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Abstract

In this paper we sketch a general theory of embeddings for geometries with

string diagrams, focusing on their hulls. An affine-like geometry, which we call

expansion, is associated to every embedding. As we shall prove, the universal

cover of the expansion of an embedding is the expansion of the hull of that

embedding. Some applications of this theorem are given.

1 Introduction

1.1 Aims and organization of this paper

I shall sketch a general theory of embeddings for geometries belonging to string
diagrams, focusing on hulls of embeddings and on the problem of extending an em-
bedding from the point-line system of a geometry Γ to the whole of Γ. In order
to cover as many facts as I can, I don’t require the codomain of an embedding to
be a projective space, allowing the subgroup lattice of any group to be a feasible
codomain. This abstract approach will reward us with simplifying some construc-
tions and the solution of some problems and will provide a framework where both
projective embeddings as defined by Ronan [30] and representation groups in the
sense of Ivanov and Shpectorov [18] can be placed quite naturally.

The idea of embedding a geometry in a group rather than in a projective space is
mainly motivated by the investigation of non-abelian representations of P - and T -
geometries (see Ivanov and Shpectorov [18]; also Ivanov, Pasechnik and Shpectorov
[19], Ivanov [16]). However, I am not going to survey embeddings of P - and T -
geometries in this paper. The reader is referred to [18] for that. I have preferred
to focus on classical objects, as projective spaces, polar spaces, grassmannians and
dual polar spaces.
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The paper is organized as follows. In the rest of the Introduction we state some
notation and terminology for geometries with string diagrams and we recall the def-
inition of the geometry far from a flag of a building. Embeddings and morphisms
of embeddings are defined in Section 2. An affine-like structure, which we call ex-

pansion, is associated to every embedding and the functor sending every embedding
to its expansion also sends morphisms of embeddings to coverings of expansions. A
number of basic facts on embeddings and expansions are proved in Section 2. Many
of them generalize results stated by Ivanov and Shpectorov [18] for representations
of geometries with three points per line.

Section 3 is devoted to hulls. Every embedding ε admits a hull, which is universal
in the class of embeddings that dominate ε. We prove that the universal cover of the
expansion of ε is the expansion of the hull of ε, thus generalizing a result of Ivanov
and Shpectorov [18, 2.5.1]. In Section 4 we investigate the following problem: Given
an embedding ε of a geometry Γ of rank at least 3, let ε0 be the embedding induced
by ε on the point-line system Σ of Γ. When does it happen that the hull of ε induces
on Σ the hull of ε0?

In Sections 5, 6,..., 10 we apply some of the results proved in Sections 2, 3 and 4
to investigate hulls of embeddings of projective spaces, polar spaces, grassmannians
of projective spaces, dual polar spaces and half-spin geometries. In particular, in
Sections 5 and 6 we study embeddings of projective geometries, stating some gen-
eral results in Section 5, then focusing on two particular embeddings in Section 6
which, as we will show in Section 9, are involved in projective embeddings of dual
polar spaces of symplectic and hermitian type. We call them (plain and twisted)
tensor embeddings, after the way in which they are constructed (but plain tensor
embeddings might be called ‘Veronesean embeddings’ as well, as the image of such
an embedding is a Veronesean quadric).

Section 7 is devoted to polar spaces. In that section we prove that the hull of
a projective embedding of a classical polar space Γ of rank n ≥ 2 embeds Γ in the
unipotent radical of a point-stabilizer in Aut(Π), for a polar space Π of the same
kind as Γ but of rank n + 1. As a by-product, we obtain a fairly easy proof of the
well known fact that a projective embedding of a polar space in odd characteristic is
not the image of any larger projective embedding. We also prove that a projective
embedding ε : Γ → PG(V ) of a polar space Γ is its own hull if and only if ε(Γ) is a
quadric of PG(V ).

In Section 8 we prove that the natural embedding of the line-grassmannian of a
projective space is its own hull. We obtain a similar result for the line-grassmannian
of an affine space, provided that the underlying field is not GF (2). Embeddings of
dual polar spaces are discussed in Section 9, with particular emphasis on cases of
rank 3. In particular, we prove that the spin embedding of the dual of Q6(q) is its
own hull. We also describe the hulls of the embeddings of the duals of W5(q) and
H5(q

2) in PG(13, q) and PG(19, q), but assuming that q is prime. In Section 10 we
consider the projective embedding of the half-spin geometry of the building of type
Dn proving that, when n ≤ 5, that embedding is its own hull.
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1.2 Terminology and notation for geometries

As in [26], all geometries are residually connected and firm by definition. Given a
geometry Γ, we write X ∈ Γ to say that X is an element of Γ. Given X ∈ Γ, we
denote the type of X by t(X) and its residue by ResΓ(X) (also Res(X) when no
ambiguity arises). Given a subset J 6= ∅ of the set of types of Γ, the J-truncation

of Γ is the geometry obtained from Γ by removing all elements of type j 6∈ J .

We are not interested in non-type-preserving automorphisms in this paper. Ac-
cordingly, we denote by Aut(Γ) the group of type-preserving automorphisms of Γ.
We call them just automorphisms of Γ.

As in [26], given two geometries Γ and ∆ of rank n overthe same set of types
and a positive integer m < n, an m-covering from Γ to ∆ is a type-preserving
morphism ϕ : Γ → ∆ such that, for every flag F of Γ of corank m, the restriction
of ϕ to ResΓ(F ) is an isomorphism to Res∆(ϕ(F )). Accordingly, if ϕ : Γ′ → Γ is
an m-covering, we say that Γ′ is an m-cover of Γ and Γ is an m-quotient of Γ′. If
Γ is its own universal m-cover, then we say that Γ is m-simply connected. We call
the (n − 1)-coverings just coverings, for short. Accordingly, the universal cover of
a geometry Γ of rank n is its (n − 1)-universal cover and Γ is said to be simply

connected if it is (n − 1)-simply connected.

1.3 Poset-geometries

We say that a geometry Γ is a poset-geometry when its set of types is equipped with a
total ordering ≤ such that, for any three elements X, Y, Z of Γ, if t(X) ≤ t(Y ) ≤ t(Z)
and Y is incident with both X and Z, then X is incident to Z. Given two elements
X, Y of a poset-geometry Γ, we write X < Y (respectively X ≤ Y ) when X and Y
are incident and t(X) < t(Y ) (resp. t(X) ≤ t(Y )).

We will always take the integers 0, 1, ..., n − 1 as types for a poset-geometry of
rank n, ordered in the natural way. The elements of type 0 and 1 are called points

and lines, respectively. Two points are said to be collinear if they belong to the
same line. The relation ‘being collinear’ defines a graph on the set of points of Γ,
called the collinearity graph of Γ. The 2-elements are also called planes, but different
words are used in special contexts instead of ‘planes’ (as quads, for instance, when
dealing with dual polar spaces).

We denote by P (Γ) and L(Γ) the set of points and the set of lines of Γ. Similarly,
given an element X ∈ Γ, we denote by P (X) the set of points p ≤ X and by L(X)
the set of lines incident to X, with the convention that P (p) = {p} and L(L) = {L}
for every point p and every line L. Clearly, if X ≤ Y , then P (X) ⊆ P (Y ).

Given an element A of type t(A) > 0 (respectively, t(A) < n − 1) the lower

(upper) residue of A is the poset-geometry induced by Γ on the set of elements
X < A (resp. X > A). We shall denote the lower and upper residues of A by
Res−(A) and Res+(A).

The irreducible poset-geometries, which do not split as a direct sum of smaller
geometries, are those belonging to a string diagram, possibly of rank 1.
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1.4 Subgeometries far from a flag of a building

In this subsection Γ is a thick building of connected spherical type and rank at least
2. It is well known that, given a flag F 6= ∅ and a chamber C of Γ, there is a
unique chamber CF ∈ Res(F ) at minimal distance from C (Tits [35]). We denote
the distance between C and CF by d(C, F ). For every nonempty flag X, the distance

d(X, F ) from X to F is the minimal distance d(C, F ) from F to a chamber C ⊇ X.
We say that a flag X is far from F if d(X, F ) is maximal, compatibly with the types
of F and X. We denote by FarΓ(F ) the substructure of Γ formed by the elements
far from F , with the incidence relation inherited from Γ, but rectified as follows:
two elements X, Y ∈ FarΓ(F ) are incident in FarΓ(F ) if and only if they are incident
in Γ and the flag {X, Y } is far from F .

It is known that FarΓ(F ) is residually connected, except for a few cases defined
over GF (2) (Blok and Brouwer [4]), but none of those exceptional cases will be met
in this paper.

2 Definitions and basics

2.1 Embeddings

An embedding ε : Γ → G of a poset-geometry Γ in a group G is an injective mapping
ε from the set of elements of Γ to the set of proper non-trivial subgroups of G such
that:

(E1) for X, Y ∈ Γ, we have ε(X) ≤ ε(Y ) if and only if X ≤ Y ;

(E2) ε(X) = 〈ε(p)〉p∈P (X) for every X ∈ Γ;

(E3) G = 〈ε(p)〉p∈P (Γ).

We call the group G the codomain of ε and we denote it by cod(ε). When G is
commutative, we say that the embedding ε is abelian. In particular, if G is the
additive group of a vector space V defined over a given division ring K and ε(p) is a
linear subspace of V for every p ∈ P (Γ), then we say that ε is a K-linear embedding

of Γ in V (also a linear embedding, for short). In this case we slightly change the
previous conventions, calling V the codomain of ε, thus writing cod(ε) = V and
ε : Γ → V .

Proposition 2.1. A geometry Γ admits an embedding if and only if it satisfies the

following property:

(PS) (Point-Set Property) for any two elements X, Y ∈ Γ, if P (X) ⊆ P (Y ), then

X ≤ Y .

Furthermore, if Γ admits an embedding, then it also admits a linear embedding.

Proof. Let ε : Γ → G be an embedding and suppose P (X) ⊆ P (Y ). Then
ε(X) ≤ ε(Y ) by (E2), whence X ≤ Y by (E1). Conversely, assume (PS). Given a
K-vector space V of dimension dim(V ) = |P (Γ)| and a basis B = {bp}p∈P (Γ) of V ,
define ε(X) := 〈bp〉p∈P (X) for every X ∈ Γ. The function ε defined in this way is a
linear embedding of Γ in V . �
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Note that (PS) forces Γ to be irreducible. Accordingly, henceforth, only irreducible
geometries will be considered.

2.2 Projective and locally projective embeddings

Lax and full projective embeddings. Suppose that Γ has rank at least 2 and let
ε : Γ → V be a K-linear embedding. Following Van Maldeghem [37], if dim(ε(p)) =
1 for all points p ∈ P (Γ) and dim(ε(L)) = 2 for every line L of Γ, then we say that
ε is a lax projective embedding defined over K (a lax K-projective embedding, for
short) and we write ε : Γ → PG(V ). If furthermore ε(L) = ∪p∈P (L)ε(p) for every
line L of Γ, then we say that ε is full.

Note 2.1. Only geometries of rank 2 are considered by Van Maldeghem [37] and
Ronan [30]. So, if we strictly followed [37] or [30], we should consider the point-line
system (P (Γ), L(Γ)) of Γ rather than Γ itself. Clearly, every projective embedding of
Γ as defined above induces a projective embedding of (P (Γ), L(Γ)), but the converse
is false in general (see Subsection 2.5, Example 2.1).

Locally projective embeddings. Still with Γ of rank at least 2, let ε : Γ → G
be an embedding of Γ and let K be a division ring. Without assuming that ε is
linear, suppose that two families {V (p)}p∈P (Γ) and {V (L)}L∈L(Γ) of K-vector spaces
are given such that:

(P1) for every point p, dim(V (p)) = 1 and ε(p) is the additive group of V (p);

(P2) for every line L, dim(V (L)) = 2 and ε(L) is the additive group of V (L);

(P3) for every point p and every line L, if p < L then V (p) is a subspace of V (L).

Then we say that ε is a lax locally K-projective embedding. If furthermore,

(P4) for every line L, {V (p)}p∈P (L) is the family of all 1-dimensional linear subspaces
of V (L),

then we say that ε is a full locally K-projective embedding. Note that, in view of
(E1) and (P2), if Γ admits a lax locally K-projective embedding ε, then no two
distinct lines of Γ have more than one point in common. If furthermore ε is full,
then all lines of Γ have |K| + 1 points.

Note 2.2. Representations as considered by Ivanov [16] are just full locally GF (p)-
projective embeddings, for a prime p. In particular, representations groups as defined
by Ivanov an Shpectorov [18] are full locally GF (2)-projective embeddings.

2.3 Expansions

Given an embedding ε : Γ → G of a poset geometry Γ in a group G, we define
a poset-geometry Exp(ε) of rank n + 1 as follows: The points of Exp(ε) are the
elements of G and, for i = 1, 2, ..., n, the i-elements of Exp(ε) are the right cosets
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g·ε(X), for g ∈ G and X ∈ Γ with t(X) = i − 1. The incidence relation is the
natural one, namely inclusion between cosets and between elements and cosets. We
call Exp(ε) the expansion of Γ to G via ε, also the expansion of ε, for short.

It is not difficult to check that Exp(ε) is indeed a poset-geometry. In particular,
the residual connectedness of Exp(ε) follows from conditions (E2) and (E3) and
from the residual connectedness of Γ (see Propositions 2.2, 2.3 and 2.4, to be stated
below).

Proposition 2.2. Given two distinct points a, b ∈ G of Exp(ε), let d(a, b) be their

distance in the collinearity graph of Exp(ε). Then,

(1) d(a, b) is the minimal length of an m-tuple (p1, p2, ..., pm) of points of Γ such

that b−1a ∈ ε(p1)ε(p2)...ε(pm);

(2) if d(a, b) = 1, then the number of lines of Exp(ε) containing both a and b is

equal to the number of points p ∈ P (Γ) for which b−1a ∈ ε(p).

Proof. (2) is obvious and (1) follows from this remark: A sequence a0, a1, ..., am

of points of Exp(ε) is a path in the collinearity graph of Exp(ε) if and only if, for
every i = 1, 2, ..., m, a−1

i−1ai ∈ ε(pi) for some pi ∈ P (Γ). �

Proposition 2.3. For every g ∈ G, the function sending g·ε(X) to X ∈ Γ is an

isomorphism from ResExp(ε)(g) to Γ. �

For every element X ∈ Γ of type t(X) > 0, the mapping ε induces an embedding
εX of Res−Γ (X) in ε(X). The following are obvious:

Proposition 2.4. Regarding ε(X) as an element of Exp(ε), its lower residue

Res−Exp(ε)(ε(X)) is the expansion Exp(εX) of Res−Γ (X) to the group ε(X) via εX.

Furthermore, for any g ∈ G, the left multiplication by g−1 induces an isomorphism

from Res−Exp(ε)(g·ε(X)) to Exp(εX). �

Proposition 2.5. The group G, in its action on itself by left multiplication, is a

group of automorphisms of Exp(ε), regular on the set of points of Exp(ε). Further-

more, for every X ∈ Γ of type t(X) > 0 and every g ∈ G, the stabilizer gε(X)g−1 of

g·ε(X) in G acts transitively (whence, regularly) on the set of points of g·ε(X). �

Clearly, the Point-Set Property (PS) holds in Exp(ε).

Proposition 2.6. Let ∆ be a poset-geometry of rank at least 2, satisfying the Point-

Set Property (PS). Then the following are equivalent:

(1) there exist a poset-geometry Γ, a group G and an embedding ε : Γ → G such

that ∆ ∼= Exp(ε);

(2) Aut(∆) admits a subgroup G acting regularly on P (∆) and such that, for every

U ∈ ∆, the stabilizer GU of U in G acts transitively on P (U).
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Proof. By Proposition 2.5, (1) implies (2). Conversely, assume (2). Pick a point
p ∈ P (∆). For any two elements U, W of Res(p), we have U ≤ W if and only
if GU ≤ GW . (Recall that, according to (2), GU and GW act regularly on P (U)
and P (W ).) So, the mapping ε from Γ := Res(p) to the subgroup lattice of G
sending U ∈ Res(p) to ε(U) := GU , satisfies (E1). We shall prove that ε satisfies
(E3). Let g ∈ G. By connectedness, the collinearity graph of ∆ contains a path
x0 = p, x1, x2, ..., xk = g(p). For i = 1, 2, ..., k, let Li be a line through xi−1 and
xi. By the transitivity of GLi

on P (Li), there exists an element fi ∈ GLi
sending

xi−1 to xi. Put gi := fi...f2f1, M1 := L1 and Mi := f−1
i−1(Li) for i = 2, 3, ..., k. Then

fi ∈ fi−1GMi
f−1

i−1, gk = g by the regularity of G and, by an easy inductive argument,
gh ∈ 〈GMi

〉hi=1 for h = 1, 2, ...k. Therefore g = gk ∈ 〈GMi
〉ki=1 = 〈ε(Mi)〉

k
i=1. So, ε

satisfies (E3). Property (E2) can be proved in a similar way. Thus, ε is an embedding
of Γ in G. Obviously, ∆ ∼= Exp(ε). �

Note 2.3. A very general construction of expansion is given by Buekenhout, Huy-
brechts and Pasini [6] in the context of an axiomatic theory of parallelisms. Our
expansions are a special case of that construction.

2.4 Morphisms

Given two embeddings ε : Γ → G and η : Γ → F , a morphism from ε to η is a
homomorphism f : G → F such that, for every X ∈ Γ, the restriction of f to ε(X)
is an isomorphism to η(X). If furthermore f : G → F is an isomorphism, then we
say that f is an isomorphism from ε to η. If a morphism exists from ε to η, then
we say that η is a homorphic image of ε (also, an image of ε, for short) and that ε
dominates η. If there is an isomorphism from ε to η, then we say that ε and η are
isomorphic and we write ε ∼= η.

Given a morphism f : ε → η, for every X ∈ Γ the homomorphism f maps the
right cosets of ε(X) in G onto right cosets of η(X) in F . Accordingly, f defines a
morphism Exp(f) : Exp(ε) → Exp(η).

Proposition 2.7. The morphism Exp(f) is a covering. Furthermore, Exp(f) is an

isomorphism if and only if f is an isomorphism. �

The coverings of expansions that, modulo isomorphisms, arise from morphisms
of embeddings are characterized in the following proposition.

Proposition 2.8. Let ϕ : ∆̂ → ∆ := Exp(ε) be a covering. Then the following are

equivalent:

(1) there exists an embedding ε̂ : Γ → Ĝ and a morphism of embeddings f : ε̂ → ε

such that ∆̂ ∼= Exp(ε̂) and ϕ = Exp(f)α for an isomorphism α : ∆̂
∼=→ Exp(ε̂);

(2) the group of deck transformations of ϕ acts transitively (whence, regularly) on

each of the fibers of ϕ and G, regarded as a subgroup of Aut(∆), lifts through

ϕ to a subgroup of Aut(∆̂).
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Proof. Assume (1) and let K := Ker(f). Then K is the group of deck transfor-
mations of ϕ and acts regularly on each of the fibers of ϕ. Furthermore Ĝ, regarded
as a subgroup of Aut(∆̂), is the lifting of G to ∆̂ through ϕ. So, (2) holds.

Conversely, assume (2). Let Ĝ be the lifting of G to ∆̂ and D(ϕ) be the group of
deck transformations of ϕ. We recall that Ĝ contains D(ϕ) as a normal subgroup.
As G is regular on P (∆) (Proposition 2.5) and, by assumption, D(ϕ) acts regularly
on each of the fibers of ϕ, Ĝ acts regularly on P (∆̂). Pick a ∈ ϕ−1(1), where 1 ∈ G
is regarded as a point of ∆. For every element Û ∈ Res∆̂(a) and every point x < Û ,

let g be the element of G (≤ Aut(∆)) sending 1 to ϕ(x) and stabilizing U := ϕ(Û).
(Such an element g exists and is unique, by Proposition 2.5.) Let ĝ be a lifting
of g. Modulo replacing ĝ with δĝ for a suitable δ ∈ D(ϕ), we may assume that
ĝ(a) = x. Hence ĝ stabilizes Û . (Note that, as Property (PS) is preserved when
taking covers and (PS) holds in ∆, ∆̂ satisfies (PS).) We can now apply Proposition
2.6, thus obtaining that the function ε̂ sending Û > a to its stabilizer in Ĝ is an
embedding of Γ ∼= Res

∆̂
(a) in Ĝ. Let f be the projection of Ĝ onto G. Then

Ker(f) = D(ϕ). However, D(ϕ) acts semi-regularly on the set of elements of ∆̂.
Hence Ker(f)∩ ε̂(Û) = 1. Therefore, f is a morphism from ε̂ to ε and ϕ = Exp(f)α,

where α : ∆̂
∼=→ Exp(ε̂) sends ĝ(Û) to the coset ĝĜ

Û
of the stabilizer Ĝ

Û
of Û in Ĝ,

for ĝ ∈ Ĝ and Û > a. �

The linear case. Suppose now that ε and η are K-linear for a given division ring
K. Let V := cod(ε) and W := cod(η). According to the previous definition, a
morphism from ε to η is a homomorphism f from the additive group of V to the
additive group of W such that f(ε(X)) = η(X) and Ker(f) ∩ ε(X) = 0 for every
X ∈ Γ. Note that f need not be a semilinear mapping of vector spaces. If f is
a semilinear (in particular, linear) mapping from V to W , then we say that the
morphism f : ε → η is linear. If ε ∼= η and there exists a linear isomorphism from ε
to η, then we say that ε and η are linearly isomorphic and we write ε ∼=lin η.

Note 2.4. We warn that, usually, only linear morphisms are considered in the
literature on projective embeddings.

2.5 Extensions of embeddings

Assume that Γ has rank n ≥ 2 and, for an integer m = 2, 3, ..., n − 1, let Σ be the
{0, 1, ..., m− 1}-truncation of Γ. Suppose that Σ admits an embedding ε0 : Σ → G.
For every X ∈ Γ, put ε(X) := 〈ε0(p)〉p∈P (X). By (E2) on ε0, if t(X) < m then
ε(X) = ε0(X). So, ε is an embedding if and only if it satisfies (E1). (Indeed ε
satisfies (E2) by definition, (E3) holds since it holds for ε0 and (E1) forces ε to be
injective and ε(X) to be different from G.) Clearly, if ε is an embedding, then it is
the unique embedding of Γ inducing ε0 on Σ. We call it the extension of ε0 to Γ and
we say that ε0 extends to Γ.

Examples of non-extensible embeddings are very easy to construct: Assume that
Γ has rank 3, put Σ := (P (Γ), L(Γ)) and suppose that no two lines of Σ have the
same points. Then Σ is embeddable, by Proposition 2.1. However, Property (PS)
might fail to hold in Γ. If that is the case, then Γ is not embeddable and, therefore,
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none of the embeddings of Σ extends to Γ. But even if Γ satisfied (PS), some of the
embeddings of Σ might not extend to Γ, as in the following example.

Example 2.1. Given an ovoid O of PG(3, q), let Γ be the geometry of points, pairs
and triples of points of O, with the natural incidence relation. A lax projective
embedding ε0 of (P (Γ), L(Γ)) in PG(3, q) is implicit in this definition but, when
q > 2, ε0 does not extend to Γ. Indeed, any two triples contained in the same plane
of PG(3, q) span that plane, and this contradicts (E1).

2.6 Reducible embeddings

Given an embedding ε : Γ → G, we put Rad(ε) := ∩p∈P (Γ)ε(p) and denote by Ker(ε)
the maximal normal subgroup of G contained in Rad(ε). We say that ε is reducible

if Ker(ε) 6= 1. If ε is reducible and K ≤ Ker(ε) is normal in G, then the mapping
ε/K sending every element X ∈ Γ to ε(X)/K is an embedding of Γ in G/K. We
call ε/K the quotient of ε by K.

Suppose that Rad(ε) 6= 1 and let R be a non-trivial subgroup of Rad(ε). Then
{gR}g∈G is a partition of the set of points of Exp(ε) and, for every element U ∈
Exp(ε) of type t(U) > 0, U/R := {gR}g∈U is a partition of U . We define a geometry
Exp(ε)/R, which we call the quotient of Exp(ε) over R, by taking the right cosets
of R as points and the partitions U/R as elements of positive type.

The function πR sending every point of Exp(ε) to the right coset of R containing
it and every U ∈ Exp(ε) of positive type to U/R, is a morphism of geometries from
Exp(ε) to Exp(ε)/R. The morphism πR is not a covering but, for every point g of
Exp(ε), it induces an isomorphism from ResExp(ε)(g) to the residue of gR = πR(g)
in Exp(ε)/R. Clearly, if R � G, then Exp(ε)/R ∼= Exp(ε/R).

Proposition 2.9. Let ε and η be two embeddings of Γ and, for R ≤ Rad(ε) and

S ≤ Rad(η), suppose that |R| = |S| and Exp(ε)/R ∼= Exp(η)/S. Then Exp(ε) ∼=
Exp(η).

Proof. Given an isomorphism α from Exp(ε)/R to Exp(η)/S, for every right
coset C of R, choose a bijection αC from C to the right coset α(C) of S and, for
every g ∈ C, put β(g) = αC(g). Then β is an isomorphism from Exp(ε) to Exp(η).

�

Example 2.2 (Parabolic systems). Suppose that Γ is a simplex and that ε(p1)∩
ε(p2) = Rad(ε) for any two distinct points p1, p2 ∈ P (Γ). Then P := (ε(p))p∈P (Γ) is
a parabolic system over the set of types I := P (Γ) and the group B := Rad(ε) is its
Borel subgroup. Exp(ε)/B is the chamber system associated to P, equipped with
its cells.

2.7 Embeddings induced on point-residues

Given an embedding ε : Γ → G of a geometry Γ of rank at least 2 and a point p ∈
P (Γ), we put Gp := 〈ε(L)〉L∈L(p) and, for X ∈ Res(p), ε(X)p := 〈ε(L)〉L∈L(p)∩L(X).



594 A. Pasini

Proposition 2.10. Suppose that Res(p) satisfies the Point-Set Property (PS), name-

ly: For any two elements X, Y > p, if L(p) ∩ L(X) ⊆ L(p) ∩ L(Y ), then X ≤ Y .

Then the mapping εp sending X > p to ε(X)p is an embedding of Res(p) in Gp and

ε(p) ≤ Rad(εp).

Proof. For X, Y ∈ Res(p), let εp(X) ≤ εp(Y ). Then εp(L) ≤ εp(Y ) for every line
L with p < L ≤ X. Hence ε(L) = ε(L)p ≤ ε(Y )p ≤ ε(Y ). Therefore L ≤ Y by (E1)
on ε. So, all lines of X on p are incident to Y . Consequently, X ≤ Y by (PS) in
Res(p). �

We call εp the embedding of Res(p) induced by ε. When ε(p) � Gp, we can also
consider the quotient εp/ε(p), which we call the reduction of εp. (Note that, however,
εp/ε(p) might still be reducible.)

Note 2.5. The quotient Exp(εp)/ε(p) is a shrinking of Exp(ε), in the meaning of
Pasini and Wiedorn [28] (see also Stroth and Wiedorn [34]).

2.8 The rank 1 case

A geometry of rank 1 is just a set S of size at least two. An embedding of such a

geometry in a group G is a bijection ε : S
1-1
→ P from S to a collection P of proper

non-trivial subgroups of G such that G = 〈P 〉P∈P and no member of P contains any
other member of P. We recall that P is said to be a partition of G if {P \ {1}}P∈P

is a partition of the set G \ {1}. The statements gathered in the next proposition
immediately follow from Proposition 2.2.

Proposition 2.11. With S, ε and P as above, the geometry Exp(ε) is a partial

linear space if and only if the members of P have trivial mutual intersections. It is

a 2-design if and only if ∪P∈PP = G. Hence Exp(ε) is a linear space if and only if

P is a partition of G. �

When P is a partition of G, Exp(ε) is a translation André structure [1]. In
particular, when any two distinct members of P commute and generate G, then
Exp(ε) is an affine translation plane. In the very special case where P is the collection
of 1-dimensional subspaces of V (2, K), then Exp(ε) = AG(2, K).

When any two distinct members of P intersect trivially, commute and generate
G, then Exp(ε) is a net. In particular, for |P| = 2 we get a grid. When G = ⊕P∈PP ,
then Exp(ε) is a Hamming cube (a grid when |P| = 2). When G is the additive
group of a vector space V and P a collection of proper non-trivial subspaces of V
such that V = 〈P〉, the embedding ε is linear. Some examples of this situation are
described below. In each of them V = V (n, q) for a prime power q and all members
of P have the same dimension d.

Example 2.3. Let n = 3, d = 1 and suppose that P, regarded as a set of points of
PG(V ) = PG(2, q), is a maximal arc K of given degree. Then Exp(ε) is the partial
geometry T ∗

2 (K). In particular, when q is even and K is a hyperoval O, we get the
generalized quadrangle T ∗

2 (O).
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Example 2.4. Again, n = 3 and d = 1, but now we assume that P forms an oval O
in PG(2, q). Then Exp(ε) is the subgeometry of the generalized quadrangle T2(O)
far from the distinguished point ∞ of T2(O) (notation as in Payne and Thas [29,
Chapter 3]). Similarly, if d = 1 but n = 4 and P forms an ovoid O in PG(3, q), then
Exp(ε) is the subgeometry of T3(O) far from ∞.

Example 2.5. Let n = 3, d = 2 and suppose that P is a dual oval of PG(2, q).
Then Exp(ε) is the dual of a Laguerre plane. When q is even, we may also consider
the case where P forms a dual hyperoval of PG(2, q). In that case, Exp(ε) is the
dual of a special Laguerre plane.

Example 2.6. Let q = 2 and suppose that P is a (d−1)-dimensional dual hyperoval
of PG(n − 1, 2) (Del Fra [13], Yoshiara [40]). Then Exp(ε) is a semibiplane.

3 Hulls

3.1 The abstract hull of an embedding

Let ε : Γ → G be an embedding. Denoting by U(ε) the universal completion of the
amalgam A(ε) := {ε(X)}X∈Γ (see Ivanov [17, 1.3]), the composition ε̃ of ε with the
natural embeddings of the groups ε(X) in U(ε) is an embedding of Γ in U(ε) and
the canonical projection of U(ε) onto G induces a morphism πε : ε̃ → ε. By well
known properties of universal completions one easily obtains the following:

Proposition 3.1. For every embedding η of Γ and every morphism f : η → ε, there

exists a unique morphism g : ε̃ → η such that fg = πε. �

In view of the above, we call ε̃ the abstract hull of ε (also the hull of ε, for short),
and πε the canonical projection of ε̃ onto ε. Clearly, ε̃ is its own hull. The uniqueness
claim of Proposition 3.1 implies the following:

Proposition 3.2. All morphisms from ε̃ to itself are automorphism and all mor-

phisms from ε̃ to ε are compositions of πε with automorphisms of ε̃. �

Theorem 3.3. The geometry Exp(ε̃) is the universal cover of Exp(ε) and, regarded

U(ε) and G as subgroups of Aut(Exp(ε̃)) and Aut(Exp(ε)), the group U(ε) is the

lifting of G to Exp(ε̃).

Proof. Let ∆̃ be the universal cover of ∆ := Exp(ε). Given a covering ϕ : ∆̃ → ∆,
the group D(ϕ) of deck transformations of ϕ acts regularly on each of the fibers
of ϕ. Moreover G, regarded as a subgroup of Aut(∆), lifts to a subgroup G̃ of
Aut(∆̃) containing D(ϕ) as a normal subgroup and such that G = G̃/D(ϕ) (see
[26, Theorem 12.13]). So, (2) of Proposition 2.8 holds. Consequently, ∆̃ ∼= Exp(ε̂)
for a suitable embedding ε̂ : Γ → G̃ and ε is an image of ε̂. By the universal
properties of ε̃, there exists a morphism f̂ : ε̃ → ε̂. Hence we also have a covering
Exp(f̂) : Exp(ε̃) → Exp(ε̂) (Proposition 2.7). However, Exp(ε̂) ∼= ∆̃ is simply
connected. Therefore Exp(f̂) is an isomorphism and Exp(ε̃) ∼= ∆̃. By the second
claim of Proposition 2.7 then f̂ is an isomorphism and so ε̃ ∼= ε̂. �
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Borrowing a word from Tits [35, Chapter 8], we say that an embedding is abstractly

dominant (also dominant, for short) if it is its own hull.

Corollary 3.4. An embedding ε is dominant if and only if its expansion Exp(ε) is

simply connected.

Example 3.1. Let Γ = PG(V ) for some (n + 1)-dimensional K-vector space V
and ε be the identity embedding, sending every proper non-trivial subspace of V to
itself. Then Exp(ε) = AG(n + 1, K). As affine geometries are simply connected,
the additive group of V is the universal completion of the amalgam of proper linear
subspaces of V , regarded as additive groups.

Example 3.2. For an integer n > 1, let Γ be an n-dimensional simplex with vertices
p0, p1, ..., pn and let G be a commutative group splitting as a direct sum G = ⊕n

i=0Gi

of non-trivial subgroups G0, G1, ..., Gn. For every proper nonempty subset J of
I := {0, 1, ..., n}, put GJ := ⊕j∈JGj and ε({pj}j∈J) := GJ . Thus we get an abelian
embedding ε : Γ → G. As any two subgroups Gi, Gj commute as subgroups of
Gi,j, G is the universal completion of the amalgam {GJ}∅6=J⊂I . So, G = U(ε), ε is
abstractly dominant and Exp(ε) is simply connected. In fact, Exp(ε) is 2-simply
connected; indeed, it is a non-thick building of type Cn+1:

• • • ..... • •

Example 3.3. Let Γ be the Coxeter complex of type Cn, regarded as the system of
cliques of a complete n-partite graph with 2n vertices p1,0, ..., pn,0, p1,1, ..., pn,1 and n
classes {pi,0, pi,1} of size 2. Given a basis B := {bi,0}

n
i=1 ∪ {bi,1}

n
i=1 of V := V (2n, 2),

for every proper nonempty subset J of {1, ..., n} and every mapping f : J → {0, 1}
put ε({pj,f(j)}j∈J) := 〈bj,f(j)〉j∈J . Thus, we get a lax projective embedding ε : Γ →
PG(V ). The expansion Exp(ε) is a thin geometry belonging to the affine diagram
C̃n:

• • • ..... • • •

The residues of the maximal elements of Exp(ε) are Coxeter complexes of type Cn,
obtained as affine expansions of the embeddings induced by ε on maximal elements of
Γ (compare Example 3.2). Hence the universal cover of Exp(ε) is a Coxeter complex
and, by Theorem 3.3, U(ε) can be recovered as a subgroup of the Coxeter group of
type C̃n. Explicitly, given an orthonormal basis {ui}

n
i=1 of the n-dimensional real

vector space V (n,R) for i = 1, 2, ..., n let τi be the translation of AG(n,R) sending
every vector x ∈ V (n,R) to x + ui and let ri be the orthogonal reflexion of V (n,R)
with the hyperplane u⊥

i as the axis. Then, regarded the points of Exp(ε) as vectors
of V (n,R) with integral coordinates, U(ε) = 〈τiri, τ

−1
i ri〉

n
i=1.

Example 3.4. Suppose that Γ has rank 1. Then U(ε) is the free product of the
groups ε(p) (p ∈ P (Γ)) and Exp(ε̃) is a building of affine type Ã1.

3.2 Abelian and linear hulls

Given an abelian embedding ε : Γ → G, the quotient Uab(ε) := U(ε)/U(ε)′ of U(ε)
by its commutator subgroup U(ε)′ is the universal abelian completion of A(ε) :=
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{ε(X)}X∈Γ. The composition ε̃ab of ε with the natural embeddings of the groups
ε(X) in Uab(ε) is an embedding of Γ in Uab(ε). Properties similar to those stated
in Propositions 3.1 and 3.2 hold for ε̃ab, too (but now in the category of abelian
embeddings). We call ε̃ab the abelian hull of ε. When ε̃ab = ε we say that ε is
commutatively dominant.

Suppose furthermore that ε is K-linear for a given division ring K and let V =
cod(ε). Then all groups ε(X) ∈ A(ε) are equipped with a structure of a K-vector
space. We inductively define a sequence A0(K), A1(K), A2(K), ... of subgroups of
Uab(ε), as follows: A0(K) := 0 and An+1(K) is the subgroup of Uab(ε) generated
by the sums

∑m
i=1 xi (additive notation, as Uab(ε) is abelian) where x1 ∈ ε(p1),

x2 ∈ ε(p2),..., xm ∈ ε(pm), p1, p2, ..., pm ∈ P (Γ) and
∑m

i=1 kxi ∈ An(K) for some non-
zero scalar k ∈ K∗, the products kxi being computed in the vector spaces ε(pi), the
latters being regarded as subgroups of Uab(ε) (as we can do, since ε(X)∩U(ε)′ = 1
for every X ∈ Γ). We put A(K) := ∪∞

n=0An(K).

Lemma 3.5. We have ε(X) ∩ A(K) = 0 for every X ∈ Γ. Furthermore, for

every scalar k ∈ K and any choice of points p1, ..., pm of Γ and elements x1 ∈
ε(p1), ..., xm ∈ ε(pm), if

∑m
i=1 xi ∈ A(K) then

∑m
i=1 kxi ∈ A(K).

Proof. A(K) is contained in the kernel of the canonical projection of Uab(ε)
onto the additive group of V . This remark proves the first claim of the Lemma.
Turning to the second claim, let

∑m
i=1 xi ∈ A(K). Put yi := kxi for i = 1, 2, ..., m

and y :=
∑m

i=1 yi. If y = 0 there is nothing to prove. Suppose y 6= 0. Hence
k 6= 0. As

∑m
i=1 xi ∈ A(K), we have

∑m
i=1 xi ∈ An(K) for some n. Therefore,∑m

i=1 k−1yi =
∑m

i=1 xi ∈ An(K). Hence
∑m

i=1 yi ∈ An+1(K). �

By the second claim of Lemma 3.5, a K-vector space structure can be defined on
the factor group Uab(ε)/A(K) by putting

k · (
m∑

i=1

xi + A(K)) :=
m∑

i=1

kxi + A(K)

for k ∈ K, p1, p2, ..., pm ∈ P (Γ) and elements x1 ∈ ε(p1), x2 ∈ ε(p2),..., xm ∈ ε(pm).
We shall denote that vector space by Ulin(ε). By the first claim of Lemma 3.5, the
composition of ε̃ab with the projection of Uab(ε) onto Ulin(ε) = Uab(ε)/A(K) is an
embedding. Clearly, that embedding is K-linear and it is universal in the category
of K-linear embeddings of Γ and linear morphisms. We denote it by ε̃lin and we call
it the linear hull of ε. If ε = ε̃lin, then we say that ε is linearly dominant.

Clearly, if ε is projective, then ε̃lin is also projective. In particular, when Γ
has rank 2 and ε is a full projective embedding, then ε̃lin is just the hull of ε as
constructed by Ronan [30, Proposition 3].

Proposition 3.6. If K is a finite prime field, then Ulin(ε) = Uab(ε).

Proof. Given p1, p2, ..., pm ∈ P (Γ) and x1 ∈ ε(p1), x2 ∈ ε(p2), ...xm ∈ ε(pm)
with

∑m
i=1 xi 6= 0, the scalars k ∈ K such that

∑m
i=1 kxi = 0 form a subgroup

K(x1, x2, ..., xm) of the additive group of K, but 1 6∈ K(x1, x2, ..., xm). On the other
hand, the trivial subgroup is the only proper subgroup of the additive group of a fi-
nite prime field. Therefore, when K is finite and has prime order, K(x1, x2, ..., xm) =
0. In that case, A1(K) = 0, hence A(K) = 0. �
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Note 3.1. Linearly dominant projective embeddings are often called relatively uni-

versal in the literature (see Shult [33], for instance).

3.3 Universal embeddings

We say that two embeddings ε and η of a given geometry Γ are locally isomorphic,
and we write ε ∼ η, if the amalgams A(ε) and A(η) are isomorphic, namely: there

exists a family α = {αX}X∈Γ of isomorphisms αX : ε(X)
∼=→ η(X) such that, if

X ≤ Y , then αX is the restriction of αY to ε(X).
Clearly, every isomorphism from ε to η is a local isomorphism. Every isomor-

phism from the abstract hull ε̃ of ε to the abstract hull η̃ of η also induces a local
isomorphism from ε to η. Conversely, if α = {αX}X∈Γ is a local isomorphism from
ε to η, then α lifts to an isomorphism α̃ from the universal completion U(ε) of the
amalgam A(ε) to the universal completion U(η) of A(η). For every X ∈ Γ, α̃ in-
duces αX from ε(X) (≤ U(ε)) to η(X) (≤ U(η)). Hence α̃ is an isomorphism from
ε̃ to η̃.

Assume furthermore that both ε and η are abelian. Then α̃ maps the commutator
subgroup of U(ε) onto the commutator subgroup of U(η), whence it induces an
isomorphism α̃ab from the abelian hull ε̃ab of ε to the abelian hull η̃ab of η. We
summarize the above as follows:

Theorem 3.7. For two embeddings ε and η of Γ, we have ε ∼ η if and only if ε̃ ∼= η̃.

Furthermore, if both ε and η are abelian, then ε ∼ η if and only if ε̃ab
∼= η̃ab. �

It is clear from the proof of Proposition 2.1 that the relation ∼ admits infinitely
many classes; that is, every geometry admits infinitely many embeddings with pair-
wise non-isomorphic hulls. However, assume we are interested in a particular cate-
gory C of embeddings of a given geometry Γ. By Theorem 3.7, Obj(C) is contained
in a class of ∼ if and only if all objects of C have the same hull, which we call the
hull of C.

Suppose that Obj(C) is contained in a class of ∼ and let ε̃ be the hull of C. Sup-
pose furthermore that ε̃ admits an image ε̃C belonging to C and satisfying ‘universal’
properties like those of Propositions 3.1 and 3.2, but referred to objects and mor-
phisms of C. Then we call ε̃C the C-universal embedding of Γ. Clearly, if ε̃ ∈ Obj(C),
then ε̃ = ε̃C.

Still assuming that Obj(C) is contained in a class of ∼, suppose that all embed-
dings ε ∈ Obj(C) are abelian. Then, in view of Theorem 3.7, all objects of C have
the same abelian hull ε̃ab, which we call the abelian hull of C. If ε̃ab ∈ Obj(C), then
ε̃ab is the C-universal embedding.

Turning to K-linear embeddings for a given division ring K, we consider the
following refinement of the relations ∼: Given two K-linear embeddings ε and η
of Γ, we say that an isomorphism α = {αX}X∈Γ from A(ε) to A(η) is linear if

αX : ε(X)
∼=→ η(X) is a semilinear isomorphism of K-vector spaces, for every X ∈ Γ.

We say that ε and η are locally linearly isomorphic and we write ε ∼lin η if A(ε)
and A(η) are linearly isomorphic.

Theorem 3.8. For two K-linear embeddings ε and η of Γ, we have ε ∼lin η if and

only if ε̃lin
∼=lin η̃lin.



Embeddings and Expansions 599

Proof. We only sketch a proof of the ‘only if’ claim. Given a linear isomor-

phism α from A(ε) to A(η), we consider its lifting α̃ab : Uab(ε)
∼=→ Uab(η). For

θ = ε or η, we consider the subgroups An(K) and A(K) of Uab(θ) defined in Sub-
section 3.2, but now we denote them by Aθ

n(K) and Aθ(K). By induction on n,
one can prove that α̃ab(Aε

n(K)) = Aη
n(K) for every n. Hence α̃ab(Aε(K)) = Aη(K).

Consequently, α̃ab induces an isomorphism α̃lin from Ulin(ε) = Uab(ε)/Aε(K) to
Ulin(η) = Uab(η)/Aη(K). Regarding Ulin(ε) and Ulin(η) as K-vector spaces, α̃lin is
a semilinear mapping. �

By Theorem 3.8, if all embeddings ε ∈ Obj(C) are K-linear and Obj(C) is contained
in a class of ∼lin, then all objects of C have the same linear hull ε̃lin. We call it the
linear hull of C. Clearly, if ε̃lin ∈ Obj(C) and all morphism of C are linear, then ε̃lin

is the C-universal embedding of Γ.

Universal representation groups. Suppose that Γ has rank 2, that all lines of Γ
have exactly three points and no two of them have more than one point in common.
Let R be the class of all locally GF (2)-projective embeddings of Γ, namely the
embeddings ε : Γ → G such that:

(R1) ε(p) has order 2 for every point p ∈ P (Γ) and,

(R2) ε(L) is elementary abelian of order 4, for every line L ∈ L(Γ).

Suppose that R 6= ∅, namely Γ admits an embedding ε satisfying (R1) and (R2).
Clearly, all members of R are mutually locally isomorphic and the abstract hull ε̃ of ε
belongs to R. So, regarded R as a full subcategory of the category of embeddings of
Γ, ε̃ is the R-universal embedding of Γ. It is called the universal representation of Γ
and its codomain is the universal representation group of Γ (Ivanov and Shpectorov
[18]).

Suppose furthermore that R contains an abelian member ε and let Rab be the
subclass of R formed by the abelian members of R. The abelian hull ε̃ab of ε belongs
to Rab, hence it is Rab-universal. We call it the universal abelian representation

of Γ. Its codomain is called the universal representation module of Γ (Ivanov and
Shpectorov [18]). All members of Rab are full projective embeddings and ε̃ab is the
absolutely universal projective embedding of Γ (see the next paragraph).

Absolutely universal projective embeddings. Given a division ring K and
a geometry Γ admitting a full K-projective embedding, let PK be the category of
full K-projective embeddings of Γ, with linear morphisms between them. Suppose
that Obj(PK) is contained in a class of ∼lin. Then PK admits the linear hull ε̃lin

and ε̃lin ∈ Obj(PK). So, ε̃lin is PK-universal. The embedding ε̃lin is called the
absolutely universal K-projective embedding of Γ (Shult [33]); also, the universal or
the absolute K-projective embedding of Γ, for short (Kasikova and Shult [20]). So,

Proposition 3.9. A geometry Γ admits the absolutely universal K-projective em-

bedding if and only if all full K-projective embeddings of Γ belong to the same class

of ∼lin. �

A similar result can be stated for the category of lax K-projective embeddings.
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4 Hulls and extensions

In this section Γ has rank at least 3, ε : Γ → G is an embedding and ε0 is the
embedding induced by ε on the point-line system Σ := (P (Γ), L(Γ)) of Γ. Following
the notation of Section 3, we denote by ε̃ and ε̃0 the hulls of ε and ε0 and, for every
X ∈ Γ we put

ε̂(X) := 〈ε̃0(p)〉p∈P (X) (≤ U(ε0)).

Thus, we obtain a mapping ε̂ from Γ to the subgroup lattice of U(ε0) (compare Sub-
section 2.5). As we shall prove in a few lines, ε̃0 extends to Γ and ε̂ is its extension.
As the embedding induced by ε̃ on Σ dominates ε0, that induced embedding is an
image of ε̃0. Therefore, U(ε) is a homomorphic image of U(ε0). We denote by π0

the canonical projection of U(ε0) onto U(ε). Clearly, π0(ε̂(X)) = ε̃(X) for every
X ∈ Γ, but the restriction of π0 to ε̂(X) might be non-injective when t(X) > 1.

Theorem 4.1. All the following hold:

(1) ε̃0 extends to Γ and ε̂ is the extension of ε̃0 to Γ;

(2) the embedding ε̂ is dominant;

(3) π0 induces a 2-covering Exp(π0) : Exp(ε̂) → Exp(ε̃), which sends g to π0(g)
and gε̂(X) to π0(g)·ε̃(X), for g ∈ U(ε0) and X ∈ Γ.

Proof. As π0 maps ε̂(X) onto ε̃(X) and ε̃ : Γ → U(ε) is an embedding, ε̂ satisfies
(E1), whence it is the extension of ε̃0. Claim (1) is proved. As U(ε0) is the codomain
of ε̂, it is a homomorphic image of U(ε̂). On the other hand, U(ε̂) is a homomorphic
image of U(ε0), as it contains a copy of the amalgam {ε0(X)}X∈Σ of which U(ε0)
is the universal completion. Therefore, U(ε̂) = U(ε0). Hence ε̂ is dominant, as
claimed in (2). Claim (3) follows from the fact that Ker(π0) ∩ ε̂(L) = 1 for every
line L ∈ L(Γ). �

Corollary 4.2. Both the following hold:

(1) If ε0 is dominant, then ε = ε̃ = ε̂.

(2) Exp(ε̂) is simply connected and is a 2-cover of Exp(ε).

Proof. (1) follows from Theorem 4.1(2). The first claim of (2) follows from
Theorem 4.1(2) and Corollary 3.4. The second claim of (2) follows from Theorem
4.1(3) and the fact that Exp(ε̃) is a cover of Exp(ε). �

When ε is abelian (in particular, linear), results similar to the above hold for the
abelian (linear) hull of ε0, but we are not going to prove them here. Instead, we
make some comments on Theorem 4.1.

When π0 is not injective, Exp(ε̂) is a proper 2-cover of Exp(ε̃). In this case
Exp(ε̃) is not 2-simply connected, although it is simply connected. On the other
hand, Exp(ε̂) is simply connected by Corollary 3.4 and (2) of Theorem 4.1, but
it might not be 2-simply connected. So, in general, we cannot claim that Exp(ε̂),
which is a 2-cover of Exp(ε), is the universal 2-cover of Exp(ε). We will give a
counterexample later (Example 4.1).



Embeddings and Expansions 601

Theorem 4.3. Suppose that Γ is 2-simply connected. Then Exp(ε̂) is the universal

2-cover of Exp(ε).

Proof. Let ϕ : ∆ → Exp(ε̂) be the universal 2-covering of Exp(ε̂) and Tr(∆) be
the {0, 1, 2}-truncation of ∆. As Γ is 2-simply connected and the point-residues of
Exp(ε̂) are isomorphic to Γ, ϕ induces isomorphisms between the point-residues of ∆
and the corresponding point-residues of Exp(ε̂). Hence it induces a covering Tr(ϕ)
from Tr(∆) to the {0, 1, 2}-truncation of Exp(ε̂). The latter is equal to Exp(ε̃0),
which is simply connected by Theorem 3.3. Hence Tr(ϕ) is an isomorphism.

Suppose P (X) ⊆ P (Y ) for two elements X, Y ∈ ∆. Then P (ϕ(X)) ⊆ P (ϕ(Y )),
hence ϕ(X) ≤ ϕ(Y ) by the Point-Set Property (PS) in Exp(ε̂). However, given
p ∈ P (X), ϕ induces an isomorphism from Res∆(p) to the residue of ϕ(p) in Exp(ε̂).
Therefore, X ≤ Y , as p < X, Y and ϕ(X) ≤ ϕ(Y ). Thus, ∆ inherits the Point-Set
Property (PS) from Exp(ε̂). That property and the fact that Tr(ϕ) is an isomor-
phism force ϕ to be an isomorphism. So, Exp(ε̂) is 2-simply connected. As Exp(ε̂)
is a 2-cover of Exp(ε), it is the universal 2-cover of Exp(ε). �

Theorem 4.4. For X ∈ Γ of type t(X) ≥ 1, let εX be the embedding induced by

ε on Res−Γ (X) as in Proposition 2.4. Suppose that Exp(εX) is simply connected for

every X ∈ Γ of type t(X) > 1. Then ε̃ = ε̂.

Proof. We only need to prove that Ker(π0)∩ ε̂(X) = 1 for every X ∈ Γ. We shall
argue by induction on t(X). When t(X) ≤ 1, there is nothing to prove. Suppose
t(X) > 1. By the inductive hypothesis, Ker(π0)∩ ε̂(Y ) = 1 for every Y < X. Hence
ε̂(X) is a homomorphic image of U(εX). However, as Exp(εX) is simply connected
by assumption, Corollary 3.4 implies that U(εX) = ε(X). Hence Ker(π0)∩ε̂(X) = 1.

�

Corollary 4.5. Suppose that the embedding ε is abelian (in particular, linear) and

Exp(εX) is simply connected for every X ∈ Γ of type t(X) > 1. Then the abelian

(respectively, linear) hull of ε is the extension of the abelian (linear) hull of ε0.

Proof. By Theorem 4.4, U(ε) = U(ε0). Hence Uab(ε) = Uab(ε0) = U/U ′, where
U := U(ε) = U(ε0). Similarly, in the linear case, Ulin(ε) = Ulin(ε0) = (U/U ′)/A(K).

�

Example 4.1. Let Γ be the quotient of the dodecahedron by the antipodality re-
lation and ε : Γ → V be the ‘free’ GF (2)-linear embedding of Γ in V := V (10, 2),
constructed as in the proof of Proposition 2.1. (Note that, as all lines of Γ have
exactly two points, ε is laxly projective.) As any two points of Γ belong to some 2-
element (namely, a pentagon), the amalgam {ε(X)}X∈Γ entails the information that
(ε(p1), ε(p2)) = 1 for any two points p1, p2 ∈ P (Γ). Hence U(ε) is commutative.
Consequently, U(ε) = V . That is, ε is dominant.

On the other hand, the point-line system Σ of Γ is isomorphic to the Petersen
graph and the information (ε(p1), ε(p2)) = 1 is saved by the amalgam {ε(X)}X∈Σ

only when p1 and p2 are collinear. So U(ε0) is the Coxeter group with Coxeter
diagram isomorphic to the Petersen graph. Thus, U(ε0) is infinite. Hence Exp(ε̂) is
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a proper 2-cover of Exp(ε̃) (= Exp(ε)). The geometry Exp(ε̂) is thin and belongs
to the following non-spherical Coxeter diagram:

• • • •
5

By a well-known theorem of Tits [36], the universal 2-cover of Exp(ε̂) is a Coxeter
complex. However, Exp(ε̂) itself is not a Coxeter complex. Indeed, its point-residues
are isomorphic to Γ, which is a proper quotient of a Coxeter complex. Hence Exp(ε̂)
is not 2-simply connected.

5 Embeddings of projective geometries

5.1 Full and sharp embeddings

Throughout this subsection Γ = PG(n, K1) for a given division ring K1 and an
integer n > 1 and ε : Γ → G is a given embedding. We say that the embedding ε is
full if ε(L) = ∪p∈P (L)ε(p) for every line L ∈ L(Γ).

Lemma 5.1. Suppose that ε is full. Then

(∗) G = ∪p∈P (Γ)ε(p) and ε(X) = ∪p∈P (X)ε(p) for every X ∈ Γ.

Proof. Let g = g1g2...gm for gi ∈ ε(pi), p ∈ P (Γ) for i = 1, 2, ..., m. We shall
prove, by induction on m, that g ∈ ε(p) for some point p. When m = 1 there is
nothing to prove. Let m > 1. As ε is full, we have gm−1gm = g′ ∈ ε(p′) for a suitable
point p′ of the line through pm−1 and pm. Then g = g1....gm−2g

′ and the conclusion
follows by the inductive hypothesis. �

Theorem 5.2. If ε is full, then it is dominant.

Proof. If ε is full, then the hull ε̃ of ε is also full. Hence (∗) of Lemma 5.1 holds
for ε̃. Accordingly, any two points of Exp(ε̃) are collinear (compare the second claim
of Proposition 2.11). Therefore, Exp(ε̃) does not admit any proper quotient. By
Theorem 3.3, Exp(ε̃) = Exp(ε). Hence ε̃ = ε. �

If ε(p1) ∩ ε(p2) = 1 for any two points p1, p2 ∈ P (Γ), then we say that ε is sharp.
Clearly, ε is full and sharp if and only if {ε(p)}p∈P (L) is a partition of the group ε(L),
for every line L. (See Subsection 2.8 for the definition of partitions of groups.) The
next Lemma easily follows from the third claim of Proposition 2.11.

Lemma 5.3. If ε is full and sharp, then Exp(ε) belongs to the following diagram:

•
L

• • ..... • • �

Theorem 5.4. Suppose that K1 is finite, ε is full and sharp and there exist an

integer k > 1 such that |ε(p)| = k for every point p ∈ P (Γ). Then k = q := |K1|
and G is the additive group of V (n + 1, q).
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Proof. By Lemma 5.3 and a well known theorem of Doyen and Hubaut [14], we
have one of the following cases:

(1) k = q and Exp(ε) ∼= AG(n + 1, q);
(2) k = q + 1 and Exp(ε) ∼= PG(n + 1, q);
(3) n = 3 and q = k2.

In case (1), Exp(ε) ∼= AG(n+1, q) and G acts on Exp(ε) as the translation group of
AG(n+1, q). In this case, we are done. Assume (2). Then, for every line L ∈ L(Γ),
we have |ε(L)| = q2 + q +1, since the plane ε(L) of Exp(ε) has q2 + q +1 points and
the points of that plane are the elements of ε(L). Hence ε(L) has no subgroup of
order q + 1, contrary to the assumption that k = q + 1. So, case (2) is impossible.

Finally, let (3) hold. Then every plane of Exp(ε) has (q+1)(k−1)+1 = (q+1)k−q
points. Therefore, |ε(L)| = (q + 1)k − q = k(k2 − k + 1) for every line L ∈ L(Γ). As
(k, k2 − k + 1) = 1, the group ε(L) contains some elements of order coprime to k.
However, as ε is full, the order of every element of ε(L) is a divisor of k. Again, we
have reached a contradiction. qed

The hypothesis that all subgroups ε(p) have the same order is crucial for Theorem
5.4, as shown by the following example.

Example 5.1. Let K be the elementary abelian group of order 3n for some n > 1
and ι be the automorphism of K inverting all elements of K. Put H = 〈ι〉 and
G = KH (so, G is a Frobenius group with kernel K and complement H). Define
a geometry Γ as follows: for every i = 0, 1, ..., n − 1, the i-elements of Γ are the
subgroups of K of order 3i+1 and all subgroups of G of order 3i2. The incidence
relation is the natural one, namely inclusion between subgroups. It is not difficult
to check that Γ ∼= PG(n, 3).

By definition, Γ is a subposet of the poset S(G) of subgroups of G. The inclusion
mapping ε : Γ ↪→ S(G) is an embedding and {ε(p)}p∈P (X) is a partition of ε(X), for
every element X ∈ Γ of positive type. However, the conclusions of Theorem 5.4 fail
to hold. In fact, the groups ε(p) (p ∈ P (Γ)) have different orders, namely 2 and 3.

Theorem 5.5. For a division ring K, let ε be a K-linear embedding of Γ =
PG(n, K1) in a K-vector space V . Suppose that ε is full and sharp. Then K1

is an extension of K. Furthermore,

(∗∗) 〈ε(p)〉p∈S = ∪p∈Sε(p) = ⊕p∈P ε(p)

for every (possibly improper) subspace S of Γ and every independent spanning set P
of S.

Proof. We shall firstly prove the following:

(1) 〈ε(p)〉p∈S = ⊕p∈P ε(p)

for every subspace S of Γ and every independent spanning set P of S. By Lemma
5.1, for S and P as above we have

(2) 〈ε(p)〉p∈S = ∪p∈Sε(p) = 〈ε(p)〉p∈P .

Suppose v1 + v2 + ...+ vm = 0 for v1 ∈ ε(p1), v2 ∈ ε(p2),..., vm ∈ ε(pm) and mutually
distinct points p1, p2, ..., pm ∈ P . However, v2+...+vm ∈ ε(p) for some point p of the
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subspace S ′ spanned by p2, p3, ..., pm, by (2) applied to S ′. So, v1 = −v2 − ...− vm ∈
ε(p). Therefore, and since ε is sharp, either v1 = 0 or p1 = p′. However, p1 6∈ S ′

since P is independent. Hence v1 = 0. Similarly, vi = 0 for every i = 2, 3, ..., m. So,
(1) is proved.

Let now p0, p1, p2 be three non-collinear points of Γ and S the plane of Γ spanned
by them. For i = 0, 1, 2, pick a non-zero vector vi ∈ ε(pi). By (1), the vectors
v0, v1, v2 are independent in V := cod(ε). Let S0 be the plane of PG(V ) spanned
by them. By Lemma 5.1 and since ε is K-linear, every point x of S0 is contained
in ε(η(x)) for a unique point η(x) of Γ. The function η defined in this way sends
collinear triples of points of S0 onto collinear triples of points of Γ. So, η is an
embedding of S0 in the plane S of Γ spanned by p0, p1, p2. As K coordinatizes S0

whereas S is coordinatized by K1, the latter is an extension of K. �

Corollary 5.6. With K, V and ε : Γ = PG(n, K1) → V as in the hypotheses of

Theorem 5.5, suppose furthermore that dim(ε(p)) = d for a given positive integer d
and every point p ∈ P (Γ). Then |K1 : K| = d, dim(V ) = (n + 1)d and ε is induced

by the natural inclusion of V (n + 1, K1) in V ((n + 1)d, K) ∼= V .

Proof. The equality dim(V ) = (n+1)d follows from (∗∗) of Theorem 5.5 applied
to an independent spanning set P of Γ = PG(n, K1). Again by (∗∗) of Theorem
5.5, but applied to planes of Γ, and repeating the argument exploited in the second
part of the proof of Theorem 5.5, we obtain the rest of the statement. �

The hypothesis that dim(ε(p)) does not depend on the choice of the point p ∈ P (Γ)
cannot be removed from Corollary 5.6, as shown by the following example.

Example 5.2. Given Γ, K, V , ε and d as in Corollary 5.6, let V0 be a 1-dimensional
linear subspace of V . Put η(X) := (ε(X) + V0)/V0, for every element X ∈ Γ. The
mapping η defined in this way is a full, sharp K-linear embedding of Γ in V/V0.
However, dim(η(p)) = d or d − 1 according to whether V0 ∩ ε(p) = 0 or V0 ≤ ε(p).

5.2 Lax locally projective embeddings

With Γ = PG(n, K1) as in the previous subsection, suppose now that the embedding
ε : Γ → G is laxly locally K-projective for a given division ring K, possibly different
from K1. We do not assume ε to be full. We neither assume it is projective. If ε is
laxly K-projective, namely G is the additive group of a K-vector space V and ε(p)
is a subspace of V for every p ∈ P (Γ), then we say that ε is globally projective, to
avoid any confusion.

Lemma 5.7. The group G is abelian.

Proof. As ε is locally projective, the groups ε(p) and ε(L) are abelian for every
point p and every line L of Γ. Therefore, as the points of Γ are mutually collinear,
the groups ε(p) mutually commute. By (E3), G is abelian. �

As G is abelian, we will use the additive notation for products of elements of G. We
define A(K) as in Subsection 3.2, but in G instead of Uab(ε). Clearly, if ε is globally
projective, then A(K) = 0. The converse also holds true:
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Theorem 5.8. Let A(K) = 0. Then ε is globally projective, its codomain is (n+1)-
dimensional as a K-vector space and K is an extension of K1. Furthermore, ε is

abstractly dominant. Consequently, Exp(ε) is simply connected.

Proof. In the sequel, for p ∈ P (Γ) and L ∈ L(Γ), V (p) and V (L) are as in
(P1) and (P2) of Subsection 2.2. As A(K) = 0, a K-vector space structure V can
be defined on G by putting k · (

∑m
i=1 vi) :=

∑m
i=1 kvi for every k ∈ K and every

choice of points p1, p2, ..., pm and elements v1 ∈ ε(p1), v2 ∈ ε(p2),..., vm ∈ ε(pm).
(Compare Subsection 3.2; needless to say, the products kvi are done in the vector
spaces V (pi).) Accordingly, V (p) and V (L) are subspaces of V for every p ∈ P (Γ)
and every L ∈ L(Γ). Hence ε is K-linear. Moreover, it is K-projective.

We shall now prove that, for every element X ∈ Γ, the subspace ε(X) < V
has dimension t(X) + 1. When t(X) ≤ 1, the claim holds by definition of lax
projective embedding. We go on by induction on i = t(X). Suppose i > 1. Then,
given an element Y < X of type i − 1 and a point p0 ∈ P (X) \ P (Y ), we have
P (X) = ∪p∈P (Y )P ([p, p0]), where [p, p0] stands for the line of Γ through p and p0.
Hence ε(X) = 〈ε(Y ) ∪ ε(p0)〉. As dim(ε(Y )) = i (by the inductive hypothesis) and
ε(p0) 6≤ ε(Y ) (because p0 6≤ Y ), we get dim(ε(X)) = i + 1. By a similar argument,
we obtain that dim(V ) = n + 1. So, the image ε(Γ) of Γ by ε is an n-dimensional
subgeometry of PG(V ) and K is an extension of the underlying division ring Kε of
ε(Γ). However, Γ ∼= ε(Γ). Hence Kε = K1.

Finally we prove that ε is abstractly dominant. Given a basis {pi}
n
i=0 of the

projective space Γ, we have V = ⊕n
i=0V (pi) and, denoted by Li,j the line of Γ through

pi and pj, V is the universal completion of the subamalgam {V (pi)}
n
i=0∪{V (Li,j)}i<j

of {ε(X)}X∈Γ. Therefore, U(ε) = V , namely ε is dominant. By Corollary 3.4, Exp(ε)
is simply connected. �

Corollary 5.9. Assume that K is finite of prime order. Then K1 = K, the

codomain V of ε is an (n +1)-dimensional K-vector space and ε is an isomorphism

from Γ to PG(V ).

Proof. We have A(K) = 0, by same argument used in the proof of Proposition
3.6. Hence the conclusions of Theorem 5.8 hold. In particular, V is an n-dimensional
vector space and K is an extension of K1. However, K is prime. Hence K1 = K
and ε(Γ) = PG(V ). �

Corollary 5.10. Suppose that ε is full. Then the same conclusions as in Corollary

5.9 hold.

Proof. We first prove that A(K) = 0. Clearly, A(K) = 0 if and only if A1(K) =
0. The equality A1(K) = 0 is equivalent to the following: For every non-zero
scalar k ∈ K∗, for any points p1, p2, ..., pm and elements v1 ∈ ε(p1), v2 ∈ ε(p2),...,
vm ∈ ε(pm), if

(1)
m∑

i=1

kvi = 0 for some k 6= 0,

then

(2)
m∑

i=1

vi = 0.
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We shall prove the implication (1) ⇒ (2) by induction on m. When m = 1 there
is nothing to prove and when m = 2 the implication easily follows from (P1), (P2)
and (P3). Let m > 2. As ε is full, the element v := vm−1 + vm belongs to ε(p) for a
point p of the line of Γ through pm−1 and pm. By (P2) and (P3), kv = kvm−1 +kvm.
Hence (1) can we rewritten as follows:

(3) kv1 + ... + kvm−2 + kv = 0

By the inductive hypothesis on m, (3) implies v1 + ... + vm−2 + v = 0, which is the
same as (2). Thus, A1(K) = 0. Consequently, A(K) = 0 and the conclusions of
Theorem 5.8 hold. In particular, V := cod(ε) is an (n+1)-dimensional vector space
and K is an extension of K1. As ε is full, K1 = K. Hence ε(Γ) = PG(V ). �

The hypothesis that A(K) = 0 cannot be dropped from Theorem 5.8, as the follow-
ing example shows.

Example 5.3. Let Γ = PG(2, 2), regarded as a subgeometry of PG(2, 8). The
points and the lines of Γ are certain 1- and 2-dimensional linear subspaces of V :=
V (3, 8), but there exist 31 points of PG(2, 8) that are not contained in any line of
Γ. Let P be one of those points and v a nonzero vector of the 1-dimensional linear
space P . Put V0 := {0, v} and G := V/V0 (a quotient of additive groups). For every
subspace X of V corresponding to an element X of Γ, put ε(X) := (X ⊕ V0)/V0.
Then ε is a lax locally GF (8)-projective embedding of Γ in G, but G is not a
GF (8)-vector space. In fact, A(K) = P/V0 6= 0.

5.3 Extensions

Still with Γ = PG(n, K1), let ε0 : Σ → G be an embedding of the point-line system
Σ := (P (Γ), L(Γ)) of Γ.

Theorem 5.11. If ε0 is full and sharp, then it extends to Γ.

Proof. Property (∗) of Lemma 5.1 holds for ε0 and for the restriction ε0,X of
ε0 to the point-line system of Res(X), for every element X ∈ Γ of type t(X) > 1.
Given p1 ∈ P (Γ) and X ∈ Γ of type t(X) > 1, suppose that ε0(p1) ≤ 〈ε0(p)〉p∈P (X).
By (∗) of Lemma 5.1, ε0(p1) ∩ ε0(p2) 6= 1 for some p2 ∈ P (X). However, ε0 is also
assumed to be sharp. Hence p1 = p2. Therefore, p1 < X. Thus, we have proved
that the function sending X to 〈ε0(p)〉p∈P (X) satisfies (E1). That is, ε0 extends to
Γ. �

Both the hypotheses of Theorem 5.11, namely fullness and sharpness, are essential
for ε0 to be extensible to Γ, as shown by the following counterexamples.

Example 5.4. With Γ = PG(3, 2), let η : Γ → PG(3, 16) be a lax projective
embedding as in Theorem 5.8. Given a basis {pi}

3
i=0 of PG(3, 2), for i = 0, 1, 2, 3 pick

a non-zero vector bi ∈ η(pi) so that to form a basis {bi}
3
i=0 of V := V (4, 16). Let ω be

a primitive element of GF (16) over GF (2), put v :=
∑3

i=0 ωibi and let V0 be the span
of v in V . It is not difficult to see that η(X)∩V0 = 0 for any plane X of Γ. Therefore,
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if we put ε0(p) = (η(p) + V0)/V0 and ε0(L) = (η(p) + V0)/V0 for p ∈ P (Γ) and
L ∈ L(Γ), we get a sharp but non-full lax projective embedding ε0 of (P (Γ), L(Γ))
in PG(V/V0). However, ε0 does not extend to Γ. Indeed, ε0(p1) ≤ 〈ε0(p)〉p∈P (X) for
every point p and every plane X of Γ.

Example 5.5. Let Γ = PG(3, 16) and M4(2) be the vector space of (4×4)-matrices
over GF (2). A matrix M ∈ M4(2) can be regarded as a vector of V (4, 16) in two
ways, as the 4-tuple of either its rows or its columns, each row or column of M
corresponding to an element of the extension GF (16) of GF (2). Accordingly, we
get two full and sharp GF (2)-linear embeddings ε1 and ε2 of Γ in M4(2): in the
embedding ε1 (respectively, ε2) the coordinates of a vector of V (4, 16) correspond
to the rows (columns) of a matrix of M4(2). Chosen a point p0 ∈ P (Γ), we put
ε0(p) := (ε1(p)+ε2(p0))/ε2(p0) for p ∈ P (Γ) and ε0(L) := (ε1(L)+ε2(p0))/ε2(p0) for
L ∈ L(Γ). Then ε0 is a GF (2)-linear embedding of (P (Γ), L(Γ)) in the factor space
V = M4(2)/ε2(p0). However, ε0 does not extend to Γ. Indeed, let X be a plane of
Γ such that ε1(X)∩ ε2(p0) = 0. (It is not difficult to see that Γ admits some planes
with that property.) Then 〈ε0(p)〉p∈P (X) = V , which could not be if ε0 extended to
Γ.

The embedding ε0 is full but non-sharp. Indeed, given a non-zero matrix M0 ∈
ε2(p0), a point p1 ∈ P (Γ) such that M0 6∈ ε1(p1) and a matrix M1 ∈ ε1(p1)\ε2(p0), let
p2 be the point of Γ such that M0 +M1 ∈ ε1(p2). Then p1 6= p2 but ε0(p1)∩ε0(p2) ⊇
M1 + ε2(p0).

5.4 An application to locally projective geometries

In this subsection Γ is a poset-geometry of rank n > 2 satisfying the Point-Set prop-
erty (PS) and Γ is locally projective, namely Res(A) is a non-degenerate projective
geometry for every (n − 1)-element A of Γ. We assume that the point-line system
Σ = (P (Γ), L(Γ)) of Γ admits an embedding ε0 : Σ → G and we denote the hull of
ε0 by ε̃0. For X ∈ Γ we put

ε(X) := 〈ε0(p)〉p∈P (X) ≤ G, ε̂(X) := 〈ε̃0(p)〉p∈P (X) ≤ U(ε0)

(we recall that U(ε0) is the codomain of ε̃0), but we do not assume that ε0 extends
do Γ. By Theorem 4.1, if ε0 extends to Γ then ε̃0 also extends to Γ and ε and
ε̂ are the extensions of ε0 and ε̃0. As in Subsection 5.1, we say that ε0 is full if
∪p∈P (L)ε0(p) = ε0(L) for every L ∈ L(Γ) and that ε0 is sharp if ε0(p1) ∩ ε0(p2) = 1
for any two distinct points p1, p2, no matter if they are collinear or not. The next
theorem generalizes a remark of Ivanov and Shpectorov [18, 2.7.2(iv)]:

Theorem 5.12. Suppose that ε0 is sharp and full. Then ε0 extends to Γ and ε̂ is

the hull of ε.

Proof. The extensibility of ε0 can be proved as in Theorem 5.11. So, ε is an
embedding. Theorem 5.2 implies that the embedding εX , induced by ε on Res(X),
is dominant for every X ∈ Γ of type t(X) > 1. Hence, by Theorem 4.4, ε̂ is the hull
of ε. qed
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6 Tensor embeddings of PG(n − 1, K)

In this section K is a given commutative field and Γ := PG(n− 1, K) for an integer
n > 2. We shall describe two sharp but non-full linear embeddings of Γ, which are
related to the subgeometry far from a point of a dual polar space of symplectic or
hermitian type. As we will see later (Theorem 9.3), they are also involved in the
natural projective embeddings of the dual polar spaces of those two types.

6.1 Plain tensor embeddings

Given two copies V1 and V2 of V0 := V (n, K) and isomorphisms α and β from V0 to
V1 and V2, we put

εα⊗β(X) := 〈vα ⊗ vβ〉v∈X (< V1 ⊗ V0)

for every linear subspace X of V0, and

V := εα⊗β(V0) = 〈vα ⊗ vβ〉v∈V0
.

Then εα⊗β is a K-linear embedding of Γ = PG(V0) in V . We call it the plain tensor

embedding of Γ (also tensor embedding, for short). Note that, if {ui}
m
i=1 is a basis

of a subspace X of V0, then

{uα
i ⊗ uβ

i }
m
i=1 ∪ {uα

i ⊗ uβ
j + uα

j ⊗ uβ
i }1≤i<j≤m

is a basis of εα⊗β(X). Therefore, dim(εα⊗β(p)) = 1 for every point p of Γ, dim(εα(L))

= 3 for every line L ∈ L(Γ) and dim(V ) =
(

n+1
2

)
.

Clearly, the isomorphism class of εα⊗β does not depend on the particular choice
of the isomorphisms α and β. Accordingly, we will omit any record of α and β in
our notation, writing ε⊗ for εα⊗β.

The embedding ε⊗ is sharp, but it is neither full nor laxly projective. In fact,
for every line L ∈ L(Γ), the subspaces ε⊗(p) (p ∈ P (L)), regarded as points of
PG(V ), form a conic O in the plane ε⊗(L). According to Example 2.4 and recalling
that T2(O) ∼= Q4(K) when O is a conic (Payne and Thas [29, Chapter 3]), the
lower residues of the planes of Exp(ε⊗) are isomorphic to the subgeometry of the
generalized quadrangle Q4(K), far from a point of Q4(K). Denoted by ∆ the dual
of the symplectic variety W2n−1(K) of rank n defined over K and given a point S0

of ∆ (namely, a maximal singular subspace of W2n−1(K)), the quads of Far∆(S0)
have just the same structure as the planes of Exp(ε⊗). In fact:

Lemma 6.1. Exp(ε⊗) ∼= Far∆(S0).

Proof. The natural isomorphism from V1 ⊗ V2 to the vectors space of square
K-matrices of order n maps V onto the subspace Sym(n, K) of symmetric matrices.
Let U be the unipotent radical of the stabilizer of S0 in Aut(Π). The group U
is isomorphic to the additive group of Sym(n, K). So, regarding V as an additive

group, we get an isomorphism ϕ : U
∼=→ V . Given a point S of Φ := Far∆(S0) and an

element X ∈ ResΦ(S) ∼= Γ, the stabilizer UX of X in U acts transitively on the set
of points of X and the function sending X to ε−1(ϕ(UX)) is an isomorphism form
ResΦ(S) to Γ. Hence Exp(ε⊗) ∼= Far∆(S0). �
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Theorem 6.2. If either n > 3 or K 6= GF (2), then ε⊗ is abstractly dominant. If

n = 3 and K = GF (2), then the codomain U(ε⊗) of the abstract hull of ε⊗ is an

elementary abelian group of order 27 (= 2|V |).

Proof. Suppose ∆ is not the dual of W3(2). Then Far∆(S0) is simply connected
(see [27]). Hence ε⊗ is dominant, by Lemma 6.1 and Corollary 3.4. When n = 3
and K = GF (2), the conclusion follows by combining Lemma 6.1 with a result of
Baumeister, Meixner and Pasini [3, Theorem 16]. qed

Denoted by ε⊗,0 the restriction of ε⊗ to the point-line system of Γ, by Theorems 4.3,
4.4, 6.2 and Baumeister, Meixner and Pasini [3, Theorem 16] we get the following:

Theorem 6.3. If K 6= GF (2), then ε⊗,0 is abstractly dominant. If K = GF (2),
then U(ε⊗,0) is elementary abelian of order 22n−1.

Note 6.1. The set ε⊗(P (Γ)) is the Veronesaen quadric of V . In view of this, we
might also call ε⊗ the Veronesean embedding.

6.2 Twisted tensor embeddings

With V0, V1, V2, α and β as in the previous subsection, let σ be an involutory
automorphism of K and Kσ := {t ∈ K | tσ = t}. Given a basis {ui}

n
i=1 of V0, let γ

be the semilinear transformation sending
∑n

i=1 tiui to
∑n

i=1 tσi uβ
i . (Note that uγ

i = uβ
i

for i = 1, ..., n.) Let fσ
α,β : V0 → V1 ⊗ V2 be the mapping sending v ∈ V0 to vα ⊗ vγ.

So, for every family {vi}
m
i=1 of vectors of V0 we have

fσ
α,β(

∑

i

tivi) =
∑

i

t1+σ
i (vα

i ⊗ vγ
i ) +

∑

i6=j

tit
σ
j (vα

i ⊗ vγ
j )

=
∑

i

aivi,i +
∑

i<j

bi,j(vi,j + vj,i) +
∑

i<j

ci,j(ωvi,j + ωσvj,i)

where vi,j := vα
i ⊗ vγ

j , ω is a given element of K \ Kσ, ai := t1+σ
i (∈ Kσ) and

bi,j, ci,j ∈ Kσ are such that tit
σ
j = bi,j + ωci,j. We also regard V1 ⊗ V2 as a 2n2-

dimensional Kσ-vector space W . Accordingly, fσ
α,β is a (non-linear) mapping from

V0 to W . Using the symbol 〈...〉 only to denote spans in W , 〈 Im(fσ
α,β)〉 is the

subspace V of W spanned by the independent set

{uα
i ⊗ uγ

i }
n
i=1 ∪ {uα

i ⊗ uγ
j + uα

j ⊗ uγ
i }i<j ∪ {ω(uα

i ⊗ uγ
j ) + ωσ(uα

j ⊗ uγ
i }i<j.

Thus, dim(V ) =
(

n+1
2

)
+

(
n

2

)
= n2. We define εσ

α⊗β by the following clause:

εσ
α⊗β(X) := 〈fα,γ(v)〉v∈X

for X a non-trivial proper linear subspace of V0 and where, according to the above
conventions, spans are done in V . Then εσ

α⊗β is a Kσ-linear embedding of Γ in V .
We call it a twisted tensor embedding. As in the case of plain tensor embeddings,
we may freely change α and β without changing the isomorphism type of εσ

α⊗β.
Accordingly, we will write εσ

⊗ instead of εσ
α⊗β.
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We have dim(εσ
⊗(X)) = m2 for every (m − 1)-element X of Γ. In particular,

dim(εσ
⊗(p)) = 1 and dim(εσ

⊗(L)) = 4 for every point p ∈ P (Γ) and every line
L ∈ L(Γ). Therefore, εσ

⊗ is sharp, but it is neither full nor laxily projective. In fact,
for every line L ∈ L(Γ), the set O := {εσ

⊗(p)}p∈P (L), regarded as a set of points of
PG(V ), is a classical ovoid of the 3-space εσ

⊗(L) of PG(V ). According to Example
2.4 and recalling that T3(O) ∼= Q−

5 (Kσ) when the ovoid O is classical (Payne and
Thas [29, Chapter 3]), the lower residues of the planes of Exp(εσ

⊗) are isomorphic to
the subgeometry of the generalized quadrangle Q−

5 (Kσ) far from a point of Q−
5 (Kσ).

Like in the plain case, denoted by ∆ the dual of the hermitian variety H2n−1(K) of
rank n defined over K and given a point S0 of ∆, we have:

Lemma 6.4. Exp(εσ
⊗) ∼= Far∆(S0).

Proof. Let H+ (respectively, H−) be the additive group of σ-hermitian (σ-anti-
hermitian) square matrices of order n with entries in K. Clearly, V ∼= H+ and the
unipotent radical U of the stabilizer of S0 in Aut(∆) is isomorphic to H−. However,
there exists a scalar λ ∈ K∗ such that, for every square matrix M , we have M ∈ H+

if and only if Mλ ∈ H−. Hence V ∼= U and the conclusion follows as in the proof of
Lemma 6.1. �

Theorem 6.5. If either n > 3 or K 6= GF (4), then εσ
⊗ is abstractly dominant. If

n = 3 and K = GF (4), then U(εσ
⊗) is an elementary abelian group of order 211

(which is 4 times the order of V ).

Proof. When ∆ is not the dual of H5(4), Far∆(S0) is simply connected [27],
whence εσ

⊗ is dominant by Lemma 6.4 and Corollary 3.4. When n = 3 and K =
GF (4) the conclusion follows from [27, Theorem 1.6]. �

Denoted by εσ
⊗,0 the restriction of εσ

⊗ to the point-line system of Γ, theorems 4.3,
4.4 and 6.5 imply the following:

Theorem 6.6. If K 6= GF (4), then εσ
⊗,0 is abstractly dominant. �

Problem 1. Compute the hull of εσ
⊗ when n > 3 and K = GF (4).

7 Hulls of embeddings of polar spaces

In this section Γ is a classical polar space of rank n ≥ 2 and ε : Γ → PG(V ) is a full
projective embedding of Γ. So, for a given antiautomorphism σ of the underlying
division ring K of V and a suitable e ∈ K with eeσ = 1, ε(Γ) is the family of linear
subspaces of V that are totally isotropic for a non-degenerate trace-valued reflexive
(σ, e)-sequilinear form or totally singular for a non-singular (σ, e)-pseudoquadratic
form. Following Tits [35], we set

(1) Kσ,e := {t − tσe}t∈K .

We also put
(2) K̂σ,e := {t ∈ K | t + tσe = 0}.

A few well known properties of Kσ,e and K̂σ,e are gathered in the next lemma:
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Lemma 7.1. Both Kσ,e and K̂σ,e are subgroups of the additive group of K and

Kσ,e ≤ K̂σ,e. If σ = idK and e = 1, then Kσ,e = 0. If σ = idK but e = −1, then

K̂σ,e = K. If the center Z(K) of K contains an element a such that a + aσ 6= 0,

then Kσ,e = K̂σ,e. In particular, if ch(K) 6= 2 then Kσ,e = K̂σ,e. �

The universal cover ∆̃ of the expansion ∆ := Exp(ε) is the geometry FarΠ(p0),
for a point p0 of a polar space Π of rank n+1 (Cuypers and Pasini [11]). Explicitly,
∆ = ∆̃/E0 where E0 is the subgroup of Aut(∆̃) induced by the stabilizer in Aut(Π)
of all points of Π collinear with p0. For every point p of ∆, the canonical projection
π : ∆̃ → ∆̃/E0 = ∆, being a covering, induces an isomorphism from Res∆̃(p)
to Res∆(π(p)). On the other hand, Res∆(π(p)) ∼= Γ, as ∆ = Exp(ε), whereas
Res∆̃(p) = ResΠ(p) ∼= ResΠ(p0). Hence ResΠ(p0) ∼= Γ. Given an isomorphism α
from ResΠ(p0) to Γ, let W := V ⊕ V (2, K). There exists a projective embedding
εα : Π → PG(W ) such that, denoted by W0 the span of ∪X∈ResΠ(p0)εα(X) in W
and by εα,0 the embedding of ResΠ(p0) in W0 induced by εα (see Subsection 2.7),
we have

(3) εα,0/P0
∼=lin εα, where P0 := Ker(εα,0) = εα(p0).

Furthermore, we can always choose εα in such a way that the isomorphism (3) is
realized by a linear trasformation from W0/P0 to V . Assuming to have chosen εα in
that way, we have the following:

Lemma 7.2. The image εα(Π) of Π consists of the linear subspaces of W that are to-

tally isotropic or totally singular for a given (σ, e)-sequilinear or (σ, e)-pseudoquadra-
tic form, for the same σ and e as above. Denoted by ⊥ the orthogonality relation

defined on W by that form or, in the pseudoquadratic case, by its sesquilinearization,

we have W0 = P⊥
0 . �

Thus, W0 is a hyperplane of W and ∆̃ is a subgeometry of the affine geometry
AG(W0), the latter being regarded as the complement of W0 in PG(W ). By (3),
Exp(εα,0) ∼= Exp(εα). However, Exp(εα) = Exp(ε) = ∆. So, the isomorphism
(3) induces an isomorphism Exp(α) from ∆ to Exp(εα,0). The composition πα :=
Exp(α)π of the canonical projection π : ∆̃ → ∆̃/E0 = ∆ with Exp(α) is a covering
from ∆̃ to Exp(εα,0). The elements of Exp(εα,0) can be regarded as subspaces
of PG(W ) containing P0 but not contained in W0. The covering πα sends every
element X ∈ ∆̃ to the subspace 〈εα(X), P0〉 of PG(W ). The group E0, regarded as
a subgroup of Aut(PG(W )), is the stabilizer of εα(Π) in the group of the elations
of PG(W ) with center P0 and axis W0. So,

Lemma 7.3. The group E0 stabilizes every line L of PG(W ) through P0 and, when

L 6⊆ W0, it acts regularly on the set of points of L ∩ εα(Π) different from P0. �

By Theorem 3.3 we also obtain the following:

Lemma 7.4. ∆̃ is the expansion Exp(ε̃) of the abstract hull ε̃ of ε. �

Theorem 7.5. The codomain U(ε) of ε̃ is isomorphic to the unipotent radical of

the stabilizer of p0 in Aut(Π).
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Proof. By Lemma 7.4 and Proposition 2.5, U(ε) can be recovered as a subgroup
G̃ of Aut(∆̃), regular on P (∆̃). Furthermore, ∆ is a subgeometry of AG(V ) and
the natural projection of ∆̃ onto ∆ maps G̃ onto the additive group of V , acting
on AG(V ) as the translation group. Turning to W0 and P0, the quotient W0/P0

is a hyperplane of the vector space W/P0. Let E be the group of the elations
of PG(W/P0) that have W0/P0 as the axis. As every element of E induces an
automorphism on Exp(εα,0) and ∆̃ is simply connected, every element of E lifts
via πα to an automorphism of Π stabilizing P0. This shows that G̃/E0

∼= E. The
conclusion follows. �

Corollary 7.6. The group U(ε) is an extension of the additive group of V by E0.

In its turn, E0 is isomorphic to either K̂σ,e or Kσ,e, according to whether the form

that defines ε(Γ) in V is sesquilinear or pseudoquadratic.

Proof. The group E is isomorphic to the additive group of W0/P0 and W0/P0
∼=

V . As G̃/E0
∼= E (notation as in the proof of Theorem 7.5), the first claim of the

Corollary follows. The second claim follows from Lemmas 7.2 and 7.3. �

The next theorem generalizes a result stated for K = GF (2) by Ivanov and Shpec-
torov [18, 3.6.2].

Theorem 7.7. The embedding ε is abstractly dominant if and only if ε(Γ) is a

quadric.

Proof. When ε embeds Γ in PG(V ) as a quadric, then εα(Π) is also a quadric of
PG(W ) (see Lemma 7.2) and every line of PG(W ) through P0 not contained in W0

meets εα(Π) in exactly two points, one of which is equal to P0. Hence E0 = 1 and
∆ ∼= ∆̃. So, ∆ is simply connected and, by Corollary 3.4, ε is dominant. Conversely,
suppose that ε is dominant. Then E0 = 1 by Corollary 7.6. Therefore, by the second
claim of Corollary 7.6, either K̂σ,e = 0 (when ε(Γ) is defined by a sesquilinear form)
or Kσ,e = 0 (if ε(Γ) arises from a pseudoquadratic form). In any case, σ = idK ,
e = 1 and ε(Γ) is a quadric. �

Lemma 7.8. Suppose that either ch(K) 6= 2 or σ|Z(K) 6= idZ(K). Then E0 is the

commutator subgroup of U(ε).

Proof. By Theorem 7.5 and Corollary 7.6, U(ε) ∼= U , where U stands for the
unipotent radical of the stabilizer of p0 in Aut(Π), E0 � U and U/E0 is the additive
group of V . In view of the hypotheses made on K and σ, we may assume that Π
arises from a sesquilinear form. Regarded Π in that way, the elements of U are the
pairs (x, (xi)

2n
i=1) where (xi)

2n
i=1 ∈ V and x ∈ K is such that

(∗) x + e−1xσ +
n∑

i=1

xn+ix
σ
i +

n∑

i=1

xie
−1xσ

n+i = 0.

Products are as follows: (x, (xi)
2n
i=1) · (y, (yi)

2n
i=1) = (z, (xi + yi)

2n
i=1) where

z = x + y −
n∑

i=1

xn+iy
σ
i −

n∑

i=1

xie
−1yσ

n+i.
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The subgroup E0 � U consist of the pairs (x, (0, 0, ..., 0)) where, according to (∗),
x + e−1xσ = 0. The function fσ sending (x, (0, 0, ..., 0)) to xσ is an isomorphism
from E0 to K̂σ,e. The commutator subgroup U ′ of U is contained in E0 and is equal

to f−1
σ (Kσ,e). However, the hypotheses made on K and σ force Kσ,e = K̂σ,e (see

Lemma 7.1). Hence U ′ = E0. �

Corollary 7.6 and Lemma 7.8 imply the following:

Theorem 7.9. Suppose that either ch(K) 6= 2 or σ|Z(K) 6= idZ(K). Then ε is its

own abelian hull. �

As a corollary, we obtain the following well known result of Tits [35, 8.6]:

Corollary 7.10. Under the hypotheses of Theorem 7.9, ε is linearly dominant. �

Example 7.1. Suppose that ε(Γ) arises from an alternating form. Then E0
∼=

K̂σ,e = K and U(ε) is an extension of V by the additive group of K (Corollary
7.6). By Lemma 7.8, if ch(K) 6= 2 then U(ε)′ = K. On the other hand, when
ch(K) = 2 then U(ε) is commutative. In this case Γ can also be embedded as a
quadric in PG(Ṽ ), with Ṽ := V (1, K)⊕ V . The latter embedding dominates ε and
is dominant by Theorem 7.7. Hence it is the hull of ε. Namely, U(ε) ∼= Ṽ .

8 Embeddings of grassmannians

8.1 Grassmann embeddings of PG(n, K)

We recall that, given Π := PG(n, K) with n > 2 and a positive integer m < n − 1,
the m-grassmannian grm(Π) of Π is the point-line geometry with the m-elements
of Π as points, the flags of type {m − 1, m + 1} as lines and the incidence relation
inherited from Π. In particular, gr1(Π) is the line-grassmannian of Π.

Note 8.1. We warn that many authors, referring to vector-dimensions instead of
projective dimensions, replace m by m + 1 in the above definitions.

It is well known (Wells [38]) that, when K is a field, grm(Π) admits a full pro-
jective embedding in PG(∧m+1V ) where V := V (n + 1, K). We shall call that
embedding εgrm

. Wells [38] also proves that εgrm
is linearly dominant. In the case

of m = 1, a stronger result holds:

Theorem 8.1. The embedding εgr1
is abstractly dominant.

Proof. We firstly give another description of Exp(εgr1
). Let ∆ be the building of

type Dn+1(K), with types 0+, 0−, 1, 2, ..., n − 1 as follows:

•

•

• ••

0−

0+

1 2
H

H
HH

�
�

��
..... • •

n − 2 n − 1
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Given an element A of ∆ of type 0+ (when n is odd) or 0− (when n is even), the
geometry Φ := Far∆(A) belongs to the following diagram of rank n + 1, where the
label Af stands for the class of affine planes:

•

•

• ••

0−

0+

1 2
H

H
HH

�
�

��

Af

..... • •
n − 2 n − 1

The elements of type 0+ are taken as points and those of type 1 as lines. The
{0−, 2}-flags are regarded as planes. We denote by Sh(Φ) the 0+-shadow geometry
of Φ (namely, the 0+-grassmann geometry of Φ, according to the terminology of
[26]). Let Σ be the {0, 1, 2}-truncation of Sh(Φ), formed by the elements of Φ of
type 0+ and 1 and by the flags of type {0−, 2}. We have ResΣ(P ) ∼= gr1(Π) for every
point P of Σ. In fact:

Lemma 8.2. Σ ∼= Exp(εgr1
).

Proof. Let U be the unipotent radical of the stabilizer of A in Aut(∆). Then U
is isomorphic to the additive group of ∧2V and acts regularly on the set of points
of Σ. For every point P of Σ, we have ResΣ(P ) ∼= gr1(Res∆(P )) (∼= gr1(Π)) and the
stabilizer UX in U of a line or a plane X > P of Σ is transitive on the set of points

of X different from P . Furthermore, the isomorphism ϕ : U
∼=→ ∧2V can be chosen

in such a way that, for every X ∈ ResΣ(P ), ϕ(UX) belongs to the image of εgr1
and

the function sending X to ε−1
gr1

(ϕ(UX)) is an isomorphism from ResΣ(P ) to gr1(Π).
The conclusion is now evident. �

Lemma 8.3. The geometry Σ is simply connected.

Proof. Φ is simply connected (see [27]; also Munemasa and Shpectorov [23] and
Munemasa, Pasechnik and Shpectorov [24] for the finite case). Consequently Sh(Φ)
is simply connected by [26, Theorem 12.64]. All lower residues of elements of Sh(Φ)
of type at least 3 are simply connected as well. Hence, by repeatedly applying
Theorem 12.64 of [26] to closed paths of the collinearity graph of Sh(Φ) and of lower
residues of elements of Sh(Φ), we see that every closed path of the collinearity graph
of Σ splits in subpaths each of which is contained in a plane. Therefore, again by
Theorem 12.64 of [26], Σ is simply connected. �

End of the proof of Theorem 8.1. By Lemmas 8.2 and 8.3, Exp(εgr1
) is simply

connected. By Corollary 3.4, εgr1
is dominant. �

Problem 2. What about εgr2
? Consider the case of n = 5 and K = GF (2), to

begin with. By [10, page 191], Exp(εgr2
) is a 2-fold quotient of FarΦ(A) for a 5-

element A of the building Φ of type E6(2), where types are given as in Subsection
10. The geometry FarΦ(A) is likely to be simply connected. If so, then we would
get U(εgr2

) = 21+20, by Corollary 3.4.
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8.2 A grassmann embedding of AG(n, K)

Regarded AG(n, K) as a subgeometry of Π = PG(n, K), we can form the grass-
mannian gr1(AG(n, K)) of AG(n, K). Clearly, gr1(AG(n, K)) is a subgeometry of
gr1(Π) and εgr1

induces on it a full projective embedding εAf
gr1

in PG(∧2V ).
Given a building ∆ of type Dn+1(K) as in the proof of Theorem 8.1, we now

take a flag {A, B} of type {0+, 0−} and put Φ := Far∆({A, B}). The diagram of Φ
is as follows:

•

•

• ••

0−

0+

1 2
H

H
HH

�
�

��

Af

Af

..... • •
n − 2 n − 1

Let Σ be the {0, 1, 2}-truncation of Sh(Φ), with the elements of type 0+ and 1
regarded as points and lines respectively. Then,

Lemma 8.4. Σ ∼= Exp(εAf
gr1

).

Proof. The proof is the same as in Lemma 8.2. We leave the details for the
reader. We only remark that the commutator subgroup of the unipotent radical of
the stabilizer of {A, B} in Aut(∆) corresponds to ∧2V and acts regularly on the set
of points of Σ. �

Theorem 8.5. If K 6= GF (2), then εAf
gr1

is abstractly dominant. When K = GF (2),
then U(εAf

gr1
) is elementary abelian of order 22n−1.

Proof. Suppose K 6= GF (2). Then Φ is simply connected [27] (also Baumeister
and Stroth [2, Theorem 6.5(2)], in the finite case). Hence Σ is simply connected
(same argument as in the proof of Lemma 8.3) and we obtain the conclusion by
Corollary 3.4.

On the other hand, let K = GF (2). Then the universal 2-cover Φ̃ of Φ can be
built inside a Coxeter complex of type D2n and the deck group of the covering is

elementary abelian of order 22n−(n+1

2 )−1 (Baumeister, Meixner and Pasini [3]; also
Baumeister and Stroth [2, Theorem 6.5(1)]). We shall now prove that the shadow
geometry Sh(Φ̃) of the universal 2-cover Φ̃ of Φ is 2-simply connected.

By Theorem 12.64 of [26], Sh(Φ̃) is simply connected, as such is Φ̃. When n = 3,
then all residues of Φ̃ of rank 3 are simply connected. Hence, when n = 3, Sh(Φ̃)
is 2-simply connected. We go on by induction. Let n > 3. Then the residues of
the elements of Sh(Φ̃) corresponding to elements of Φ̃ of type i = 3, 4, ..., n − 1
are 2-simply connected by the inductive hypothesis. The residues of the remaining
elements of Sh(Φ̃) are either affine geometries or direct sums of affine geometries
and projective geometries, hence they are 2-simply connected. Thus, all residues of
elements of Sh(Φ̃) are 2-simply connected. This forces every 2-covering of Sh(Φ̃) to
be a covering. However, Sh(Φ̃) is simply connected. Hence its is 2-simply connected.
Moreover, Sh(Φ̃) is a 2-cover Sh(Φ). Therefore, Sh(Φ̃) is the universal 2-cover of
Sh(Φ), whence it is 2-simply connected.

The residues of the flags of Sh(Φ) of corank at least three and containing some
elements of type 0, 1 or 2 are simply connected. So, we can apply Theorem 1 of
[25], obtaining that the universal cover Σ̃ of Σ is the {0, 1, 2}-truncation of Sh(Φ̃).
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Consequently, Σ̃ can be constructed inside a Coxeter complex of type D2n . Moreover,
denoted by W the Coxeter group of that type, the subgroup U ∼= ∧2V of Aut(Σ)
lifts to O2(W ) (∼= 22n−1). The conclusion now follows from the isomorphism Σ ∼=
Exp(εAf

gr1
) and Theorem 3.3. �

9 Projective embeddings of dual polar spaces

9.1 The embeddings considered in this section

In the sequel, F is a given finite field and Π is one of the following polar spaces of
rank n ≥ 3:

1) the symplectic variety W2n−1(F ) arising from a non-degenerate alternating form
over V (2n, F );
2) the hermitian variety H2n−1(F ) arising from a non-degenerate unitary form over
V (2n, F );
3) the quadric Q2n(F ) defined by a non-singular quadratic form of Witt index n in
V (2n + 1, F );
4) the quadric Q−

2n+1(F ) defined by a non-singular quadratic form of Witt index n
in V (2n + 2, F ).

Let Γ be the dual of Π and Σ := (P (Γ), L(Γ)) the point-line system of Γ. For each
of the above four cases there exists a natural full projective embedding ε0 : Σ →
PG(m, K), which we sketchily describe below. We refer to Cooperstein and Shult
[9], Cooperstein [7] and [8] and Wells [38] for more details.

Case 1. Π = W2n−1(F ). Here K = F and m + 1 =
(

2n

n

)
−

(
2n

n−2

)
. Put V1 :=

V (2n, F ), V2 := ∧nV1 and εgr := εgrn−1
, where εgrn−1

is the embedding of the (n−1)-
grassmannian grn−1(PG(V1)) in PG(V2) (Section 8). The points of Σ are points
of grn−1(PG(V1)) and the injective function sending every non-maximal singular
subspace X of Π to the flag {X, X⊥} of PG(V1) sends the lines of Σ to lines of
grn−1(PG(V1)). So, Σ is a subgeometry of grn−1(PG(V1)) and, denoted by V the
subspace of V2 spanned by {εgr(p)}p∈P (Γ), εgr induces a full projective embedding

ε0 : Σ → PG(V ). The number m + 1 =
(

2n

n

)
−

(
2n

n−2

)
is the dimension of V

(Cooperstein [7]).

When F 6= GF (2), ε0 is the universal projective embedding of Σ (Cooperstein
[7]; also Cooperstein and Shult [9]). Hence ε0 is linearly dominant, but probably it
is not abstractly dominant (compare Subsection 9.4, Problem 3).

Suppose F = GF (2). Then ε0 is not even linearly dominant. Its linear hull
embeds Σ in PG(d, 2) where d + 1 = (2n + 1)(2n−1 + 1)/3 (Li [21]). Ivanov [15] has
proved that the codomain U(ε0) of the abstract hull of ε0 is non-abelian. In the
smallest case (n = 3), the commutator subgroup of U(ε0) has order 2 (Yoshiara [39],
Ivanov [15]; see also Theorem 9.8 of this paper).
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Case 2. Π = H2n−1(F ). Now F is a quadratic extension of K and m + 1 =(
2n

n

)
. The embedding ε0 : Σ → PG(m, K) can be described as follows. With

V1 := V (2n, F ), V2 := ∧nV1 and εgr : grn−1(PG(V1)) → PG(V2) as in the previous
paragraph, we now have 〈εgr(p)〉p∈P (Γ) = V2 (Cooperstein [8]). Hence εgr induces a
lax projective embedding of Σ in PG(V2). However, V2 admits a basis B = {bi}

m
i=0

such that, denoted by V the vector space formed by the linear combinations
∑

i tibi

with all scalars ti in K, εgr(p)∩ V is a 1-dimensional linear subspace of V for every
point p ∈ P (Γ) (Cooperstein [8]). Thus, we get a full embedding ε0 : Σ → PG(V ).

When F 6= GF (4), ε0 is the universal projective embedding of Σ (Cooperstein
[8]; also Cooperstein and Shult [9]). When F = GF (4), the linear hull of ε0 embeds
Σ in PG(d, 2) where d = (4n + 2)/3 (Li [22]). Furthermore, when n = 3, the
commutator subgroup of the codomain U(ε0) of the abstract hull of ε0 has order 2
(Ivanov [15]; see also Theorem 9.8).

Case 3. Π = Q2n(F ). Here K = F , m + 1 = 2n and ε0 is the well known
spin-embedding of Π (Wells [38]). When ch(F ) 6= 2, ε0 is the universal projective
embedding of Σ (Wells [38]; also Cooperstein and Shult [9]). However, ε0 it is not
abstractly dominant (see Theorem 9.12), but it extends to Γ and its extension is
abstractly dominant (Theorem 9.11). When ch(F ) = 2, then Q2n(F ) ∼= S2n−1(F )
and we are led back to Case 1.

Case 4. Π = Q−
2n+1(F ). In this case K is a quadratic extension of F and m+1 =

2n. The polar space Π is a subgeometry of Π′ := Q+
2n+1(K), naturally embedded

in Π′ by the lax Baer embedding of PG(2n + 1, F ) in PG(2n + 1, K). Thus, Γ can
also be regarded as a subgeometry of the dual Γ′ of Π′. The half-spin geometry of
Γ′ (see Section 10) admits a full projective embedding in PG(2n−1, K) (Wells [38])
and the latter induces a full projective embedding ε0 : Σ → PG(2n − 1, K), which
is in fact the universal projective embedding of Σ (Cooperstein and Shult [9]).

In the next subsection we prove that, in each of the above four cases, ε0 extends to
Γ. In Subsection 9.3 we describe the embedding induced on point-residues of Γ by
the extension of ε0. Finally (Subsections 9.4 and 9.5), we give more information on
the cases of Π = W5(F ),H5(F ) and Q6(F ).

9.2 Extensibility of ε0

Theorem 9.1. In each of the previous four cases, ε0 extends to Γ.

Proof. Let G be the setwise stabilizer of ε0(Σ) in PΓL(m+1, K). Every element
of G induces an automorphism of Σ and the kernel of the homomorphism thus
defined from G to Aut(Σ) is the automorphism group Aut(ε0) of ε0, namely the
point-wise stabilizer of ε0(Σ) in PΓL(m + 1, K). Thus, we may regard the quotient
G := G/Aut(ε0) as a subgroup of Aut(Σ). On the other hand, the elements of Γ can
be recovered in Σ as the convex closures of pairs of points at non-maximal distance
(Brouwer and Wilbrink [5]). So, every automorphism of Σ is induced by a unique
automorphism of Γ. Accordingly, G can be regarded as a subgroup of Aut(Γ). In
each of the above four cases, the following is straightforward:
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(1) G acts transitively on the set of triples (A, p, L) where A is an (n−1)-element
of Γ, p ∈ P (A) and L ∈ L(p) \ L(A).

Put ε(X) := 〈ε0(p)〉p∈P (X), as in Subsection 2.5. We shall prove that ε satisfies
(E1) (whence it is an embedding). In each of the four cases under consideration,
for every (n− 1)-element A of Γ, ε0 induces on the point-line system of ResΓ(A) an
embedding defined in the same way as ε0, but with a codomain of dimension less
than V = cod(ε0). Therefore,

(2) ε(A) < V for every (n − 1)-element A of Γ.

We shall now prove the following:

(3) for every (n − 1)-element A of Γ and every point p ∈ P (Γ), if ε0(p) ≤ ε(A),
then p < A.

Suppose the contrary and let p, A be a counterexample to (3). So, ε0(p) ≤ ε(A) but
p 6∈ P (A). By well known properties of dual polar spaces (Brouwer and Wilbrink
[5]), A contains a unique point p′ collinear with p. Let L the line on p and p′. Then
ε0(L) = 〈ε0(p), ε0(p

′)〉. Hence ε0(L) ≤ ε(A), as ε0(p) ≤ ε(A). However, L 6< A. So,
A, p′ and L are as in (1). By (1), ε(A) ≥ ε0(L) for every line L. Hence ε(A) = V ,
contrary to (2). Claim (3) is proved.

By (3), if ε(X) ≤ ε(Y ) then P (X) ⊆ ∩(P (A) | A ≥ Y, t(A) = n − 1). However,
∩(P (A) | A ≥ Y, t(A) = n − 1) = P (Y ), by well known properties of dual polar
spaces. Hence P (X) ⊆ P (Y ), which forces X ≤ Y by (PS) (which holds in Γ). So,
ε satisfies (E1). �

We denote by ε the extension of ε0 to Γ, as in the proof of Theorem 9.1, and by
ε̃0 the abstract hull of ε0. By Theorem 4.1, ε̃0 also extends to Γ. We denote its
extension by ε̂. We recall that ε̂ is abstractly dominant (Theorem 4.1). Theorem
4.3 and the 2-simple connectedness of polar spaces imply the following:

Corollary 9.2. The geometry Exp(ε̂) is the universal 2-cover of Exp(ε). �

9.3 Embeddings induced on point-residues

In the sequel, V = V (m+1, K) is the codomain of ε0 and, according to the notation
introduced at the end of the previous subsection, ε : Γ → PG(V ) is the extension of
ε0 to Γ. Given a point p ∈ P (Γ), let Vp be the subspace of V spanned by {ε(L)}L∈L(p)

and εp : ResΓ(p) → Vp the embedding induced by ε on ResΓ(p) (see Subsection 2.7).
We put W := Vp/ε(p) and denote by η the reduction εp/ε(p) of εp. So, η is an
embedding of the projective geometry ResΓ(p) ∼= PG(W0), where W0 := V (n, F ).
Clearly, η is linear and, as dim(ε(L)) = 2 for every line L, dim(η(L)) = 1 for every
line L > p.

In Cases 3 and 4 of Subsection 9.1, we also have dim(ε(S)) = 3 for every quad
S. (We recall that the 2-elements of a dual polar space are usually called quads.)
Hence dim(η(S)) = 2 for every quad S > p. Thus, η is a lax projective embedding.
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Furthermore, η is full in Case 3. By Theorem 5.8, dim(W ) = n in both cases 3
and 4. In Case 3, F = K, W = W0 and η is just an isomorphism from ResΓ(p) to
PG(W ) (whence Exp(η) ∼= AG(W )). In Case 4, K is a quadratic extension of F and
η embeds ResΓ(p) in PG(W ) as a Baer subgeometry. In any case, η is dominant,
namely U(η) = W (see the second claim of Theorem 5.8). Cases 1 and 2 are more
interesting.

Theorem 9.3. The embedding η : PG(W0) → PG(W ) is a plain tensor embedding

in Case 1 and a twisted tensor embedding in Case 2.

Proof. Assume we are in Case 1. Choose a maximal singular subspace p′ of Π
disjoint from p. Every line X of Γ on p is a hyperplane of the projective geometry
ResΠ(p) ∼= PG(W ∗

0 ), where W ∗
0 stands for the dual of W0. Moreover, X⊥ ∩ p′ is

a point of ResΠ(p′) and, regarded X as a singular subspace of Π, the span pX of
X ∪ (X⊥ ∩ p′) in Π is a maximal singular subspace of Π, namely a point of Γ.
We have ε(X) = εgr({X, X⊥}) = 〈εgr(p), εgr(pX)〉 = 〈ε(p), ε(pX)〉. Hence η(X) =
〈ε(p), ε(pX)〉/ε(p). It is now clear that η is isomorphic to the embedding sending
X to ε(pX). In its turn, the latter is isomorphic to εα⊗β where we may take the
identity of W0 as α and β is an isomorphisms from W0 to W ∗

0 sending every point
X of PG(W0) to the point X⊥ ∩ p′ of PG(W ∗

0 ).
Turning to Case 2, given a maximal singular subspace p′ of Π disjoint from

p, the polarity of PG(V1) associated to Π induces an isomorphism from ResΓ(p)
to ResΠ(p′) ∼= PG(W ∗

0 ) as in Case 1, but that isomorphism is now induced by a
semilinear but non-linear mapping γ : W0 → W ∗

0 . By an argument similar to that
used in Case 1, one can see that η ∼= εσ

α⊗β, where α is the identity automorphism of
W0, β is the linear part of γ and σ is the involutory automorphism of F . �

9.4 On Cases 1 and 2 with n =3

In this subsection Π is W5(F ) or H5(F ). As at the end of Subsection 9.2, ε is the
extension of ε0 to Γ, ε̃ and ε̃0 are the abstract hulls of ε and ε0, and ε̂ is the extension
of ε̃0 to Γ.

Theorem 9.4. ε̃ = ε̂.

Proof. In the two considered cases, for every (n − 1)-element A of Γ, the image
of ResΓ(A) via ε0 is a quadric. Precisely, when Γ = W5(F ), ε0 embeds ResΓ(A) as
Q4(K) in PG(4, K) whereas, when Γ = H5(F ), ε0 embeds ResΓ(A) as Q−

5 (K) in
PG(5, K). Therefore, denoted by εA the embedding of ResΓ(A) induced by ε, the
expansion Exp(εA) is simply connected, by Theorem 7.7 and Corollary 3.4. The
conclusion follows from Theorem 4.4. �

Our next goal is to describe ε̃ when K is a prime field. In view of that, we need
a few preliminary remarks. Let Φ be the building of type F4(q) or 2E6(q), where
q = |K| (but we do not yet assume that q is prime). Points are taken as follows:

(F4(q)) • • > • •
points
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(2E6(q)) • • • •
q q q2 q2

points

We also put p := ch(K) (so, q is a power of p). Let a be a point of Φ and U :=
Op(Ga), where Ga is the stabilizer of a in Aut(Φ). The commutator subgroup U ′

of U has order q and U/U ′ is elementary abelian of order qm+1, where m + 1 = 14
or 20 according to whether Φ is of type F4(q) or 2E6(q). Also, U is the kernel of
the action of Ga on ResΦ(a) whereas U ′ is the elementwise stabilizer of the points
collinear with a. Furthermore, U ′ defines a quotient of FarΦ(a).

Lemma 9.5. FarΦ(a)/U ′ ∼= Exp(ε).

Proof. As noticed above, U/U ′ is isomorphic to the additive group of the
codomain V = V (m + 1, K) of ε. Furthermore, a K-vector space structure V ∗

can be put on U/U ′ in such a way that, for every line x of Φ on a, the elementwise
stabilizer ε∗0(x) of Res−Φ(x) in U/U ′ is a hyperplane of V ∗ and, for every plane X of
Φ on a, the elementwise stabilizer ε∗0(X) of Res−Φ(X) in U/U ′ is a subspace of V ∗

of codimension 2. Thus, we get a projective embedding ε∗0 of Σ in V , regarded as
the dual of V ∗. However, Σ admits just one projective embedding in PG(V ). When
q 6= 2 the uniqueness of that embedding follows from the universality of ε0. When
q = 2, the conclusion follows from the fact that the (m + 2)-dimensional Ga/U-
module associated to the linear hull ε̃0 of ε0 admits just one m + 1-dimensional
factor. So, in any case, ε∗0 = ε0.

By the above, Aut(FarΦ(a)/U ′) and Aut(Exp(ε)) are isomorphic to the same
extension of V by Ga/U

′ ∼= Aut(ResΦ(a)). So, Aut(FarΦ(a)/U ′) ∼= Aut(Exp(ε)).
The isomorphism FarΦ(a)/U ′ ∼= Exp(ε) follows by comparing parabolics. �

Lemma 9.6. The geometry Γ admits an embedding η in the group U . We have

Exp(η) = FarΦ(a) and η dominates ε.

Proof. The projection of FarΦ(a) onto FarΦ(a)/U satisfies the hypotheses of
condition (2) of Proposition 2.8. The conclusion follows from that proposition and
Lemma 9.5. �

Lemma 9.7. All the following hold for the commutator subgroup U(ε)′ of the codo-

main U(ε) of ε̃:

(1) U(ε)′ is elementary abelian of exponent p and, regarded as a GF (p)-vector
space, it has dimension at most h2, where h is the positive integer such that

q = ph;

(2) U(ε)′ ≤ Z(U(ε));

(3) U(ε)′ = [ε̃(x), ε̃(y)] for any two points x, y ∈ P (Γ) at distance 3 in the

collinearity graph of Γ.

Proof. Note that, as U(ε) = 〈ε̃(x)〉x∈P (Γ), U(ε)′ = 〈[ε̃(x), ε̃(y)]〉x,y∈P (Γ). Let x
and y be points of Γ at distance at most 2. Given a quad Q of Γ on x and y, ε̃
induces on ResΓ(Q) an embedding ε̃Q which dominates the embedding εQ induced
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by ε. However, ε(Q) embeds ResΓ(Q) as a quadric in its codomain. Hence εQ is
dominant by Theorem 7.7. Therefore ε̃Q = εQ. As εQ is abelian, ε̃Q is abelian and,
consequently, [ε̃(x), ε̃(y)] = 1.

Suppose now x and y have distance 3 and let x0 = x, x1, x2, x3 = y be a path
from x to y in the collinearity graph of Γ. Let z be any point on the line through x2

and x3 (= y). Given an element w ∈ ε̃(z), we can always find an element v ∈ ε̃(x2)
such that vw ∈ ε̃(x3). By the above, [u, v] = 1 for any u ∈ ε̃(x0). Moreover,
[v, w] = 1. Thus, [u, vw] = [u, v]. Therefore, [ε̃(x), ε̃(z)] = [ε̃(x), ε̃(y)]. However,
the set of points at distance at most 2 from x is a hyperplane of Γ. Hence we have
[ε̃(x), ε̃(z)] = [ε̃(x), ε̃(y)] for any two collinear points y, z at distance 3 from x. As
the geometry FarΓ(x) is connected, we also have [ε̃(x), ε̃(y)] = [ε̃(x), ε̃(z)] for any
two points at distance 3 from x, let them be collinear or not. We now recall that
Aut(Γ) acts primitively on the set of points of Γ. Accordingly, the graph with the
points of Γ as vertices and the relation ‘having distance three’ as the adjacency
relation, is connected. Consequently, the group [ε̃(x), ε̃(y)] does not depend on the
choice of the pair {x, y} of points at distance 3. Thus, (3) is proved.

Given a point z of Γ, let x be a point collinear with z and y a point at distance
2 from z and 3 from x. Then [ε̃(z), ε̃(x)] = [ε̃(z), ε̃(y)] = 1, whereas U(ε)′ =
[ε̃(x), ε̃(y)], by (3). Therefore, ε̃(z) commutes with U(ε)′. As U(ε) = 〈ε̃(z)〉z∈P (Γ),
(2) follows. By (2), U(ε)′ is abelian. Also, given points x, y at distance 3 and
elements v1, v2 ∈ ε̃(x) and w ∈ ε̃(y), v2 commutes with v1wv−1

1 w−1 by (2). Hence

[v1, w][v2, w] = v1wv−1
1 w−1v2wv−1

2 w−1 =
v1v2wv−1

1 w−1wv−1
2 w−1 = (v1v2)w(v1v2)

−1w−1 = [v1v2, w]

Therefore, [v, w]p = [vp, w] = 1. The first claim of (1) is proved. The rest of (1)
follows from the above equality its analogous [v, w1][v, w2] = [v, w1w2]. �

Theorem 9.8. Suppose q = p. Then,

(1) when p > 2, the embedding η : Γ → U considered in Lemma 9.6 is the abstract

hull of ε;

(2) when p = 2, then U(ε) = 21+15 or 21+22 according to whether Π is W5(2) or

H5(2).

Proof. By Proposition 3.6, U(ε)/U(ε)′ affords the linear hull of ε. Suppose p > 2.
Then ε0 is linearly dominant, as remarked in Subsection 9.1. Clearly, the same holds
for ε. Furthermore, U/U ′ can be taken as the codomain of ε, by Lemma 9.5. Hence
U(ε)/U(ε)′ = U/U ′. Therefore |U(ε)| = |U | by Lemma 9.7(1). Hence U(ε) = U and
ε̃ = η, as claimed in (1).

Suppose p = 2. Then, as remarked in Subsection 9.1, the linear hull of ε0 embeds
Γ in V (15, 2) or V (22, 2), according to the type of Γ. So, by an argument similar
to the above we obtain that |U(ε0)| = 21+15 or 21+22. However, U(ε0) = U(ε) by
Theorem 9.4. The conclusion follows. �

Corollary 9.9. Suppose q = p. Then,

(1) when p > 2, FarΦ(a) is the universal cover of Exp(ε).
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(2) when p = 2, the universal cover of FarΦ(a) is 2-fold or 4-fold, according to

whether Φ is of type F4(2) or 2E6(2). �

Note 9.1. A proof of claim (2) of Theorem 9.8 is also given by Ivanov and Sh-
pectorov [18, 3.7.7]. In fact, our proof of Lemma 9.7 is a generalization of their
proof.

Problem 3. Does (1) of Theorem 9.8 remain true when K is not a prime field?

9.5 On Case 3 with n =3

In this subsection, Π = Q6(F ). Accordingly, ε0 is the spin embedding of Γ in
V (8, K). As in the previous subsections, ε is the extension of ε0 to Γ, ε̃ and ε̃0 are
the abstract hulls of ε and ε0 and ε̂ is the extension of ε̃0 to Γ. We put ∆ := Exp(ε).

Theorem 9.10. The geometry ∆ is simply connected.

Proof. The residues of the 3-elements of ∆ are expansions of generalized quad-
rangles embedded in PG(3, F ) as symplectic varieties. The conclusion follows from
the main Theorem of Cuypers and Van Bon [12]. �

Corollary 9.11. The embedding ε is abstractly dominant. �

However, ∆ is not 2-simply connected, due to the fact that now, differently
from what happens in Cases 1 and 2, the residues of the 3-elements of ∆ are not
simply connected. Actually, as shown by Cuypers and Van Bon [12], ∆ is a proper
2-quotient of the geometry FarΦ(a) for Φ a building of type F4(K) and a a point of
Φ, where points are taken as indicated by the following picture:

(F4(K)) • • > • •
points

Explicitly, let A be the elementwise stabilizer in Aut(Φ) of the neighbourhood of a
in the collinearity graph of Π. Then ∆ ∼= FarΦ(a)/A. Note also that, denoted by U
the unipotent radical of Ga, we have A � U and the quotient U/A may be regarded
as the additive group of an 8-dimensional K-vector space.

As ∆ admits a proper 2-cover, ε0 is not abstractly dominant (Corollary 9.2). In
fact, an argument similar to that of the proof of Lemma 9.5 shows that there exists
an embedding η0 : Σ → U that properly dominates ε0 and such that Exp(η0) is
the {0, 1, 2}-truncation of FarΦ(a). Denoted by η the extension of η0 to Γ, we have
FarΦ(a) = Exp(η) (but η does not dominate ε, in view of Theorem 9.11). We can
summarize the above as follows:

Theorem 9.12. With A and U as above, let π be the canonical projection of U onto

U/A. Then Γ admits an embedding η in U such that Exp(η) ∼= FarΦ(a)), ε = πη
and ε0 = πη0. The projection π is not a morphism of embeddings from η to ε (due
to the fact that η(X) ∩ A 6= 1 when X is a quad), but it is a morphism from η0 to

ε0. The geometry Exp(η) is a 2-cover of Exp(ε), but not a 3-cover. �
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When ch(F ) = 2, Q6(F ) ∼= W5(F ) and Φ is self-dual. In that case, A contains
a subgroup A � Ga such that U/A is the additive group of V (15, K) (compare
Subsection 9.4). In particular, when F = GF (2), the geometry FarΦ(a) admits a
2-fold cover (whence η is not abstractly dominant), we have |A| = 27 and |A| = 2.

Problem 4. Is FarΦ(a) simply connected when F 6= GF (2)?

Problem 5. Examine Case 4 of Subsection 9.1, but with n = 3.

10 Half-spin embeddings

Given a building of type Dn(K), let Σ+ be one of its two half-spin geometries:

•points

•

•
lines

••
H

H
HH

�
�

��
..... • •

The spin-embedding ε of the dual of Q2n(K) in PG(2n−1, K) (Case 3 of Subsection
9.1) induces a full projective embedding ε+ : Σ+ → PG(2n−1−1, K), called the half-

spin embedding (Wells [38]). It is well known that ε+ is linearly dominant (Wells
[38], Shult [32]). When n = 4, Σ+ is isomorphic to the point line system of the polar
space Q+

7 (K) and ε+ is its (unique) full projective embedding. So, we are back to
Section 7 and ε+ is abstractly dominant, by Theorem 7.7.

Theorem 10.1. Let n = 5. Then ε+ is abstractly dominant.

Proof. The additive group of V (2n−1, K) is now isomorphic to the unipotent
radical of the stabilizer of A in Aut(Φ), for Φ a building of type E6(K) and A a
4-element of Φ, the types of Φ being chosen as follows:

• • • • •

•

0 1 2 3 4

5

points lines planes

Accordingly, Exp(ε+) is the point-line-plane system of FarΦ(A). FarΦ(A) is simply
connected (see [27]). The residues of elements of FarΦ(A) of type 3, 4 and 5 and
of the flags of type {3, 5} and {3, 4} are simply connected, too. Indeed, they are
either affine spaces, or direct sums of an affine space and a geometry of rank 1, or
Af.D4-geometries, and it is well known that all of these are simply connected (see
[26, Proposition 12.51] for the case of Af.D4). So, an application of [26, Theorem
12.64] is sufficient to see that Exp(ε+), which is the {0, 1, 2}-truncation of FarΠ(A),
is simply connected. The conclusion follows from Corollary 3.4. �

Problem 6. Describe the abstract hull of ε+ when n > 5 (in particular, for n = 6
or 7).

Ackowledgement. The author thanks C. Wiedorn for her careful reading of the
earliest draft of this paper.
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