
New near polygons from Hermitian varieties

Bart De Bruyn∗

Abstract

We define a new class of dense near polygons. The unique near 2n-gon,
n ≥ 0, of this class will be denoted by Gn. We will study the geodetically
closed sub near polygons of Gn. We will also determine the complete auto-
morphism group and all spreads of symmetry. New glued near polygons can
be constructed from these spreads of symmetry.

1 Definitions and Overview

1.1 Basic definitions

A near polygon is a partial linear space (P,L, I), I ⊆ P ×L, with the property that
for every point p ∈ P and for every line L ∈ L there exists a unique point on L

nearest to p. Here distances d(·, ·) are measured in the collinearity graph. If n is the
maximal distance between two points, then the near polygon is called a near 2n-
gon. A near 0-gon consists of one point, a near 2-gon is a line, and the class of near
quadrangles coincides with the class of generalized quadrangles (GQ’s) which were
introduced by Tits in [13]. Near polygons themselves were introduced by Shult and
Yanushka in [12] because of their relationship with certain line systems in Euclidean
spaces. Generalized 2n-gons ([14]) and dual polar spaces ([4]) form two important
classes of near polygons.

A set X of points in a near polygon S is called a subspace if every line meeting
X in at least two points is completely contained in X. A subspace X is called
geodetically closed if every point on a shortest path between two points of X is as
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well contained in X. Having a subspace X, we can define a subgeometry SX of
S by considering only those points and lines of S which are completely contained
in X. If X is geodetically closed, then SX clearly is a sub near polygon of S. A
geodetically closed sub near polygon SX 6= S is called big if every point outside SX

is collinear with a unique point of SX . If a geodetically closed sub near polygon
SX is a nondegenerate generalized quadrangle, then X (and often also SX) will be
called a quad. Sufficient conditions for the existence of quads were given in [12].
Every set X of points is contained in a unique minimal geodetically closed sub near
polygon C(X), namely the intersection of all geodetically closed sub near polygons
through X. We call C(X) the geodetic closure of X. If X1, . . . , Xk are sets of points,
then C(X1 ∪ · · · ∪ Xk) is also denoted by C(X1, . . . , Xk). If one of the arguments of
C is a singleton {x}, we will often omit the braces and write C(· · · , x, · · · ) instead
of C(· · · , {x}, · · · ).

A near polygon is said to have order (s, t) if every line is incident with exactly
s+1 points and if every point is incident with exactly t+1 lines. A near polygon is
called dense if every line is incident with at least three points and if every two points
at distance 2 have at least two common neighbours. Dense near polygons satisfy
several nice properties. By Lemma 19 of [2], every point of a dense near polygon S
is incident with the same number of lines; we denote this number by tS +1. If x and
y are two points of a dense near polygon, then by Theorem 4 of [2] C(x, y) is the
unique geodetically closed sub near [2 · d(x, y)]-gon through x and y. Geodetically
closed sub near hexagons of a dense near polygon are called hexes.

1.2 Sub near polygons of dual polar spaces

For every polar space P of rank at least 2 a dual polar space P D can be defined.
The points, respectively lines, of P D are the maximal, respectively next-to-maximal,
totally isotropic subspaces of P with reverse containment as incidence relation. Dual
polar spaces are near polygons, see e.g. [4]. If π is a totally isotropic subspace
of P , then the set Uπ of all maximal totally isotropic subspaces through π is a
geodetically closed subspace of P D. Conversely, every geodetically closed subspace
of P D is obtained this way. We have noticed earlier that every geodetically closed
subspace induces a sub near polygon. The converse however is not necessarily true.
By Section 3 of [1], there exist sets U , not of the form Uπ, whose elements are
maximal totally isotropic subspaces of a polar space P such that (P D)U is a near
polygon. The sets U considered in [1] have one property in common: they consist of
all maximal totally isotropic subspaces having nonempty intersection with a given
set A of points of the polar space. Despite this restriction, the authors were able to
construct several new near polygons. E.g., by considering the set A of all points of
weight 2 on the Hermitian variety H(5, 4) a new dense near hexagon J3 was found.
There is now an obvious way to generalize this construction: take A as the set of
all points of weight 2 on the Hermitian variety H(2n − 1, 4). Again a near polygon
Jn is obtained, but for n ≥ 4 Jn is never dense. In Section 3.2 we will generalize
the construction of J3 in such a way that an infinite class Gn, n ≥ 0, of dense near
polygons is obtained. The near 2n-gon Gn is still a sub near polygon of HD(2n−1, 4)
since it is determined by the set Un of all generators of H(2n − 1, 4) which contain
exactly n points of weight 2. Notice that in the case n = 3, the condition ”exactly
three points of weight 2” is equivalent to ”at least one point of weight 2”.
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1.3 Overview

After we have introduced the near polygon Gn, n ≥ 0, in Section 3.2, we will study
the geodetically closed sub near polygons of Gn in Sections 3.3, 3.4 and 3.5. It
turns out that with every geodetically closed sub near polygon there corresponds
a subspace on H(2n − 1, 4) with special properties. These ”good subspaces” of
H(2n − 1, 4) are studied in Section 3.1. Using the geodetically closed sub near
polygons, we are able to determine Aut(Gn) in Section 4. In Section 5 we determine
all spreads of symmetry of Gn. In Section 6 we will show that these spreads of
symmetry give rise to new glued near polygons. The study of Gn performed in the
present paper will allow us in [10] to determine all dense near 2(n + 1)-gons which
have Gn as a big geodetically closed sub near polygon.

2 Some notions regarding near polygons

Before defining Gn, we recall some relevant notions and results from the literature.

2.1 Direct product

Let S1 = (P1,L1, I1) and S2 = (P2,L2, I2) be two near polygons. A new near polygon
S = (P,L, I) can be derived from S1 and S2. It is called the direct product of S1 and
S2 and is denoted by S1×S2. We have: P = P1×P2, L = (P1×L2)∪ (L1×P2), the
point (x, y) of S1 ×S2 is incident with the line (z, L) ∈ P1 ×L2 if and only if x = z

and y I2 L, the point (x, y) of S1 × S2 is incident with the line (M, u) ∈ L1 × P2

if and only if x I1 M and y = u. If Si, i ∈ {1, 2}, is a near 2ni-gon then the
direct product S = S1 × S2 is a near 2(n1 + n2)-gon. Since S1 × S2

∼= S2 × S1 and
(S1 × S2) × S3

∼= S1 × (S2 × S3), also the direct product of k ≥ 1 near polygons
S1, . . . ,Sk is well-defined.

2.2 Big geodetically closed sub near polygons

Let S be a dense near 2n-gon. Recall that a geodetically closed sub near 2(n−1)-gon
F of S is called big if every point x outside F is collinear with a unique point π(x)
of F . If x ∈ F , then we put π(x) equal to x. The map π is called the projection
on F . Suppose now that every line of S is incident with exactly three points. For
every big geodetically closed sub near 2(n − 1)-gon F of S, we then can define the
following permutation RF on the point set of S: if x ∈ F , then we put RF (x) := x;
if x 6∈ F , then we put RF(x) equal to unique third point of the line x π(x). By
Section 4 of [1], RF is an automorphism of order 2 of S. We call RF the reflection
around F .

The following lemma provides a method for recognizing big geodetically closed sub
near polygons.



564 B. De Bruyn

Lemma 1 (Lemma 5 of [9]) Let S be a dense near 2n-gon, n ≥ 2, let F denote
a geodetically closed sub near 2(n − 1)-gon of S and let x denote an arbitrary point
of F . Then F is big in S if and only if every quad through x either is contained in
F or intersects F in a line.

2.3 GQ’s with three points on every line

If S is a generalized quadrangle with only lines of size 3, then one of the following
possibilities occurs, see e.g. [11].

• S is degenerate: S consists of k ≥ 2 lines of size 3 through a point.

• S is isomorphic to the (3 × 3)-grid (i.e. the direct product of two lines of size
3). The (3 × 3)-grid has order (2, 1).

• S is isomorphic to W (2). The points and lines of W (2) are the totally isotropic
points and lines of a symplectic polarity in PG(3, 2). The generalized quad-
rangle W (2) has order (2, 2), or shortly order 2.

• S is isomorphic to Q(5, 2). The points and lines of Q(5, 2) are the points and
lines, respectively, lying on a nonsingular elliptic quadric in PG(5, 2). The
generalized quadrangle Q(5, 2) has order (2, 4). Its point-line dual is H(3, 4),
the GQ of the points and lines of a nonsingular Hermitian variety in PG(3, 4).

In the sequel, a quad which is isomorphic to a grid, W (2) or Q(5, 2) will be called
a grid-quad, a W (2)-quad or a Q(5, 2)-quad.

2.4 The near polygons Hn

The following incidence structure Hn = (P,L, I) can be constructed from a set V of
size 2n + 2:

• P is the set of all partitions of V in n + 1 sets of order 2;

• L is the set of all partitions of V in n − 1 sets of order 2 and 1 set of order 4;

• a point p ∈ P is incident with a line L ∈ L if and only if the partition
determined by p is a refinement of the partition determined by L.

It was noticed in [1] that Hn is a near 2n-gon. Every line of Hn is incident with

three points and every point is incident with
(

n+1
2

)

lines. The near polygon H0 is a

point, H1 is the line of size 3 and H2 is isomorphic to W (2). The near polygon Hn,
n ≥ 2, has no Q(5, 2)-quads.

3 The near polygons Gn

Let the vector space V (2n, 4), n ≥ 1, with base {ē0, . . . , ē2n−1} be equiped with
the nonsingular Hermitian form (x̄, ȳ) = x0y

2
0 + x1y

2
1 + . . . + x2n−1y

2
2n−1, and let

H = H(2n − 1, 4) denote the corresponding Hermitian variety in PG(2n − 1, 4). In
the sequel we will often consider subspaces on H and the dimensions which we will
use for these subspaces are always projective.
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3.1 Good subspaces on H

The support Sp of a point p = 〈x̄〉 of PG(2n−1, 4) is the set of all i ∈ {0, . . . , 2n−1}
for which (x̄, ēi) 6= 0. The number |Sp| is called the weight of p. Since x̄ =

∑
(x̄, ēi) ēi,

|Sp| is equal to the number of nonzero coordinates. A point of PG(2n−1, 4) belongs
to H if and only if its weight is even. A subspace π on H is said to be good if it
is generated by a (possibly empty) set Gπ ⊆ H of points whose supports are two
by two disjoint. If π is good, then Gπ is uniquely determined. If Gπ contains k2i

points of weigth 2i, i ∈ N \ {0}, then π is said to be of type (2k2, 4k4, . . .). Let Y ,
respectively Y ′, denote the set of all good subspaces of dimension n−1, respectively
n − 2. Every element of Y has type (2n). Every element of Y ′ has type (2n−1) or
(2n−2, 41).

Lemma 2 If π is a good subspace on H, then there exist π1, π2 ∈ Y such that
π = π1 ∩ π2.

Proof. For every point p = 〈x̄〉 of Gπ we take two partitions P 1
p and P 2

p of Sp into
|Sp|
2

sets of size 2 in such a way that the graph (Sp, P
1
p ∪ P 2

p ) is a cycle of length
|Sp| if |Sp| ≥ 4. If we define Ak

p := {〈(x̄, ēi)ēi + (x̄, ēj)ēj〉|{i, j} ∈ P k
p }, k ∈ {1, 2},

then clearly 〈A1
p〉 ∩ 〈A2

p〉 = {p}. If we define Ak :=
⋃

p∈Gπ
Ak

p, k ∈ {1, 2}, then
〈A1〉∩〈A2〉 = 〈Gπ〉 = π. Now, let N be the complement of

⋃

p∈Gπ
Sp in {0, . . . , 2n−1}.

Clearly |N | is even. If |N | = 0, then we put B1 = B2 = ∅. If |N | 6= 0, then we

consider a partition P of N into |N |
2

sets of size 2 and an element α ∈ GF(4)∗ \ {1}.
We put B1 := {〈ēi + ēj〉|{i, j} ∈ P} and B2 := {〈ēi + αēj〉|{i, j} ∈ P and i < j}.
Clearly 〈B1〉 ∩ 〈B2〉 = ∅. If πk := 〈Ak ∪ Bk〉, k ∈ {1, 2}, then π1, π2 ∈ Y and
π1 ∩ π2 = π. �

Lemma 3 The intersection of two good subpaces π1 and π2 is again a good subspace.

Proof. Consider the following graph Γ on the vertex set {0, . . . , 2n−1}. Two vertices
i and j are adjacent if and only if there exists a p ∈ Gπ1

∪Gπ2
such that {i, j} ⊆ Sp.

Let C1, . . . , Cf denote the connected components of Γ. For every i ∈ {1, . . . , f},
there is at most one point p ∈ π1 ∩ π2 with Sp = Ci. We can always label the
components of Γ such that the following holds for a certain f ′ ∈ {0, . . . , f}:

(i) for every i with 1 ≤ i ≤ f ′, there exists a unique point pi ∈ π1 ∩ π2 with
Spi

= Ci;

(ii) for every i with f ′ < i ≤ f , there exists no point p ∈ π1 ∩ π2 with Sp = Ci.

It is now easily seen that π1 ∩ π2 is good with Gπ1∩π2
= {pi|1 ≤ i ≤ f ′}. �
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3.2 Description of Gn

Let X ⊆ H denote the set of all points of weight 2.

Lemma 4 If π is a generator of H, then n − 2 6= |π ∩ X| 6= n − 1.

Proof. We use induction on n. For n ∈ {1, 2}, it is easily seen that every generator
of H contains exactly n points of weight 2. Suppose therefore that n ≥ 3 and let π

be a generator containing the point 〈ā〉 = 〈(a0, a1, 0, 0, . . . , 0)〉. The points of π ∩X

different from 〈ā〉 are all contained in the space α ↔ X0 = X1 = 0. The intersection
H ′ := H ∩ α is a nonsingular Hermitian variety in α and π′ := π ∩ α is a generator
of H ′. By induction, n − 3 6= |π′ ∩ X| 6= n − 2; hence n − 2 6= |π ∩ X| 6= n − 1. �

Let HD(2n − 1, 4) denote the dual polar space correponding to H(2n − 1, 4).
The distance d(π1, π2) between two points π1 en π2 of HD(2n − 1, 4) is equal to
n − 1 − dim(π1 ∩ π2), see e.g. [4]. The incidence structure (Y, Y ′, I), again with
reverse containment as incidence relation I, is a substructure of HD(2n − 1, 4),
which we denote by Gn. By Lemma 4, every generator through an element of Y ′

belongs to Y . Hence, every line of Gn is incident with three points.

Lemma 5 Let π1, π2 ∈ Y . The distance between π1 and π2 in Gn is equal to
d(π1, π2).

Proof. The proof is by induction. If d(π1, π2) = 1, then π1 ∩ π2 is a good subspace
of dimension n− 2 and hence belongs to Y ′. As a consequence also the Gn-distance
between π1 and π2 is equal to 1. Suppose therefore that d(π1, π2) ≥ 2. Take an
x ∈ X ∩ (π1 \ (π1 ∩ π2)) and let π3 be the unique generator through x intersecting
π2 in an (n − 2)-dimensional subspace. Since there are at least n − 2 elements in
X∩π2 H-collinear with x, |X∩π3| ≥ n−1. By Lemma 4, π3 ∈ Y . Since d(π1, π3) =
d(π1, π2) − 1, the distance between π1 and π3 in Gn is equal to d(π1, π2) − 1. Since
π2 and π3 are collinear in Gn, the distance between π1 and π2 in Gn is at most
d(π1, π2). Since Gn is embedded in HD(2n− 1, 4), this distance is at least d(π1, π2).
This proves our lemma. �

Corollary 1 Gn is a sub near 2n-gon of HD(2n − 1, 4).

Proof. Let x be a point and L a line of Gn, then x and L are also objects of
HD(2n−1, 4). In the near polygon HD(2n−1, 4), L contains a unique point nearest
to x. By the previous lemma, this property also holds in Gn. Hence Gn is also a
near polygon. Since d(π1, π2) = n − 1 − dim(π1 ∩ π2) for all π1, π2 ∈ Y and since
there exist π1, π2 ∈ Y such that π1 ∩ π2 = ∅, see Lemma 2, it follows that Gn is a
near 2n-gon. �

The near polygon G1 is the unique line of size 3. The points, respectively lines, of
G2 are all the maximal, respectively next-to maximal, subspaces of H(3, 4). Hence
G2

∼= HD(3, 4) ∼= Q(5, 2). We define G0 as the unique near 0-gon.
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3.3 Geodetically closed sub near polygons in Gn

Theorem 1 The near polygon Gn is dense. For every two points π1 and π2 of Gn,
C(π1, π2) is the unique geodetically closed sub near [2 · d(π1, π2)]-gon through π1 and
π2. Moreover, C(π1, π2) consists of all elements of Y through π1 ∩ π2.

Proof. We noticed earlier that every line of Gn is incident with three points. Now,
let π1, π2 ∈ Y such that d(π1, π2) = 2, or equivalently dim(π1 ∩ π2) = n − 3.
Choose an x3 ∈ X ∩ (π2 \ (π1 ∩ π2)) and an x4 ∈ X ∩ π1 not H-collinear with x3.
Let πi, i ∈ {3, 4}, denote the unique generator through xi intersecting πi−2 in an
(n − 2)-dimensional subspace. By the proof of Lemma 5, we know that π3 and π4

are common neighbours of π1 and π2. Hence Gn is dense. By theorem 4 of [2], we
then know that π1 and π2 are contained in a unique geodetically closed sub near
[2 · d(π1, π2)]-gon which necessarily coincides with C(π1, π2). Now, let F denote the
set of all generators of Y through π1 ∩ π2. Clearly F is a subspace of Gn. If γ

denotes a shortest path in Gn between two points of F , then by Lemma 5, γ is also
a shortest path in HD(2n − 1, 4) and hence every point of it contains π1 ∩ π2. As
a consequence every point on γ is contained in F and F is geodetically closed. If
π and π′ are two arbitrary elements of F , then π ∩ π′ contains π1 ∩ π2 and hence
d(π, π′) = n− 1−dim(π ∩π′) ≤ n− 1−dim(π1 ∩π2) = d(π1, π2). As a consequence
the diameter of F is at most d(π1, π2). Since F contains π1 and π2, the diameter
is precisely d(π1, π2). Since F is a geodetically closed sub near [2 · d(π1, π2)]-gon
through π1 and π2, it coincides with C(π1, π2). �

For every geodetically closed subspace F of Gn, let πF denote the intersection of
all points of F regarded as generators of H . Since there exist elements π1, π2 ∈ Y

such that π1 ∩ π2 = ∅, πGn
= ∅.

Lemma 6 (a) There is a one-to-one correspondence between the geodetically closed
subspaces of Gn and the good subspaces on H.

(b) If F1 and F2 are two geodetically closed sub near polygons, then F1 ⊆ F2 if
and only if πF2

⊆ πF1
.

Proof. Let F denote an arbitrary geodetically closed sub near polygon of Gn. If
π1 and π2 denote two points of F at maximal distance from each other, then F =
C(π1, π2). By Theorem 1, πF = π1 ∩π2. Hence πF is good by Lemma 3. Conversely,
suppose that π is a good subspace on H . If π = πF , then F necessarily consists of
all elements of Y through π. Hence, the equation πF = π has at most one solution
for F . It suffices to show that this equation has at least one solution. By Lemma 2,
there exist elements π1, π2 ∈ Y such that π = π1∩π2. If we put F equal to C(π1, π2),
then by Theorem 1, πF = π1 ∩ π2 = π. This proves part (a). Part (b) follows from
the fact that the points of a geodetically closed sub near polygon F are precisely
the generators of Y through πF . �
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Corollary 2 Let F1 and F2 be two geodetically closed sub near polygons of Gn and
let F3 = C(F1,F2). Then πF3

= πF1
∩ πF2

.

Proof. Since F3 is the smallest geodetically closed sub near polygon through F1

and F2, πF3
is the biggest good subspace contained in πF1

and πF2
. The result now

easily follows from Lemma 3. �

Lemma 7 Let p denote an arbitrary point of weight 2n in PG(2n−1, 4), then p ∈ H

and the set of all generators of Y through p determines a geodetically closed sub near
2(n − 1)-gon isomorphic to Hn−1.

Proof. Put p = 〈α0ē0 + · · · + α2n−1ē2n−1〉. The set {p} is a good subspace of H

and hence, by Lemma 6, the set of all generators of Y through p determines a
geodetically closed sub near 2(n − 1)-gon B. The set {0, . . . , 2n − 1} has size 2n
and hence, by Section 2.4, a near 2(n − 1)-gon A ∼= Hn−1 can be constructed from
this set. For every point P of A, i.e. for every partition P of {0, . . . , 2n − 1} into
n sets of size 2, we put φ(P ) := 〈{〈αiēi + αj ēj〉|{i, j} ∈ P}〉. Clearly φ(P ) is a
generator of Y through p. Conversely, every generator of Y through p is of the form
φ(P ) for some point P of A. We will now show that φ determines an isomorphism
between the collinearity graphs of A and B. If P1 and P2 are two collinear points of
A, then φ(P1) ∩ φ(P2) is a good subspace of type (2n−2, 41); hence φ(P1) and φ(P2)
are collinear in B. Conversely, suppose that φ(P1) and φ(P2) are collinear in B,
then φ(P1) ∩ φ(P2) is a good subspace of type (2n−1) or (2n−2, 41). If φ(P1) ∩ φ(P2)
has type (2n−1), then |P1 ∩ P2| ≥ n − 1 and hence P1 = P2, a contradiction. As
a consequence φ(P1) ∩ φ(P2) has type (2n−2, 41) and P1 and P2 are collinear in A.
Since the collinearity graphs of A and B are isomorphic, A and B themselves are
isomorphic. (Notice that the lines of a near polygon correspond with the maximal
cliques in its collinearity graph.) �

Theorem 2 The geodetically closed sub near (n − k)-gons, k ∈ {0, . . . , n}, of Gn

are of the form Hn1−1 × · · · × Hnk−1 × Gnk+1
with n1, . . . , nk ≥ 1, nk+1 ≥ 0 and

n1 + · · · + nk+1 = n.

Proof. Let F denote an arbitrary geodetically closed sub near (n − k)-gon, k ∈
{0, . . . , n}, and put GπF

= {p1, . . . , pk}. Let Si, i ∈ {1, . . . , k}, denote the support
of pi, and let Sk+1 = {0, . . . , 2n − 1} \ (S1 ∪ · · · ∪ Sk). For every i ∈ {1, . . . , k + 1},
we put |Si| = 2ni and αi := 〈ēj |j ∈ Si〉. Clearly, n1, . . . , nk ≥ 1, nk+1 ≥ 0 and n1 +
· · ·+nk+1 = n. Also αi∩H is a nonsingular Hermitian variety of type H(2ni−1, 4).
If π is an arbitrary point of F , or equivalently an arbitrary generator of Y through
πF , then π = 〈π∩α1, · · · , π∩αk, π∩αk+1〉. Moreover, π∩αi is a generator of αi∩H

containing ni points of weight 2, and pi ∈ π ∩ αi if i 6= k + 1. Conversely, if βi,
i ∈ {1, . . . , k + 1}, is a generator of αi ∩ H containing ni vertices of weight 2 such
that pi ∈ βi if i ≤ k, then 〈β1, . . . , βk+1〉 is a generator of F through πF . Hence, by
Lemma 7, the map π → (π∩α1, · · · , π∩αk, π∩αk+1) determines a bijection between
the point sets of the near polygons F and Hn1−1 × · · · × Hnk−1 × Gnk+1

. Now, two
points π1 and π2 of F are collinear if and only if dim(π1∩π2) = n−2. This happens
if and only if there exists a j ∈ {1, . . . , k + 1} such that dim(π1 ∩ π2 ∩ αj) = nj − 2
and dim(π1 ∩ π2 ∩ αi) = ni − 1 for every i ∈ {1, . . . , k + 1} \ {j}. These conditions
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are equivalent with dim((π1 ∩ αj) ∩ (π2 ∩ αj)) = nj − 2 and π1 ∩ αi = π2 ∩ αi.
Hence π1 and π2 are collinear in F if and only if (π1 ∩ α1, · · · , π1 ∩ αk+1) and
(π2 ∩ α1, · · · , π2 ∩ αk+1) are collinear in Hn1−1 × · · · × Hnk−1 × Gnk+1

. Since the
collinearity graphs of F and Hn1−1 × · · · × Hnk−1 × Gnk+1

are isomorphic, the near
polygons themselves are isomorphic. �

3.4 Lines and quads in Gn

Let n ≥ 3. If L is a line of Gn, then there are two possibilities for πL (= L):

(a) πL has type (2n−1);

(b) πL has type (2n−2, 41).

If Q is a quad of Gn, then there are four possibilities for πQ.

(i) πQ has type (2n−2).
By Lemma 4, each of the 27 generators through πQ belongs to Y , proving that
Q is a Q(5, 2)-quad. The quad Q has 18 lines of type (a) and 27 lines of type
(b). The 18 lines of type (a) define three grids which partition the point set
of Q.

(ii) πQ has type (2n−3, 61).
From the 27 generators through πQ, 15 are contained in Y , proving that Q is
a W (2)-quad. Clearly Q contains only lines of type (b).

(iii) πQ has type (2n−3, 41).
From the 27 generators through πQ, nine are contained in Y , proving that Q
is a grid. The quad Q contains three lines of type (a) and three lines of type
(b). Three lines of the same type partition the point set of Q.

(iv) πQ has type (2n−4, 42).
This type of quad only exists if n ≥ 4. From the 27 generators through πQ,
nine are contained in Y , proving that Q is a grid. All six lines of Q have type
(b).

By Lemma 6, it then easily follows:

Lemma 8 Consider the near polygon Gn with n ≥ 3. Then

• each point is contained in n lines of type (a) and 3n(n−1)
2

lines of type (b);

• each line of type (a) is contained in exactly n−1 Q(5, 2)-quads, 0 W (2)-quads

and 3 (n−1)(n−2)
2

grid-quads;

• each line of type (b) is contained in a unique Q(5, 2)-quad, 3(n−2) W (2)-quads

and (n−2)(3n−7)
2

grid-quads;

• each line is contained in exactly (n−1)(3n−4)
2

quads.
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In the sequel lines of type (a) in Gn, n ≥ 3, will be called special, while lines
of type (b) are called ordinary. Clearly, a line is special if and only if it is not
contained in a W (2)-quad. For every permutation σ of {0, . . . , 2n−1} and for every
λ0, . . . , λ2n−1 ∈ GF(4)∗, the linear transformation of V (2n, 4) defined by ēi 7→ λiēσ(i),
i ∈ {0, . . . , 2n−1}, determines an automorphism of Gn. Using these automorphisms
it is easily seen that any two lines of the same type are in the same Aut(Gn)-orbit.
Similarly, any two quads of the same type are contained in the same Aut(Gn)-orbit.
Since a special line can never be mapped to an ordinary line, Aut(Gn) has two orbits
on the set of lines and three or four orbits on the set of quads depending on whether
n = 3 or n ≥ 4. In Section 4 we will determine Aut(Gn).

Remark. The above remarks on the orbits of Aut(Gn), n ≥ 3, do not hold for G2.
Since G2

∼= Q(5, 2) all lines are in the same orbit.

3.5 Some properties of Gn

Lemma 9 The near 2n-gon Gn, n ≥ 1, has order (s, t) = (2, 3n2−n−2
2

) and v =
3n·(2n)!
2n·n!

points.

Proof. Clearly, the lemma holds if n ∈ {1, 2}. So suppose that n ≥ 3. H(2n − 1, 4)

has exactly 3n·(2n)!
2n·n!

good subspaces of type (2n). We noticed earlier that every line
is incident with exactly s + 1 = 3 points, and by Lemma 8, it follows that t + 1 =
n + 3n(n−1)

2
. �

Lemma 10 Let F be a geodetically closed sub near polygon of Gn isomophic to Gk,
k ≥ 2, and let x denote an arbitrary point of F . Then πF has type (2n−k) and
precisely k from the n special lines through x are contained in F .

Proof. Recall that no near polygon of type Hl, l ≥ 0, has a Q(5, 2)-quad. If
F ∼= Hl ×A for some l ≥ 1 and some dense near 2(k − l)-gon A, then F has a line
that is not contained in a Q(5, 2)-quad, contradicting Lemma 8. By the proof of
Theorem 2, it then follows that that πF has type (2n−k). Lemma 6 now allows us
to count the number of special lines through x which are also contained in F . It is
easily seen that this number equals k. �

Lemma 11 If L1, . . . , Lk are different special lines of Gn, n ≥ 3, through a fixed
point x, then C(L1, . . . , Lk) ∼= Gk.

Proof. Put F = C(L1, . . . , Lk). By Corollary 2, πF = πL1
∩ · · · ∩ πLk

. Every πLi
,

i ∈ {1, . . . , k}, is a good subspace of type (2n−1) contained in the good subspace of
type (2n) associated with x. Hence πF = πL1

∩ · · · ∩ πLk
is a good subspace of type

(2n−k). By Theorem 2, F ∼= H0 × · · · × H0
︸ ︷︷ ︸

n−k

×Gk
∼= Gk. �
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Lemma 12 Let F be a geodetically closed sub near 2(n − 1)-gon of Gn, n ≥ 3.

(a) If F ∼= Gn−1, then F is big in Gn.

(b) If F is big in Gn, then F ∼= Gn−1 and πF has type (21).

Proof.

(a) If F ∼= Gn−1, then the total number of points at distance at most 1 from F
is equal to |F| · (1 + 2(t − tF )) which is exactly the total number of points in
Gn. Hence F is big in Gn.

(b) Take a line L intersecting F in a point, then L is contained in precisely
(n−1)(3n−4)

2
quads, see Lemma 8. Since F is big, each of these (n−1)(3n−4)

2
quads

meets F in a line. Hence tF + 1 = (n−1)(3n−4)
2

. Since F is a geodetically closed
sub near 2(n−1)-gon, πF has type ((2k)1) for a certain k ∈ {1, . . . , n}. By The-

orem 2, F ∼= Hk−1×Gn−k. Hence (n−1)(3n−4)
2

= tF +1 = k(k−1)
2

+ (n−k)(3n−3k−1)
2

or (k − 1)(6n − 4k − 4) = 0. Now 6n − 4k − 4 = 4(n − k) + 2n − 4 > 0 since
n ≥ 3. Hence k = 1, F ∼= Gn−1 and πF has type (21). �

4 Determination of Aut(Gn), n ≥ 3

Let n ≥ 3 and let B denote the set of all big geodetically closed sub near 2(n − 1)-
gons of Gn isomorphic to Gn−1, or equivalently, the set of all geodetically closed
sub near polygons F for which πF has type (21). Consider the following relation R

on the elements of B: (F1,F2) ∈ R ⇔ (F1 = F2) or (F1 ∩ F2 = ∅ and every line
meeting F1 and F2 is special).

Lemma 13 The relation R is an equivalence relation and each equivalence class
contains exactly three elements.

Proof. For every element F of B, let CF denote the set of all elements F ′ ∈ B

satisfying (F ,F ′) ∈ R. If F1 and F2 are two elements of B such that πF1
= 〈ēi+α1ēj〉

and πF2
= 〈ēi + α2ēj〉, then one readily verifies that (F1,F2) ∈ R. Hence |CF | ≥ 3

for every F ∈ B. It now suffices to prove that |CF | ≤ 3. Let L denote an arbitrary
special line intersecting F in a point. If F ′ is an element of CF , then F ′ intersects
L in a point. Now, each point x on L is contained in at most one element of CF ,
namely the element of B generated by the n − 1 special lines through x different
from L. Hence |CF | ≤ 3. This proves our lemma. �

Clearly the equivalence classes are in bijective correspondence with the pairs {i, j} ⊆
{0, . . . , 2n−1}. Consider now the graph Γ whose vertices are the equivalence classes,
with two classes C1 and C2 adjacent if and only if F1∩F2 = ∅ for every F1 ∈ C1 and
every F2 ∈ C2. Clearly two vertices are adjacent if and only if the corresponding
pairs have one element in common. Hence, Γ is a triangular graph.

If F1 and F2 are two elements of B satisfying πF1
= 〈ē0 + rē1〉 and πF2

= 〈ē0 + sē1〉,
r 6= s, then F3 := RF2

(F1) (recall the definition of RF2
given in Section 2.2) is the

unique element of CF1
different from F1 and F2; hence πF3

= 〈ē0 + (r + s)ē1〉.
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Lemma 14 If F1 and F2 are two elements of B satisfying πF1
= 〈ē0 + rē1〉 and

πF2
= 〈ē0 + sē2〉, then F3 := RF2

(F1) satisfies πF3
= 〈ē1 + r−1sē2〉.

Proof. Every point p of F1 is of the form 〈ē0 + rē1, ē2 + tēi, v̄3, · · · , v̄n〉 for some
i ∈ {3, . . . , 2n − 1}, some t ∈ GF(4)∗ and some vectors v̄j , j ∈ {3, . . . , n}, of weight
2. The unique line L through p intersecting F2 is then equal to 〈ē0 + rē1 + sē2 +
stēi, v̄3, · · · , v̄n〉. The point 〈ē0 + stēi, ē1 + r−1sē2, v̄3, · · · , v̄n〉 of L is not contained
in F1 ∪ F2 and hence belongs to F3. Considering all possibilities for i, t and v̄j ,
j ∈ {3, . . . , 2n − 1}, we easily see that πF3

= 〈ē1 + r−1sē2〉. �

Theorem 3 For every permutation φ of {0, . . . , 2n − 1}, every automorphism θ of
GF(4), and all λ0, . . . , λ2n−1 ∈ GF(4)∗, the semilinear map V (2n, 4) → V (2n, 4) :
∑

αiēi 7→
∑

λiα
θ
i ēφ(i) induces an automorphism of Gn. Conversely, every automor-

phism of Gn, n ≥ 3, is obtained in this way.

Proof. Clearly every semilinear map V (2n, 4) → V (2n, 4) :
∑

αiēi 7→
∑

λiα
θ
i ēφ(i)

induces an automorphism of Gn. We will now prove that every µ ∈ Aut(Gn) is
derived from a semilinear map. The action of µ on the set B determines an action
on the vertices of Γ. Clearly, that action permutes the 2n maximal cliques of size
2n − 1 in Γ. Thus, there exists a permutation φ of {0, . . . , 2n − 1} such that, if
C is the equivalence class corresponding to the pair {i, j}, then µ(C) is the class
corresponding to {φ(i), φ(j)}. Now, fix i, j ∈ {0, . . . , 2n − 1} with i 6= j. For
all r ∈ GF(4)∗, µ maps the element 〈ēi + rēj〉 of B to an element of the form
〈ēφ(i) + r′ēφ(j)〉 (notice that we identify each element F ∈ B with πF); hence there
exists an εij ∈ {1, 2} and a λij ∈ GF(4)∗ such that µ(〈ēi +rēj〉) = 〈ēφ(i)+λijr

εij ēφ(j)〉
for all r ∈ GF (4)∗. Clearly, λji = λ−1

ij and εji = εij for all i, j ∈ {0, . . . , 2n − 1}
with i 6= j. Put λii equal to 1 for all i ∈ {0, . . . , 2n − 1}. Now take mutually
distinct i, j, k ∈ {0, . . . , 2n − 1}. For all r, s ∈ GF(4)∗, the reflection of 〈ēi +
rēj〉 around 〈ēi + sēk〉 equals 〈ēj + r−1sēk〉. Since µ ∈ Aut(Gn), the reflection of
〈ēφ(i) + λijr

εij ēφ(j)〉 around 〈ēφ(i) + λiks
εik ēφ(k)〉 equals 〈ēφ(j) + λjk(r

−1s)εjk ēφ(k)〉, or
equivalently, λ−1

ij r−εijλiks
εik = λjkr

−εjksεjk . Since this holds for all r, s ∈ GF(4)∗,
λijλjk = λik, εij = εjk and εik = εjk. It now easily follows that εij = ε01 = ε and
λij = λ−1

0i λ0j for all i, j ∈ {0, . . . , 2n − 1} with i 6= j. For all r ∈ GF(4)∗ and
all j, k ∈ {0, . . . , 2n − 1} with j 6= k, µ(〈ēj + rēk〉) = 〈ēφ(j) + λ−1

0j λ0kr
εēφ(k)〉 =

〈λ0j ēφ(j) + λ0kr
εēφ(k)〉. The action of µ on the elements of B completely determines

the action of µ on the points of Gn. For, if p is a point of Gn, then µ(p) =
⋂

µ(F)
where F ranges over all the n elements of B through p. Hence µ is induced by the
semilinear map

∑
αiēi 7→

∑
λ0iα

ε
i ēφ(i). �

Remark. We have |Aut(Gn)| = 2 · 32n−1 · (2n)!. The condition n ≥ 3 in Theorem
3 is necessarily. For n = 2, the natural distinction between lines of type (a) and
lines of type (b) disappears, see Section 3.4. Since G2

∼= Q(5, 2), |Aut(G2)| =
|PΓU(4, 4)| = 103680, while 2 · 33 · 4! = 1296.
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5 Spreads in Gn

For two lines K and L of a near polygon, let d(K, L) denote the minimal distance
between a point of K and a point of L. By Lemma 1 of [2], one of the following
possibilities occurs:

(a) there exist unique points k ∈ K and l ∈ L such that d(K, L) = d(k, l);

(b) for every point k ∈ K there exists a unique point l ∈ L such that d(K, L) =
d(k, l).

If condition (b) is satisfied, then K and L are called parallel. A spread of a near
polygon is a set of lines partitioning the point set. A spread is called admissible if
every two lines of it are parallel. Clearly, every spread of a generalized quadrangle
is admissible. A spread S of a near polygon A is called a spread of symmetry if
for every line K of S and for every two points k1 and k2 on K, there exists an
automorphism of A fixing each line of S and mapping k1 to k2. We easily see that
every spread of symmetry is an admissible spread. In this section, we will determine
all admissible spreads of Gn, n ≥ 2. For n ≥ 3 it will turn out that all admissible
spreads are also spreads of symmetry. Suppose first that n = 2. The generalized
quadrangle G2 is the dual polar space HD(3, 4) and every spread of G2 corresponds
to a set M of points on the Hermitian variety H = H(3, 4). By [3], there are two
types of spreads in HD(3, 4).

(i) If π is a nontangent plane of PG(3, 4), then M := π ∩ H defines a spread of
HD(3, 4).

(ii) Let ζ denote the Hermitian polarity associated with H(3, 4), let L be a line
of PG(3, 4) intersecting H in three points and let π be a nontangent plane
through l. Then M := [(π ∩ H) ∪ (Lζ ∩ H)] \ (L ∩ H) defines a spread of
HD(3, 4).

As remarked earlier both spreads are admissible, but by [5] only the spreads of type
(i) are spreads of symmetry. We now determine all admissible spreads in Gn, n ≥ 3.

For every i, j ∈ {0, . . . , 2n − 1} with i 6= j, let Ai,j denote the set of all good
subspaces α on H = H(2n − 1, 4) that satisfy the following properties:

• α has type (2n−1);

• 〈〈ēi + rēj〉, α〉 is a generator of H for every r ∈ GF(4)∗.

Clearly,
⋃

0≤i<j≤2n−1 Ai,j is the set of all special lines of Gn. For every i ∈ {0, . . . , 2n−
1}, we put Bi :=

⋃

j 6=i Ai,j . Obviously Bi consists of all good subspaces of type (2n−1)
contained in 〈ēi〉

ζ ∩ H . Here ζ denotes the Hermitian polarity associated with H .
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Lemma 15 Let n ≥ 2. For every i ∈ {0, . . . , 2n − 1}, Bi is a spread of symmetry
of Gn. As a consequence Bi is also an admissible spread.

Proof. If π is a point of Gn, i.e. a good subspace of type (2n), then π contains a
unique point of the form 〈ēi + rēj〉. Clearly 〈(X ∩ π) \ {〈ēi + rēj〉}〉 is the unique
line of Bi incident with π. This proves that Bi is a spread. For every λ ∈ GF(4)∗,
the linear map ēi 7→ λēi, ēj 7→ ēj for all j 6= i, induces an automorphism θλ of Gn

which fixes each line of S. Clearly, {θλ|λ ∈ GF(4)∗} acts regularly on every line of
Bi, proving that Bi is a spread of symmetry. �

Lemma 16 (Theorem 5 of [8]) Let S be an admissible spread of a near polygon
A, let L ∈ S and let F be a geodetically closed sub near polygon of A through L.
Then every line of S which meets F is completely contained in F . As a consequence,
the set of lines of S contained in F is an admissible spread of F .

Lemma 17 An admissible spread S of Gn, n ≥ 3, only contains special lines.

Proof. Suppose that S has an ordinary line L and let x denote an arbitrary point
of L. By Lemmas 8 and 10, there exists a unique pair {L1, L2} of special lines
through x such that L ∈ C(L1, L2). Let L3 denote a special line through x different
from L1 and L2 and let H denote the hex C(L1, L2, L3). By Lemma 11, H ∼= G3.
By Lemma 16, the spread S induces an admissible spread S ′ in H. By Lemma 8,
there exist two W (2)-quads Q1 and Q2 in H through the line L. Let Si, i ∈ {1, 2},
denote the spread of Qi induced by S ′. Let L′ be an element of S2 different from L,
let Q3 denote a Q(5, 2)-quad of H through L′ and let S3 denote the spread of Q3

induced by S ′. Now, Q1 and Q3 are disjoint, and since Q3 is big in H, every point
of Q1 has distance one to a unique point of Q3. As a consequence Q1 projects to a
subGQ Q4 of Q3 isomorphic to W (2). If y ∈ Q4 then y is collinear with a unique
point y′ of Q1 and y′ is contained in a unique line M of S1. The unique line of S3

through y is contained in the quads C(M, y) and Q3 and hence coincides with the
line C(M, y) ∩ Q3 which is precisely the projection of M on Q3. As a consequence
the spread S1 projects to a spread S4 of Q4 and S4 ⊆ S3. Let z be a point of Q3\Q4.
Through z there is a line of S3 and five lines intersecting an element of S4. (Notice
that |S4| = 5 since Q4

∼= W (2).) Hence, the point z of Q3 is contained in at least
six lines, contradicting Q3

∼= G2. �

Lemma 18 Let S be a spread of Gn, n ≥ 3, satisfying

(a) every line of S is special,

(b) if a grid-quad contains one line of S, then it contains exactly three lines of S.

Then S = Bi for a certain i ∈ {0, . . . , 2n − 1}.

Proof. Suppose that S contains a special line K of the set A2n−2,2n−1, e.g. let K =
〈〈α0ē0+α1ē1〉, 〈α2ē2+α3ē3〉, . . . , 〈α2n−4ē2n−4+α2n−3ē2n−3〉〉 for certain α0, . . . , α2n−3 ∈
GF(4)∗. Now, for every λ ∈ GF(4)∗, the grid-quad Q for which πQ = 〈〈α0ē0 +
α1ē1 + λα2ē2 + λα3ē3〉, . . . , 〈α2n−4ē2n−4 + α2n−3ē2n−3〉〉 contains K. Hence, the
two other lines in Q disjoint from K are also contained in S, or equivalently,
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〈〈α0ē0 + λα2ē2〉, 〈α1ē1 + λα3ē3〉, . . . , 〈α2n−4ē2n−4 + α2n−3ē2n−3〉〉 ∈ S and 〈〈α0ē0 +
λα3ē3〉, 〈α1ē1 + λα2ē2〉, . . . , 〈α2n−4ē2n−4 + α2n−3ē2n−3〉〉 ∈ S. Applying this several
times, we see that every line of A2n−2,2n−1 belongs to S. Hence S is a union of sets

of the form Ai,j . Since S = |Y |
3

, S is the union of 2n−1 sets of the form Ai,j. For all
i, j, k, l ∈ {0, . . . , 2n − 1} with i 6= j, k 6= l and {i, j} ∩ {k, l} = ∅, Ai,j ∪Ak,l always
contains two intersecting lines. The lemma now easily follows. �

Corollary 3 The spreads Bi, i ∈ {0, . . . , 2n − 1}, are the only admissible spreads
in Gn, n ≥ 3.

Proof. This follows immediately from Lemmas 15, 16, 17 and 18. �

6 Glued near polygons derived from Gn

By ”glueing” near polygons it is possible to derive new near polygons. This proce-
dure was described in [6] for generalized quadrangles and in [8] for the general case.
We recall the construction.

Let A1 and A2 be two near polygons both with constant line size s+1, and sup-
pose that their respective diameters d1 and d2 are at least 2. Let Si = {L

(i)
1 , . . . , L(i)

αi
},

i ∈ {1, 2}, be an admissible spread of Ai. In Si, a special line L
(i)
1 is chosen which

we will call the base line. For every i ∈ {1, 2}, for all j, k ∈ {1, . . . , αi} and for

every x ∈ L
(i)
j , let p

(i)
j,k(x) denote the unique point of L

(i)
k nearest to x. We put

Φ
(i)
j,k := p

(i)
k,1◦p

(i)
j,k◦p

(i)
1,j. For every i ∈ {1, 2}, the group ΠSi

(L
(i)
1 ) := 〈Φ

(i)
j,k|1 ≤ j, k ≤ αi〉

is called the group of projectivities of L
(i)
1 with respect to Si.

For every bijection θ between L
(1)
1 and L

(2)
1 , we consider the following graph Γ

with vertex set L
(1)
1 × S1 × S2. Two vertices (x, L

(1)
i1

, L
(2)
j1

) and (y, L
(1)
i2

, L
(2)
j2

) are
adjacent if and only if exactly one of the following three conditions is satisfied:

(A) L
(1)
i1

= L
(1)
i2

, L
(2)
j1

= L
(2)
j2

and x 6= y;

(B) L
(2)
j1

= L
(2)
j2

, d(L
(1)
i1

, L
(1)
i2

) = 1 and Φ
(1)
i1,i2

(x) = y;

(C) L
(1)
i1

= L
(1)
i2

, d(L
(2)
j1

, L
(2)
j2

) = 1 and Φ
(2)
j1,j2

◦ θ(x) = θ(y).

By [8], the graph Γ has diameter d1 + d2 − 1 and every two adjacent vertices are
contained in a unique maximal clique. Considering these maximal cliques as lines,
we obtain a partial linear space A1 ⊗ A2. If A1 ⊗ A2 is a near polygon, then it
is called a glued near polygon. This precisely happens when the condition in the
following theorem is satisfied.

Theorem 4 (Theorem 14 of [8]) The partial linear space A1⊗A2 is a glued near

polygon if and only if the commutator [ΠS1
(L

(1)
1 ), θ−1ΠS2

(L
(2)
1 )θ] is the trivial group

of permutations of L
(1)
1 .
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If A1
∼= B1 × L and if S1 = {Lx|x is a point of B1} with Lx := {(x, y)|y ∈ L} (we

call such a spread a trivial spread of A1), then ΠS1
(L

(1)
1 ) is the trivial group and

A1 ⊗ A2 is a near polygon. In fact we have A1 ⊗ A2
∼= B1 × A2. The following

theorem shows the importance of the notion ”spread of symmetry”.

Theorem 5 (Theorems 11 and 16 of [8]) Suppose that each line of A1 and A2

is incident with three points and that none of the spreads S1 and S2 is trivial. Then
A1⊗A2 is a near polygon (for an arbitrary choice of the base lines and the bijection
θ between these base lines) if and only if S1 and S2 are spreads of symmetry.

Now, suppose that A1 and A2 are fixed near polygons with three points on each
line and that S1 and S2 are fixed nontrivial spreads of symmetry in A1 and A2,
respectively. By [8] every near polygon which can be obtained for a certain choice
of the base lines can always be obtained for any other choice of the base lines (by

changing the map θ accordingly). Hence we may also fix base lines L
(1)
1 ∈ S1 and

L
(2)
1 ∈ S2. For every bijection θ between L

(1)
1 and L

(2)
1 , there then exists a near

polygon A1 ⊗θ A2. By reasons of symmetry, all these near polygons are isomorphic
if the group of automorphisms of A1 which fix S1 and the base line L

(1)
1 ∈ S1 induces

the full group of permutations on this base line.

Lemma 19 Let S be a spread of symmetry of Gn, n ≥ 2, and let K be a line of S.
Then the group of automorphisms of Gn fixing S and K ∈ S induces the full group
of permutations on the line K.

Proof. Since there is up to an isomorphism only one spread of symmetry in Gn,
n ≥ 2, we may suppose that S is the spread B0 and that K is the line 〈〈ē2 +
ē3〉, · · · , 〈ē2n−2 + ē2n−1〉〉. In Theorem 3 we determined all automorphisms of Gn,
n ≥ 3. For n = 2, the maps defined there still are automorphisms (but not all
automorphisms are of this form). There are now precisely 6 automorphisms if we put
λ1, λ2, λ3, . . . , λ2n−1 equal to 1 and φ equal to the trivial permutation of {0, . . . , 2n−
1}. We easily see that these six automorphisms induce the full group of permutations
on the line K. �

By the results of this section and the fact that there is up to an isomorphism only
one spread of symmetry in Gn, n ≥ 2, we then have:

Corollary 4 For all positive integers m, n ≥ 2, there exists a unique glued near
polygon of the form Gm ⊗ Gn.

Remark. Also the near polygons HD(2n − 1, 4), n ≥ 3, and the near hexagon
derived from the extended ternary Golay code (see [12]) are known to have spreads
of symmetry. Hence, more glued near polygons can be derived from Gn.



New near polygons from Hermitian varieties 577

References

[1] A. E. Brouwer, A. M. Cohen, J. I. Hall, and H. A. Wilbrink. Near polygons
and Fischer spaces. Geom. Dedicata, 49:349–368, 1994.

[2] A. E. Brouwer and H. A. Wilbrink. The structure of near polygons with quads.
Geom. Dedicata, 14:145–176, 1983.

[3] A. E. Brouwer and H. A. Wilbrink. Ovoids and fans in the generalized quad-
rangle Q(4, 2). Geom. Dedicata, 36:121–124, 1990.

[4] P. J. Cameron. Dual polar spaces. Geom. Dedicata, 12:75–86, 1982.

[5] B. De Bruyn. Generalized Quadrangles with a spread of symmetry. Europ. J.
Comb., 20:759–771, 1999.

[6] B. De Bruyn. On near hexagons and spreads of generalized quadrangles. J.
Alg. Comb., 11:211–226, 2000.

[7] B. De Bruyn. Glued near polygons. Europ. J. Comb., 22:973–981, 2001.

[8] B. De Bruyn. The glueing of near polygons. To appear in Bull. Belg. Math.
Soc. - Simon Stevin (See also http://cage.rug.ac.be/geometry/preprints)

[9] B. De Bruyn. Near polygons having a big sub near polygon iso-
morphic to Hn. Submitted to Annals of Combinatorics. (See also
http://cage.rug.ac.be/geometry/preprints)

[10] B. De Bruyn. Near polygons having a big sub near polygon isomorphic
to Gn. Submitted to Bull. Belg. Math. Soc. - Simon Stevin (See also
http://cage.rug.ac.be/geometry/preprints)

[11] S. E. Payne and J. A. Thas. Finite Generalized Quadrangles, volume 110 of
Research Notes in Mathematics. Pitman, Boston, 1984.

[12] E. E. Shult and A. Yanushka. Near n-gons and line systems. Geom. Dedicata,
9:1–72, 1980.
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ematics. Birkhäuser, Basel, Boston, Berlin, 1998.

Ghent University,
Department of Pure Mathematics and Computeralgebra,
Galglaan 2, B-9000 Gent, Belgium,
bdb@cage.ugent.be


