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Abstract

We give characterizations of unital uniform topological algebras and satu-

rated locally multiplicatively convex algebras by means of multiplicative lin-

ear functionals. Some automatic continuity theorems in advertibly complete

uniform topological algebras are extended to a larger class of algebras. Con-

sequences and applications are given.

Introduction

A. C. Cochran introduced, in [5], the notion of saturated uniformly A-convex alge-
bras. M. Oudadess showed, in [9], that the class of saturated uniformly A-convex
algebras (in the sense of Cochran) is empty and introduced a new definition of sat-
uration in uniformly A-convex algebras. In the Banach case, M. Oudadess showed
that A is a saturated Banach algebra iff A is a unital uniform Banach algebra. A.
Bedaa extended, in [1], the definition of saturation given by M. Oudadess in uni-
formly A-convex algebras to locally convex algebras with non-empty set of nonzero
multiplicative linear functionals.

In the second section, we give characterizations of unital uniform topological
algebras and saturated locally multiplicatively convex algebras by means of multi-
plicative linear functionals (Theorems 2.1 and 2.2). We obtain, as a consequence,
the following result: Let (A, ‖.‖) be a functionally continuous normed algebra with
unit. Then A is a saturated normed algebra iff A is a uniform normed algebra
(Corollary 2.4). This improves the above result of M. Oudadess. We also obtain, as
a consequence, the following result of A. Bedda: A uniform topological algebra with
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unit is a saturated locally multiplicatively convex algebra [1]. We show that if A is a
functionally continuous, saturated locally convex algebra, whose spectrum M(A) is
equicontinuous, then A is a uniform normed algebra (Theorem 2.5). We obtain, as
a consequence, the following result of A. Bedaa: The topology of a saturated locally
convex Q-algebra is normable [1]. At the end of the second section, we introduce the
following property: Let (A, (ps)s∈S) be a locally convex algebra with nonempty set
M∗(A) of nonzero multiplicative linear functionals, A satisfies the property (P ) if
for all x ∈ A and for every s ∈ S with ps(x) = 1, there exists f0 ∈ M∗(A) such that
|f0(x)| ≥ 1. We show that the class of locally convex algebras satisfying property (P )
contains both; the class of uniform topological algebras and the class of saturated
locally convex algebras. The class of locally convex algebras satisfying property (P )
is introduced to give some automatic continuity theorems.

In the third section, we show that some automatic continuity theorems in ad-
vertibly complete uniform topological algebras, obtained by A. Bedaa, S. J. Bhatt
and M. Oudadess in [2], are true if the class of advertibly complete uniform topo-
logical algebras is replaced by the larger class of locally convex algebras satisfying
property (P ) (Theorem 3.1, 3.2 and 3.3). Finally, as an application, we obtain that:
If (A, ‖.‖) is a weakly regular, functionally continuous, uniform normed algebra with
unit, then ‖.‖ is the unique uniform norm on A (Theorem 3.6). This improves a
result of S. J. Bhatt and D. J. Karia [3, Corollary (second affirmation)].

1 Preliminaries

A topological algebra is an algebra over the field C which is also a Hausdorff topo-
logical vector space such that the multiplication is separately continuous. A locally
convex algebra (lc algebra) is a topological algebra whose topology is locally con-
vex. A locally multiplicatively convex algebra [8] (lmc algebra) is a topological
algebra whose topology is determined by a family {ps, s ∈ S} of submultiplicative
seminorms. For each s ∈ S, let Ns = {x ∈ A, ps(x) = 0}, the quotient algebra
As = A/Ns is a normed algebra in the norm ‖xs‖s = ps(x), xs = x + Ns. A uni-
form seminorm on an algebra A is a seminorm p such that p(x2) = p(x)2 for all
x ∈ A. Such a seminorm is submultiplicative [6]. A uniform topological algebra
(uT -algebra) is a topological algebra whose topology is determined by a family of
uniform seminorms. A uniform normed algebra is a normed algebra (A, ‖.‖) such
that ‖x2‖ = ‖x‖2 , for all x ∈ A. Let A be an algebra and x ∈ A, we denote by spA(x)
the spectrum of x and rA(x) the spectral radius of x. A norm ‖.‖ on an algebra A
is an algebra norm if (A, ‖.‖) is a normed algebra. An algebra norm ‖.‖ on A is
semisimple [2] if the completion of (A, ‖.‖) is semisimple. A topological algebra is a
Q-algebra [8] if the set of quasi-invertible elements is open. For a topological algebra
A, M(A) denotes the set of nonzero continuous multiplicative linear functionals on
A. A topological algebra A is strongly semisimple if for every x ∈ A, x 6= 0, there
exists f ∈ M(A) such that f(x) 6= 0. A topological algebra is weakly regular [2] if
given a closed subset F ⊂ M(A), F 6= M(A), there exists a nonzero x ∈ A such
that f(x) = 0 for all f ∈ F. A topological algebra A is functionally continuous if
M∗(A) = M(A). A topological algebra is weakly σ∗-compact-regular [2] if given a
compact subset K ⊂ M∗(A), K 6= M∗(A), there exists a nonzero x ∈ A such that



On some automatic continuity theorems 629

f(x) = 0 for all f ∈ K. A topological algebra is advertibly complete if a Cauchy net
(xr)r in A converges in A whenever for some y in A, xr + y + xry and xr + y + yxr

both converge to 0. Let A be an lc algebra with unit e such that M∗(A) 6= ∅, A is a
saturated lc algebra [1] if the topology of A is determined by a family {ps, s ∈ S}
of seminorms such that (1) ps(e) = 1 for all s ∈ S, (2) for all x ∈ A and s ∈ S with
ps(x) = 1, there exist f0, f ∈ M∗(A) such that |f0(x)| = sup{|f(y)| , ps(y) ≤ 1}.
Further if ps is submultiplicative for all s ∈ S, we say that A is a saturated lmc
algebra. A saturated normed algebra is a normed algebra (A, ‖.‖) with unit e such
that (1) ‖e‖ = 1, (2) for all x ∈ A with ‖x‖ = 1, there exist f0, f ∈ M∗(A) such
that |f0(x)| = sup{|f(y)| , ‖y‖ ≤ 1}.

2 Uniform topological algebras and saturated locally convex al-

gebras

Let (A, (ps)s∈S) be an lmc algebra. For each s ∈ S, let Ms(A) = {f ∈ M(A),
|f(x)| ≤ ps(x), for all x ∈ A} and let πs : A → As, πs(x) = x + Ns, be the
natural homomorphism from A to As. Let f ∈ M(A) with Ns ⊂ Kerf, we may
define a multiplicative linear functional fs on As by fs(xs) = f(x), it is clear that
fs ∈ M(As, ‖.‖s). For x ∈ A, let x̂ : M(A) → C, x̂(g) = g(x), (g ∈ M(A)), denotes
the Gelfand transform of x.

Theorem 2.1. Let (A, T ) be a topological algebra with unit e. The following
assertions are equivalent.

(1) (A, T ) is a uT -algebra.
(2) The topology T is defined by a family {ps, s ∈ S} of submultiplicative

seminorms such that
(i) ps(e) = 1 for all s ∈ S,
(ii) For all x ∈ A and s ∈ S with ps(x) = 1, there exists f0 ∈ Ms(A) such that

|f0(x)| = 1.

Proof. (1) ⇒ (2): By [7, Theorem VIII.5.1], the topology T of A can be defined
by the family {qU , U ∈ E} of seminorms, qU(x) = sup{|x̂(f)| , f ∈ U}, E is
the set of all compact equicontinuous subsets of M(A). We have qU(e) = 1 for all
U ∈ E. Suppose that qU(x) = 1. Since the map |x̂| : M(A)→ R, |x̂| (f) = |x̂(f)| , is
continuous and U is compact, there exists f0 ∈ U such that 1 = |x̂(f0)| = |f0(x)| .
Clearly, |f0(y)| ≤ qU(y) for all y ∈ A, i.e., f0 ∈ MU(A).

(2) ⇒ (1): We have f(xy − yx) = 0 for all x, y ∈ A and f ∈ M∗(A), then A
is commutative by (ii). Let s ∈ S, Ms(A) is homeomorphic to M(Ãs, ‖.‖s) by [8,

Proposition 7.5] ((Ãs, ‖.‖s) is the completion of (As, ‖.‖s)). Since (Ãs, ‖.‖s) is a com-

mutative Banach algebra with unit, M(Ãs, ‖.‖s) is a non empty compact set. Let
qs(x) = sup{|x̂(f)| , f ∈ Ms(A)} for all x ∈ A. If ps(x) = 1, there exists f0 ∈ Ms(A)
such that |f0(x)| = 1, we have 1 = |f0(x)| ≤ qs(x) ≤ ps(x) = 1. So qs(x) = 1. Let
x ∈ A with ps(x) 6= 0. Since ps(ps(x)−1x) = 1, it follows that qs(ps(x)−1x) = 1, i.e.,
ps(x) = qs(x) for all x ∈ A. We have qs(x

2) = qs(x)2 for all x ∈ A, then (A, T ) is a
uT -algebra.
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Theorem 2.2. Let (A, T ) be a topological algebra with unit e. Then the
following assertions are equivalent.

(1) (A, T ) is a saturated lmc algebra.
(2) The topology T is defined by a family {ps, s ∈ S} of submultiplicative

seminorms such that:
(i) ps(e) = 1 for all s ∈ S
(ii) for all x ∈ A and s ∈ S with ps(x) = 1, there exists f0 ∈ M∗(A) such that

|f0(x)| = 1.

Proof. ( 1) ⇒ (2): The topology T is defined by a family {ps, s ∈ S} of submul-
tiplicative seminorms such that:

(j) ps(e) = 1 for all s ∈ S
(jj) for all x ∈ A and s ∈ S with ps(x) = 1, there exists f0, f ∈ M∗(A) such that

|f0(x)| = sup{|f(y)| , ps(y) ≤ 1}.
It is easy to show that |f(y)| ≤ |f0(x)| ps(y) for all y ∈ A, then f ∈ M(A) and

Ns ⊂ Kerf. fs ∈ M(As, ‖.‖s), then |fs(z)| ≤ ‖z‖s for all z ∈ As. Further, as As is
unital, 1 = sup{|fs(ys)| , ‖ys‖s ≤ 1} = sup{|f(y)| , ps(y) ≤ 1} = |f0(x)| .

(2) ⇒ (1): We have f(xy − yx) = 0 for all x, y ∈ A and f ∈ M∗(A), then
A is commutative by (ii). Let s ∈ S, (As, ‖.‖s) is a commutative normed alge-
bra with unit, then M(As, ‖.‖s) 6= ∅. Let gs ∈ M(As, ‖.‖s), gs ◦ πs ∈ Ms(A).
We have 1 = sup{|gs(ys)| , ‖ys‖s ≤ 1} = sup{|gs ◦ πs(y)| , ps(y) ≤ 1}. By (ii),
for all x ∈ A and s ∈ S with ps(x) = 1, there exists f0 ∈ M∗(A) such that
|f0(x)| = 1 = sup{|gs ◦ πs(y)| , ps(y) ≤ 1}. Then (A, T ) is a saturated lmc algebra.

Corollary 2.3. ([1, Proposition 2]). A uniform topological algebra with unit is
a saturated lmc algebra.

Corollary 2.4. Let (A, ‖.‖) be a functionally continuous normed algebra with
unit. Then the following assertions are equivalent

(1) A is a saturated normed algebra
(2) A is a uniform normed algebra.

Theorem 2.5. Let (A, (ps)s∈S) be a functionally continuous, saturated locally
convex algebra, whose spectrum M(A) is equicontinuous. Then A is a uniform
normed algebra.

Proof. Let x ∈ A and s ∈ S with ps(x) 6= 0, there exist f0, f ∈ M∗(A) = M(A)
such that ps(x)−1 |f0(x)| = |f0(ps(x)−1x)| = sup{|f(y)| , ps(y) ≤ 1} ≥ |f(e)| = 1.
Let ‖x‖ = sup{|f(x)| , f ∈ M(A)}, we have ps(x) ≤ ‖x‖ for all x ∈ A and s ∈ S.
Since A is Hausdorff and M(A) is equicontinuous, ‖.‖ is a continuous uniform norm
on A, then the topology of A can be defined by the uniform norm ‖.‖ .

Corollary 2.6. Let A be a saturated locally convex Q-algebra, then A is a
uniform normed algebra.

Proof. A is functionally continuous and M(A) is equicontinuous [7, Proposition
II.7.1].
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Let (A, (ps)s∈S) be an lc algebra with M∗(A) 6= ∅, we say that A satisfy the prop-
erty (P ) if for all x ∈ A and s ∈ S with ps(x) = 1, there exists f0 ∈ M∗(A) such that
|f0(x)| ≥ 1. Let A be an lc algebra satisfying property (P ). Then Rad(A) ⊂

⋂
{Kerf,

f ∈ M∗(A)} = {0}. Also for x, y ∈ A, xy − yx ∈
⋂
{Kerf, f ∈ M∗(A)} = {0}.

Hence A is commutative and semisimple. Let (A, (ps)s∈S) be a uT -algebra with-
out unit. Denote by 0s the zero map from As to C and by 0 the zero map
from A to C. Let s ∈ S and x ∈ A, ps(x) = ‖xs‖s = r

Ãs

(xs) = sup{|g(xs)| ,

g ∈ M(Ãs) ∪ {0s}} = sup{|f(x)| , f ∈ Ms(A) ∪ {0}} by [8, Proposition 7.5]. Let
s ∈ S and x ∈ A with ps(x) = 1. Since Ms(A)∪ {0} is compact [8, Proposition 7.5],
there exists f0 ∈ Ms(A) such that 1 = |x̂(f0)| = |f0(x)| . By the previous statement,
Theorem 2.1 and the proof of Theorem 2.5, if A is a uT -algebra or a saturated lc
algebra, then A satisfy the property (P ).

Remark. There exists a saturated lc algebra which is not a uT -algebra [1,
p.131].

3 Automatic continuity theorems

In this section we extend some automatic continuity theorems in advertibly com-
plete uniform topological algebras obtained in [2] to lc algebras satisfying property
(P ).

Theorem 3.1. Let (A, (ps)s∈S) be a weakly regular, lc algebra with unit, satisfy-
ing (P ). Let B be an lmc algebra, and let φ : A → B be a one-to-one homomorphism
such that C = Imφ (the closure of Imφ) is a semisimple Q-algebra. If A is func-
tionally continuous, then φ−1

/Imφ is continuous.

Proof. Let s ∈ S and y ∈ Imφ with ps(φ
−1(y)) 6= 0. By (P ) and the fact that A is

functionally continuous, there exists f0 ∈ M(A) such that ps(φ
−1(y)) ≤ |f0(φ

−1(y))| .
The map φ∗ : M(C) → M(A), φ∗(f) = f ◦φ, is well defined and φ∗(M(C)) = M(A)
[2, Proof of Theorem 1]. Since f0 ∈ M(A), there exists F0 ∈ M(C) such that
f0 = F0 ◦ φ. We have ps(φ

−1(y)) ≤ |f0 ◦ φ−1(y)| = |F0(y)| ≤ rC(y). Finally,
ps(φ

−1(y)) ≤ rC(y) for all y ∈ Imφ and s ∈ S. Since C is a Q-algebra, rC is
continuous at 0 [8, Proposition 13.5]. Then φ−1

/Imφ is continuous.

Theorem 3.2. Let (A, (ps)s∈S) be a weakly σ∗-compact-regular, lc algebra with
unit, satisfying (P ). Let B be an lc algebra, and let φ : A → B be a one-to-one
homomorphism such that C = Imφ is a strongly semisimple Q − algebra. Then
φ−1/Imφ is continuous.

Proof : Let s ∈ S and y ∈ Imφ with ps (φ−1(y)) 6= 0. By (P ), there ex-
ists f0 ∈ M∗(A) such that ps (φ−1(y)) ≤ |f0 (φ−1(y))|. The map φ∗∗ : M(C) →
M∗(A), φ∗∗(f) = f ◦ φ,is well defined and φ∗∗ (M(C)) = M∗(A) [2, Proof of The-
orem 2]. Since f0 ∈ M∗(A), there exists F0 ∈ M(C) such that f0 = F0 ◦ φ. We
have ps(φ

−1(y)) ≤ |f0 ◦ φ−1(y)| = |F0(y)| ≤ rC(y). Finally, ps(φ
−1(y)) ≤ rC(y) for
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all y ∈ Imφ and s ∈ S. Since C is a Q-algebra, rC is continuous at 0 [8, Proposition
13.5]. Then φ−1/Imφ is continuous.

Theorem 3.3. Let (A, (ps)s∈S) be an lc algebra satisfying (P ). Let B be an
lc algebra, and let φ : A → B be a one-to-one homomorphism such that Imφ is
functionally continuous with continuous product and C = Imφ is a Q − algebra.
Then φ−1/Imφ is continuous.

Proof : Let s ∈ S and y ∈ Imφ with ps (φ−1(y)) 6= 0. By (P ), there exists
f0 ∈ M∗(A) such that ps (φ−1(y)) ≤ |f0(φ

−1(y))|. Since Imφ is functionally contin-
uous with continuous product, it follows that f0 ◦φ−1 ∈ M(Imφ) = M(C). We have
ps(φ

−1(y)) ≤ |f0 ◦ φ−1(y)| ≤ rC(y). Finally, ps(φ
−1(y)) ≤ rC(y) for all y ∈ Imφ and

s ∈ S. Since C is a Q-algebra, rC is continuous at 0 [8, Proposition 13.5]. Then
φ−1/Imφ is continuous.

Theorem 3.4. Let (A, (ps)s∈S) be a uT-algebra with unit. Let B be an lc
algebra, and let φ : A → B be a one-to-one homomorphism such that C = Imφ is a
Q − algebra. Assume that at least one of the following holds

a) A is weakly regular, B is an lmc algebra, and C is semisimple
b) A is weakly σ∗-compact-regular, and C is strongly semisimple
c) Imφ is functionally continuous with continuous product.
If φ is continuous, then A is a uniform normed algebra.

Proof : By Theorems 3.1, 3.2 and 3.3, φ−1/Imφ is continuous, then φ is an homeo-
morphism from A to Imφ, and so Imφ is a uT-algebra. C = Imφ is a uT−Q−algebra.
By corollaries 2.3 and 2.6, C is a uniform normed algebra, then A = φ−1(Imφ) is a
uniform normed algebra.

Theorem 3.5. Let A be an lc Q − algebra, B be a commutative complete
lmc algebra. Let φ : A → B be a one-to-one homomorphism such that φ−1/Imφ is
continuous. Then C = Imφ is a Q − algebra.

Proof : Since A is an lc Q − algebra, rA is continuous at 0 [8, Proposition 13.5],
then there exists a continuous seminorm p on A such that rImφ

(y) = rA(φ−1(y)) ≤

p(φ−1(y)), for all y ∈ Imφ. Let q1 = p ◦ φ−1, q1 is a continuous seminorm on Imφ,
then q1 extends as a continuous seminorm q : C → R+. We have rC(y) ≤ rImφ(y) =

rA(φ−1(y)) ≤ q(y) for all y ∈ Imφ. Let y ∈ C, y = lim
t

yt for some net (yt)t in

Imφ. Let f ∈ M(C), |f(y)| ≤ |f(y − yt)| + |f(yt)| ≤ |f(y − yt)| + q(yt), with
lim

t
(|f(y − yt)| + q(yt)) = q(y). Since C is a commutative complete lmc algebra, we

have rC(y) = sup {|f(y)| , f ∈ M(C)} ≤ q(y) for all y ∈ C, then rC is continuous
at 0 and so C is a Q − algebra by [8, Proposition 13.5].

Remark. Theorem 3.5 shows that the hypothesis ”A is complete and m-convex”
is not necessary in [2, Proposition 4].
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An algebra norm ‖.‖ on an algebra A is functionally continuous if (A, ‖.‖) is
functionally continuous.

Theorem 3.6. Let (A, ‖.‖) be a weakly regular, functionally continuous, uni-
form normed algebra with unit. Let |.| be an algebra norm on A.

(1) If |.| is functionally continuous, then ‖.‖ ≤ |.|.
(2) If |.| is semisimple, then |.| is functionally continuous (‖.‖ ≤ |.| by (1)).

Further if |.| is continuous, then |.| is equivalent to ‖.‖ .
(3) If |.| is uniform, then |.| = ‖.‖.

Proof: (1) We have M∗(A) = M(A, ‖.‖) = M(A, |.|). Let x ∈ A,

‖x‖ = rB(x) = Sup {|f(x)| , f ∈ M(B)} (B is the completion of (A, ‖.‖) )

= Sup {|f(x)| , f ∈ M(A, ‖.‖)}

= Sup {|f(x)| , f ∈ M(A, |.|)}

≤ |x|

(2) By Theorem 3.1, the identity map I : (A, |.|) → (A, ‖.‖), I(x) = x, is con-
tinuous. Since (A, ‖.‖) is functionally continuous and I is continuous, M∗(A) =
M(A, ‖.‖) = M(A, |.|), then |.| is functionally continuous.

(3) Since (A, |.|) is a uniform normed algebra, the completion of (A, |.|) is a uni-
form Banach algebra, then it is semisimple and so |.| is semisimple. By (2), |.| is
functionally continuous, then ‖.‖ ≤ |.| by (1). (A, |.|) is a weakly regular, function-
ally continuous, uniform normed algebra with unit. Since ‖.‖ is uniform, it follows
that |.| ≤ ‖.‖ .

Remark. Theorem 3.6 is an improvement of [2, Corollary 2(i)] and [3, Corollary
(second affirmation)].
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