v(πL(a))61

εp̃v(πL(a)) = ε

by (8) whenever n > N . Consequently, the sequence (Tn) converges in the topology
of DM

A . It means that DM
A is complete. Thus DM

A is a locally pseudoconvex Fréchet
division algebra over C and therefore DM

A is topologically isomorphic to C (see again
[1], Corollary 1, or [2], Corollary 3.1). �

3 The center of primitive locally pseudoconvex algebras

Let A be a primitive topological algebra over C. When the center Z(A) of A is
a field? The following result gives an answer to this question in case of locally
pseudoconvex algebras.

Theorem 2. Let A be a unital primitive locally A-pseudoconvex Hausdorff algebra
over C or a unital topologically primitive locally pseudoconvex Fréchet algebra over
C. Then the center Z(A) of A is topologically isomorphic to C.

Proof. Let A be a unital primitive locally A-pseudoconvex Hausdorff algebra over
C. Then A has a topology τ ′, finer than τ (see [2], Lemma 2.2), such that (A, τ ′) is
a locally m-pseudoconvex Hausdorff algebra over C. Let β be a base of τ ′ and τA

the topology on A which subbase is βA = β ∪ {InvA}. Then it is easy to see that
(A, τA) is a locally m-pseudoconvex Q-algebra over C. Because A is primitive, then
there is a closed maximal left ideal M of A such that LM is an isomorphism from A
into L(A−M). The same statement is true in case when A is a unital topologically
primitive locally pseudoconvex Fréchet algebra over C. Since LM(Z(A)) ⊂ DM

A and
DM

A is topologically isomorphic to C in both cases by Theorem 1, then in both cases
Z(A) is also topologically isomorphic to C (because Z(A) is a Hausdorff space). �
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