# New near polygons from Hermitian varieties 

Bart De Bruyn*


#### Abstract

We define a new class of dense near polygons. The unique near $2 n$-gon, $n \geq 0$, of this class will be denoted by $\mathbb{G}_{n}$. We will study the geodetically closed sub near polygons of $\mathbb{G}_{n}$. We will also determine the complete automorphism group and all spreads of symmetry. New glued near polygons can be constructed from these spreads of symmetry.


## 1 Definitions and Overview

### 1.1 Basic definitions

A near polygon is a partial linear space $(\mathcal{P}, \mathcal{L}, \mathrm{I}), \mathrm{I} \subseteq \mathcal{P} \times \mathcal{L}$, with the property that for every point $p \in \mathcal{P}$ and for every line $L \in \mathcal{L}$ there exists a unique point on $L$ nearest to $p$. Here distances $\mathrm{d}(\cdot, \cdot)$ are measured in the collinearity graph. If $n$ is the maximal distance between two points, then the near polygon is called a near $2 n$ gon. A near 0 -gon consists of one point, a near 2 -gon is a line, and the class of near quadrangles coincides with the class of generalized quadrangles (GQ's) which were introduced by Tits in [13]. Near polygons themselves were introduced by Shult and Yanushka in [12] because of their relationship with certain line systems in Euclidean spaces. Generalized $2 n$-gons ([14]) and dual polar spaces ([4]) form two important classes of near polygons.

A set $X$ of points in a near polygon $\mathcal{S}$ is called a subspace if every line meeting $X$ in at least two points is completely contained in $X$. A subspace $X$ is called geodetically closed if every point on a shortest path between two points of $X$ is as

[^0]well contained in $X$. Having a subspace $X$, we can define a subgeometry $\mathcal{S}_{X}$ of $\mathcal{S}$ by considering only those points and lines of $\mathcal{S}$ which are completely contained in $X$. If $X$ is geodetically closed, then $\mathcal{S}_{X}$ clearly is a sub near polygon of $\mathcal{S}$. A geodetically closed sub near polygon $\mathcal{S}_{X} \neq \mathcal{S}$ is called big if every point outside $\mathcal{S}_{X}$ is collinear with a unique point of $\mathcal{S}_{X}$. If a geodetically closed sub near polygon $\mathcal{S}_{X}$ is a nondegenerate generalized quadrangle, then $X$ (and often also $\mathcal{S}_{X}$ ) will be called a quad. Sufficient conditions for the existence of quads were given in [12]. Every set $X$ of points is contained in a unique minimal geodetically closed sub near polygon $\mathcal{C}(X)$, namely the intersection of all geodetically closed sub near polygons through $X$. We call $\mathcal{C}(X)$ the geodetic closure of $X$. If $X_{1}, \ldots, X_{k}$ are sets of points, then $\mathcal{C}\left(X_{1} \cup \cdots \cup X_{k}\right)$ is also denoted by $\mathcal{C}\left(X_{1}, \ldots, X_{k}\right)$. If one of the arguments of $\mathcal{C}$ is a singleton $\{x\}$, we will often omit the braces and write $\mathcal{C}(\cdots, x, \cdots)$ instead of $\mathcal{C}(\cdots,\{x\}, \cdots)$.

A near polygon is said to have order $(s, t)$ if every line is incident with exactly $s+1$ points and if every point is incident with exactly $t+1$ lines. A near polygon is called dense if every line is incident with at least three points and if every two points at distance 2 have at least two common neighbours. Dense near polygons satisfy several nice properties. By Lemma 19 of [2], every point of a dense near polygon $\mathcal{S}$ is incident with the same number of lines; we denote this number by $t_{\mathcal{S}}+1$. If $x$ and $y$ are two points of a dense near polygon, then by Theorem 4 of [2] $\mathcal{C}(x, y)$ is the unique geodetically closed sub near $[2 \cdot d(x, y)]$-gon through $x$ and $y$. Geodetically closed sub near hexagons of a dense near polygon are called hexes.

### 1.2 Sub near polygons of dual polar spaces

For every polar space $P$ of rank at least 2 a dual polar space $P^{D}$ can be defined. The points, respectively lines, of $P^{D}$ are the maximal, respectively next-to-maximal, totally isotropic subspaces of $P$ with reverse containment as incidence relation. Dual polar spaces are near polygons, see e.g. [4]. If $\pi$ is a totally isotropic subspace of $P$, then the set $U_{\pi}$ of all maximal totally isotropic subspaces through $\pi$ is a geodetically closed subspace of $P^{D}$. Conversely, every geodetically closed subspace of $P^{D}$ is obtained this way. We have noticed earlier that every geodetically closed subspace induces a sub near polygon. The converse however is not necessarily true. By Section 3 of [1], there exist sets $U$, not of the form $U_{\pi}$, whose elements are maximal totally isotropic subspaces of a polar space $P$ such that $\left(P^{D}\right)_{U}$ is a near polygon. The sets $U$ considered in [1] have one property in common: they consist of all maximal totally isotropic subspaces having nonempty intersection with a given set $A$ of points of the polar space. Despite this restriction, the authors were able to construct several new near polygons. E.g., by considering the set $A$ of all points of weight 2 on the Hermitian variety $H(5,4)$ a new dense near hexagon $\mathbb{J}_{3}$ was found. There is now an obvious way to generalize this construction: take $A$ as the set of all points of weight 2 on the Hermitian variety $H(2 n-1,4)$. Again a near polygon $\mathbb{J}_{n}$ is obtained, but for $n \geq 4 \mathbb{J}_{n}$ is never dense. In Section 3.2 we will generalize the construction of $\mathbb{J}_{3}$ in such a way that an infinite class $\mathbb{G}_{n}, n \geq 0$, of dense near polygons is obtained. The near $2 n$-gon $\mathbb{G}_{n}$ is still a sub near polygon of $H^{D}(2 n-1,4)$ since it is determined by the set $U_{n}$ of all generators of $H(2 n-1,4)$ which contain exactly $n$ points of weight 2 . Notice that in the case $n=3$, the condition "exactly three points of weight 2 " is equivalent to "at least one point of weight 2 ".

### 1.3 Overview

After we have introduced the near polygon $\mathbb{G}_{n}, n \geq 0$, in Section 3.2, we will study the geodetically closed sub near polygons of $\mathbb{G}_{n}$ in Sections 3.3, 3.4 and 3.5. It turns out that with every geodetically closed sub near polygon there corresponds a subspace on $H(2 n-1,4)$ with special properties. These "good subspaces" of $H(2 n-1,4)$ are studied in Section 3.1. Using the geodetically closed sub near polygons, we are able to determine $\operatorname{Aut}\left(\mathbb{G}_{n}\right)$ in Section 4. In Section 5 we determine all spreads of symmetry of $\mathbb{G}_{n}$. In Section 6 we will show that these spreads of symmetry give rise to new glued near polygons. The study of $\mathbb{G}_{n}$ performed in the present paper will allow us in [10] to determine all dense near $2(n+1)$-gons which have $\mathbb{G}_{n}$ as a big geodetically closed sub near polygon.

## 2 Some notions regarding near polygons

Before defining $\mathbb{G}_{n}$, we recall some relevant notions and results from the literature.

### 2.1 Direct product

Let $\mathcal{S}_{1}=\left(\mathcal{P}_{1}, \mathcal{L}_{1}, \mathrm{I}_{1}\right)$ and $\mathcal{S}_{2}=\left(\mathcal{P}_{2}, \mathcal{L}_{2}, \mathrm{I}_{2}\right)$ be two near polygons. A new near polygon $\mathcal{S}=(\mathcal{P}, \mathcal{L}$, I $)$ can be derived from $\mathcal{S}_{1}$ and $\mathcal{S}_{2}$. It is called the direct product of $\mathcal{S}_{1}$ and $\mathcal{S}_{2}$ and is denoted by $\mathcal{S}_{1} \times \mathcal{S}_{2}$. We have: $\mathcal{P}=\mathcal{P}_{1} \times \mathcal{P}_{2}, \mathcal{L}=\left(\mathcal{P}_{1} \times \mathcal{L}_{2}\right) \cup\left(\mathcal{L}_{1} \times \mathcal{P}_{2}\right)$, the point $(x, y)$ of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is incident with the line $(z, L) \in \mathcal{P}_{1} \times \mathcal{L}_{2}$ if and only if $x=z$ and $y \mathrm{I}_{2} L$, the point $(x, y)$ of $\mathcal{S}_{1} \times \mathcal{S}_{2}$ is incident with the line $(M, u) \in \mathcal{L}_{1} \times \mathcal{P}_{2}$ if and only if $x \mathrm{I}_{1} M$ and $y=u$. If $\mathcal{S}_{i}, i \in\{1,2\}$, is a near $2 n_{i}$-gon then the direct product $\mathcal{S}=\mathcal{S}_{1} \times \mathcal{S}_{2}$ is a near $2\left(n_{1}+n_{2}\right)$-gon. Since $\mathcal{S}_{1} \times \mathcal{S}_{2} \cong \mathcal{S}_{2} \times \mathcal{S}_{1}$ and $\left(\mathcal{S}_{1} \times \mathcal{S}_{2}\right) \times \mathcal{S}_{3} \cong \mathcal{S}_{1} \times\left(\mathcal{S}_{2} \times \mathcal{S}_{3}\right)$, also the direct product of $k \geq 1$ near polygons $\mathcal{S}_{1}, \ldots, \mathcal{S}_{k}$ is well-defined.

### 2.2 Big geodetically closed sub near polygons

Let $\mathcal{S}$ be a dense near $2 n$-gon. Recall that a geodetically closed sub near $2(n-1)$-gon $\mathcal{F}$ of $\mathcal{S}$ is called big if every point $x$ outside $\mathcal{F}$ is collinear with a unique point $\pi(x)$ of $\mathcal{F}$. If $x \in \mathcal{F}$, then we put $\pi(x)$ equal to $x$. The map $\pi$ is called the projection on $\mathcal{F}$. Suppose now that every line of $\mathcal{S}$ is incident with exactly three points. For every big geodetically closed sub near $2(n-1)$-gon $\mathcal{F}$ of $\mathcal{S}$, we then can define the following permutation $\mathcal{R}_{\mathcal{F}}$ on the point set of $\mathcal{S}$ : if $x \in \mathcal{F}$, then we put $\mathcal{R}_{\mathcal{F}}(x):=x$; if $x \notin \mathcal{F}$, then we put $\mathcal{R}_{\mathcal{F}}(x)$ equal to unique third point of the line $x \pi(x)$. By Section 4 of [1], $\mathcal{R}_{\mathcal{F}}$ is an automorphism of order 2 of $\mathcal{S}$. We call $\mathcal{R}_{\mathcal{F}}$ the reflection around $\mathcal{F}$.

The following lemma provides a method for recognizing big geodetically closed sub near polygons.

Lemma 1 (Lemma 5 of [9]) Let $\mathcal{S}$ be a dense near $2 n$-gon, $n \geq 2$, let $\mathcal{F}$ denote a geodetically closed sub near $2(n-1)$-gon of $\mathcal{S}$ and let $x$ denote an arbitrary point of $\mathcal{F}$. Then $\mathcal{F}$ is big in $\mathcal{S}$ if and only if every quad through $x$ either is contained in $\mathcal{F}$ or intersects $\mathcal{F}$ in a line.

### 2.3 GQ's with three points on every line

If $\mathcal{S}$ is a generalized quadrangle with only lines of size 3, then one of the following possibilities occurs, see e.g. [11].

- $\mathcal{S}$ is degenerate: $\mathcal{S}$ consists of $k \geq 2$ lines of size 3 through a point.
- $\mathcal{S}$ is isomorphic to the $(3 \times 3)$-grid (i.e. the direct product of two lines of size $3)$. The $(3 \times 3)$-grid has order $(2,1)$.
- $\mathcal{S}$ is isomorphic to $W(2)$. The points and lines of $W(2)$ are the totally isotropic points and lines of a symplectic polarity in $\mathrm{PG}(3,2)$. The generalized quadrangle $W(2)$ has order $(2,2)$, or shortly order 2 .
- $\mathcal{S}$ is isomorphic to $Q(5,2)$. The points and lines of $Q(5,2)$ are the points and lines, respectively, lying on a nonsingular elliptic quadric in $\operatorname{PG}(5,2)$. The generalized quadrangle $Q(5,2)$ has order $(2,4)$. Its point-line dual is $H(3,4)$, the GQ of the points and lines of a nonsingular Hermitian variety in PG(3,4).
In the sequel, a quad which is isomorphic to a grid, $W(2)$ or $Q(5,2)$ will be called a grid-quad, a $W(2)$-quad or a $Q(5,2)$-quad.


### 2.4 The near polygons $\mathbb{H}_{n}$

The following incidence structure $\mathbb{H}_{n}=(\mathcal{P}, \mathcal{L}, \mathrm{I})$ can be constructed from a set $V$ of size $2 n+2$ :

- $\mathcal{P}$ is the set of all partitions of $V$ in $n+1$ sets of order 2 ;
- $\mathcal{L}$ is the set of all partitions of $V$ in $n-1$ sets of order 2 and 1 set of order 4;
- a point $p \in \mathcal{P}$ is incident with a line $L \in \mathcal{L}$ if and only if the partition determined by $p$ is a refinement of the partition determined by $L$.
It was noticed in [1] that $\mathbb{H}_{n}$ is a near $2 n$-gon. Every line of $\mathbb{H}_{n}$ is incident with three points and every point is incident with $\binom{n+1}{2}$ lines. The near polygon $\mathbb{H}_{0}$ is a point, $\mathbb{H}_{1}$ is the line of size 3 and $\mathbb{H}_{2}$ is isomorphic to $W(2)$. The near polygon $\mathbb{H}_{n}$, $n \geq 2$, has no $Q(5,2)$-quads.


## 3 The near polygons $\mathbb{G}_{n}$

Let the vector space $V(2 n, 4), n \geq 1$, with base $\left\{\bar{e}_{0}, \ldots, \bar{e}_{2 n-1}\right\}$ be equiped with the nonsingular Hermitian form $(\bar{x}, \bar{y})=x_{0} y_{0}^{2}+x_{1} y_{1}^{2}+\ldots+x_{2 n-1} y_{2 n-1}^{2}$, and let $H=H(2 n-1,4)$ denote the corresponding Hermitian variety in PG(2n-1,4). In the sequel we will often consider subspaces on $H$ and the dimensions which we will use for these subspaces are always projective.

### 3.1 Good subspaces on $H$

The support $S_{p}$ of a point $p=\langle\bar{x}\rangle$ of $\mathrm{PG}(2 n-1,4)$ is the set of all $i \in\{0, \ldots, 2 n-1\}$ for which $\left(\bar{x}, \bar{e}_{i}\right) \neq 0$. The number $\left|S_{p}\right|$ is called the weight of $p$. Since $\bar{x}=\sum\left(\bar{x}, \bar{e}_{i}\right) \bar{e}_{i}$, $\left|S_{p}\right|$ is equal to the number of nonzero coordinates. A point of $\operatorname{PG}(2 n-1,4)$ belongs to $H$ if and only if its weight is even. A subspace $\pi$ on $H$ is said to be good if it is generated by a (possibly empty) set $\mathcal{G}_{\pi} \subseteq H$ of points whose supports are two by two disjoint. If $\pi$ is good, then $\mathcal{G}_{\pi}$ is uniquely determined. If $\mathcal{G}_{\pi}$ contains $k_{2 i}$ points of weigth $2 i, i \in \mathbb{N} \backslash\{0\}$, then $\pi$ is said to be of type $\left(2^{k_{2}}, 4^{k_{4}}, \ldots\right)$. Let $Y$, respectively $Y^{\prime}$, denote the set of all good subspaces of dimension $n-1$, respectively $n-2$. Every element of $Y$ has type $\left(2^{n}\right)$. Every element of $Y^{\prime}$ has type $\left(2^{n-1}\right)$ or $\left(2^{n-2}, 4^{1}\right)$.

Lemma 2 If $\pi$ is a good subspace on $H$, then there exist $\pi_{1}, \pi_{2} \in Y$ such that $\pi=\pi_{1} \cap \pi_{2}$.

Proof. For every point $p=\langle\bar{x}\rangle$ of $\mathcal{G}_{\pi}$ we take two partitions $P_{p}^{1}$ and $P_{p}^{2}$ of $S_{p}$ into $\frac{\left|S_{p}\right|}{2}$ sets of size 2 in such a way that the graph $\left(S_{p}, P_{p}^{1} \cup P_{p}^{2}\right)$ is a cycle of length $\left|S_{p}\right|$ if $\left|S_{p}\right| \geq 4$. If we define $A_{p}^{k}:=\left\{\left\langle\left(\bar{x}, \bar{e}_{i}\right) \bar{e}_{i}+\left(\bar{x}, \bar{e}_{j}\right) \bar{e}_{j}\right\rangle \mid\{i, j\} \in P_{p}^{k}\right\}, k \in\{1,2\}$, then clearly $\left\langle A_{p}^{1}\right\rangle \cap\left\langle A_{p}^{2}\right\rangle=\{p\}$. If we define $A^{k}:=\cup_{p \in \mathcal{G}_{\pi}} A_{p}^{k}, k \in\{1,2\}$, then $\left\langle A^{1}\right\rangle \cap\left\langle A^{2}\right\rangle=\left\langle\mathcal{G}_{\pi}\right\rangle=\pi$. Now, let $N$ be the complement of $\bigcup_{p \in \mathcal{G}_{\pi}} S_{p}$ in $\{0, \ldots, 2 n-1\}$. Clearly $|N|$ is even. If $|N|=0$, then we put $B^{1}=B^{2}=\emptyset$. If $|N| \neq 0$, then we consider a partition $P$ of $N$ into $\frac{|N|}{2}$ sets of size 2 and an element $\alpha \in \operatorname{GF}(4)^{*} \backslash\{1\}$. We put $B^{1}:=\left\{\left\langle\bar{e}_{i}+\bar{e}_{j}\right\rangle \mid\{i, j\} \in P\right\}$ and $B^{2}:=\left\{\left\langle\bar{e}_{i}+\alpha \bar{e}_{j}\right\rangle \mid\{i, j\} \in P\right.$ and $\left.i<j\right\}$. Clearly $\left\langle B^{1}\right\rangle \cap\left\langle B^{2}\right\rangle=\emptyset$. If $\pi_{k}:=\left\langle A^{k} \cup B^{k}\right\rangle, k \in\{1,2\}$, then $\pi_{1}, \pi_{2} \in Y$ and $\pi_{1} \cap \pi_{2}=\pi$.

Lemma 3 The intersection of two good subpaces $\pi_{1}$ and $\pi_{2}$ is again a good subspace.
Proof. Consider the following graph $\Gamma$ on the vertex set $\{0, \ldots, 2 n-1\}$. Two vertices $i$ and $j$ are adjacent if and only if there exists a $p \in \mathcal{G}_{\pi_{1}} \cup \mathcal{G}_{\pi_{2}}$ such that $\{i, j\} \subseteq S_{p}$. Let $C_{1}, \ldots, C_{f}$ denote the connected components of $\Gamma$. For every $i \in\{1, \ldots, f\}$, there is at most one point $p \in \pi_{1} \cap \pi_{2}$ with $S_{p}=C_{i}$. We can always label the components of $\Gamma$ such that the following holds for a certain $f^{\prime} \in\{0, \ldots, f\}$ :
(i) for every $i$ with $1 \leq i \leq f^{\prime}$, there exists a unique point $p_{i} \in \pi_{1} \cap \pi_{2}$ with $S_{p_{i}}=C_{i} ;$
(ii) for every $i$ with $f^{\prime}<i \leq f$, there exists no point $p \in \pi_{1} \cap \pi_{2}$ with $S_{p}=C_{i}$.

It is now easily seen that $\pi_{1} \cap \pi_{2}$ is good with $\mathcal{G}_{\pi_{1} \cap \pi_{2}}=\left\{p_{i} \mid 1 \leq i \leq f^{\prime}\right\}$.

### 3.2 Description of $\mathbb{G}_{n}$

Let $X \subseteq H$ denote the set of all points of weight 2 .
Lemma 4 If $\pi$ is a generator of $H$, then $n-2 \neq|\pi \cap X| \neq n-1$.
Proof. We use induction on $n$. For $n \in\{1,2\}$, it is easily seen that every generator of $H$ contains exactly $n$ points of weight 2 . Suppose therefore that $n \geq 3$ and let $\pi$ be a generator containing the point $\langle\bar{a}\rangle=\left\langle\left(a_{0}, a_{1}, 0,0, \ldots, 0\right)\right\rangle$. The points of $\pi \cap X$ different from $\langle\bar{a}\rangle$ are all contained in the space $\alpha \leftrightarrow X_{0}=X_{1}=0$. The intersection $H^{\prime}:=H \cap \alpha$ is a nonsingular Hermitian variety in $\alpha$ and $\pi^{\prime}:=\pi \cap \alpha$ is a generator of $H^{\prime}$. By induction, $n-3 \neq\left|\pi^{\prime} \cap X\right| \neq n-2$; hence $n-2 \neq|\pi \cap X| \neq n-1$.

Let $H^{D}(2 n-1,4)$ denote the dual polar space correponding to $H(2 n-1,4)$. The distance $\mathrm{d}\left(\pi_{1}, \pi_{2}\right)$ between two points $\pi_{1}$ en $\pi_{2}$ of $H^{D}(2 n-1,4)$ is equal to $n-1-\operatorname{dim}\left(\pi_{1} \cap \pi_{2}\right)$, see e.g. [4]. The incidence structure ( $\left.Y, Y^{\prime}, \mathrm{I}\right)$, again with reverse containment as incidence relation $I$, is a substructure of $H^{D}(2 n-1,4)$, which we denote by $\mathbb{G}_{n}$. By Lemma 4 , every generator through an element of $Y^{\prime}$ belongs to $Y$. Hence, every line of $\mathbb{G}_{n}$ is incident with three points.

Lemma 5 Let $\pi_{1}, \pi_{2} \in Y$. The distance between $\pi_{1}$ and $\pi_{2}$ in $\mathbb{G}_{n}$ is equal to $d\left(\pi_{1}, \pi_{2}\right)$.

Proof. The proof is by induction. If $\mathrm{d}\left(\pi_{1}, \pi_{2}\right)=1$, then $\pi_{1} \cap \pi_{2}$ is a good subspace of dimension $n-2$ and hence belongs to $Y^{\prime}$. As a consequence also the $\mathbb{G}_{n}$-distance between $\pi_{1}$ and $\pi_{2}$ is equal to 1 . Suppose therefore that $\mathrm{d}\left(\pi_{1}, \pi_{2}\right) \geq 2$. Take an $x \in X \cap\left(\pi_{1} \backslash\left(\pi_{1} \cap \pi_{2}\right)\right)$ and let $\pi_{3}$ be the unique generator through $x$ intersecting $\pi_{2}$ in an ( $n-2$ )-dimensional subspace. Since there are at least $n-2$ elements in $X \cap \pi_{2} H$-collinear with $x,\left|X \cap \pi_{3}\right| \geq n-1$. By Lemma $4, \pi_{3} \in Y$. Since d $\left(\pi_{1}, \pi_{3}\right)=$ $\mathrm{d}\left(\pi_{1}, \pi_{2}\right)-1$, the distance between $\pi_{1}$ and $\pi_{3}$ in $\mathbb{G}_{n}$ is equal to $\mathrm{d}\left(\pi_{1}, \pi_{2}\right)-1$. Since $\pi_{2}$ and $\pi_{3}$ are collinear in $\mathbb{G}_{n}$, the distance between $\pi_{1}$ and $\pi_{2}$ in $\mathbb{G}_{n}$ is at most $\mathrm{d}\left(\pi_{1}, \pi_{2}\right)$. Since $\mathbb{G}_{n}$ is embedded in $H^{D}(2 n-1,4)$, this distance is at least $\mathrm{d}\left(\pi_{1}, \pi_{2}\right)$. This proves our lemma.

Corollary $1 \mathbb{G}_{n}$ is a sub near $2 n$-gon of $H^{D}(2 n-1,4)$.
Proof. Let $x$ be a point and $L$ a line of $\mathbb{G}_{n}$, then $x$ and $L$ are also objects of $H^{D}(2 n-1,4)$. In the near polygon $H^{D}(2 n-1,4), L$ contains a unique point nearest to $x$. By the previous lemma, this property also holds in $\mathbb{G}_{n}$. Hence $\mathbb{G}_{n}$ is also a near polygon. Since $\mathrm{d}\left(\pi_{1}, \pi_{2}\right)=n-1-\operatorname{dim}\left(\pi_{1} \cap \pi_{2}\right)$ for all $\pi_{1}, \pi_{2} \in Y$ and since there exist $\pi_{1}, \pi_{2} \in Y$ such that $\pi_{1} \cap \pi_{2}=\emptyset$, see Lemma 2, it follows that $\mathbb{G}_{n}$ is a near $2 n$-gon.

The near polygon $\mathbb{G}_{1}$ is the unique line of size 3 . The points, respectively lines, of $\mathbb{G}_{2}$ are all the maximal, respectively next-to maximal, subspaces of $H(3,4)$. Hence $\mathbb{G}_{2} \cong H^{D}(3,4) \cong Q(5,2)$. We define $\mathbb{G}_{0}$ as the unique near 0 -gon.

### 3.3 Geodetically closed sub near polygons in $\mathbb{G}_{n}$

Theorem 1 The near polygon $\mathbb{G}_{n}$ is dense. For every two points $\pi_{1}$ and $\pi_{2}$ of $\mathbb{G}_{n}$, $\mathcal{C}\left(\pi_{1}, \pi_{2}\right)$ is the unique geodetically closed sub near $\left[2 \cdot d\left(\pi_{1}, \pi_{2}\right)\right]$-gon through $\pi_{1}$ and $\pi_{2}$. Moreover, $\mathcal{C}\left(\pi_{1}, \pi_{2}\right)$ consists of all elements of $Y$ through $\pi_{1} \cap \pi_{2}$.

Proof. We noticed earlier that every line of $\mathbb{G}_{n}$ is incident with three points. Now, let $\pi_{1}, \pi_{2} \in Y$ such that $\mathrm{d}\left(\pi_{1}, \pi_{2}\right)=2$, or equivalently $\operatorname{dim}\left(\pi_{1} \cap \pi_{2}\right)=n-3$. Choose an $x_{3} \in X \cap\left(\pi_{2} \backslash\left(\pi_{1} \cap \pi_{2}\right)\right)$ and an $x_{4} \in X \cap \pi_{1}$ not $H$-collinear with $x_{3}$. Let $\pi_{i}, i \in\{3,4\}$, denote the unique generator through $x_{i}$ intersecting $\pi_{i-2}$ in an $(n-2)$-dimensional subspace. By the proof of Lemma 5 , we know that $\pi_{3}$ and $\pi_{4}$ are common neighbours of $\pi_{1}$ and $\pi_{2}$. Hence $\mathbb{G}_{n}$ is dense. By theorem 4 of [2], we then know that $\pi_{1}$ and $\pi_{2}$ are contained in a unique geodetically closed sub near $\left[2 \cdot \mathrm{~d}\left(\pi_{1}, \pi_{2}\right)\right]$-gon which necessarily coincides with $\mathcal{C}\left(\pi_{1}, \pi_{2}\right)$. Now, let $\mathcal{F}$ denote the set of all generators of $Y$ through $\pi_{1} \cap \pi_{2}$. Clearly $\mathcal{F}$ is a subspace of $\mathbb{G}_{n}$. If $\gamma$ denotes a shortest path in $\mathbb{G}_{n}$ between two points of $\mathcal{F}$, then by Lemma $5, \gamma$ is also a shortest path in $H^{D}(2 n-1,4)$ and hence every point of it contains $\pi_{1} \cap \pi_{2}$. As a consequence every point on $\gamma$ is contained in $\mathcal{F}$ and $\mathcal{F}$ is geodetically closed. If $\pi$ and $\pi^{\prime}$ are two arbitrary elements of $\mathcal{F}$, then $\pi \cap \pi^{\prime}$ contains $\pi_{1} \cap \pi_{2}$ and hence $\mathrm{d}\left(\pi, \pi^{\prime}\right)=n-1-\operatorname{dim}\left(\pi \cap \pi^{\prime}\right) \leq n-1-\operatorname{dim}\left(\pi_{1} \cap \pi_{2}\right)=\mathrm{d}\left(\pi_{1}, \pi_{2}\right)$. As a consequence the diameter of $\mathcal{F}$ is at most $\mathrm{d}\left(\pi_{1}, \pi_{2}\right)$. Since $\mathcal{F}$ contains $\pi_{1}$ and $\pi_{2}$, the diameter is precisely $\mathrm{d}\left(\pi_{1}, \pi_{2}\right)$. Since $\mathcal{F}$ is a geodetically closed sub near $\left[2 \cdot \mathrm{~d}\left(\pi_{1}, \pi_{2}\right)\right]$-gon through $\pi_{1}$ and $\pi_{2}$, it coincides with $\mathcal{C}\left(\pi_{1}, \pi_{2}\right)$.

For every geodetically closed subspace $\mathcal{F}$ of $\mathbb{G}_{n}$, let $\pi_{\mathcal{F}}$ denote the intersection of all points of $\mathcal{F}$ regarded as generators of $H$. Since there exist elements $\pi_{1}, \pi_{2} \in Y$ such that $\pi_{1} \cap \pi_{2}=\emptyset, \pi_{\mathbb{G}_{n}}=\emptyset$.

Lemma 6 (a) There is a one-to-one correspondence between the geodetically closed subspaces of $\mathbb{G}_{n}$ and the good subspaces on $H$.
(b) If $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$ are two geodetically closed sub near polygons, then $\mathcal{F}_{1} \subseteq \mathcal{F}_{2}$ if and only if $\pi_{\mathcal{F}_{2}} \subseteq \pi_{\mathcal{F}_{1}}$.

Proof. Let $\mathcal{F}$ denote an arbitrary geodetically closed sub near polygon of $\mathbb{G}_{n}$. If $\pi_{1}$ and $\pi_{2}$ denote two points of $\mathcal{F}$ at maximal distance from each other, then $\mathcal{F}=$ $\mathcal{C}\left(\pi_{1}, \pi_{2}\right)$. By Theorem 1, $\pi_{\mathcal{F}}=\pi_{1} \cap \pi_{2}$. Hence $\pi_{\mathcal{F}}$ is good by Lemma 3. Conversely, suppose that $\pi$ is a good subspace on $H$. If $\pi=\pi_{\mathcal{F}}$, then $\mathcal{F}$ necessarily consists of all elements of $Y$ through $\pi$. Hence, the equation $\pi_{\mathcal{F}}=\pi$ has at most one solution for $\mathcal{F}$. It suffices to show that this equation has at least one solution. By Lemma 2 , there exist elements $\pi_{1}, \pi_{2} \in Y$ such that $\pi=\pi_{1} \cap \pi_{2}$. If we put $\mathcal{F}$ equal to $\mathcal{C}\left(\pi_{1}, \pi_{2}\right)$, then by Theorem 1, $\pi_{\mathcal{F}}=\pi_{1} \cap \pi_{2}=\pi$. This proves part (a). Part (b) follows from the fact that the points of a geodetically closed sub near polygon $\mathcal{F}$ are precisely the generators of $Y$ through $\pi_{\mathcal{F}}$.

Corollary 2 Let $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$ be two geodetically closed sub near polygons of $\mathbb{G}_{n}$ and let $\mathcal{F}_{3}=\mathcal{C}\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right)$. Then $\pi_{\mathcal{F}_{3}}=\pi_{\mathcal{F}_{1}} \cap \pi_{\mathcal{F}_{2}}$.

Proof. Since $\mathcal{F}_{3}$ is the smallest geodetically closed sub near polygon through $\mathcal{F}_{1}$ and $\mathcal{F}_{2}, \pi_{\mathcal{F}_{3}}$ is the biggest good subspace contained in $\pi_{\mathcal{F}_{1}}$ and $\pi_{\mathcal{F}_{2}}$. The result now easily follows from Lemma 3.

Lemma 7 Let $p$ denote an arbitrary point of weight $2 n$ in $\mathrm{PG}(2 n-1,4)$, then $p \in H$ and the set of all generators of $Y$ through $p$ determines a geodetically closed sub near $2(n-1)$-gon isomorphic to $\mathbb{H}_{n-1}$.

Proof. Put $p=\left\langle\alpha_{0} \bar{e}_{0}+\cdots+\alpha_{2 n-1} \bar{e}_{2 n-1}\right\rangle$. The set $\{p\}$ is a good subspace of $H$ and hence, by Lemma 6 , the set of all generators of $Y$ through $p$ determines a geodetically closed sub near $2(n-1)$-gon $\mathcal{B}$. The set $\{0, \ldots, 2 n-1\}$ has size $2 n$ and hence, by Section 2.4, a near $2(n-1)$-gon $\mathcal{A} \cong \mathbb{H}_{n-1}$ can be constructed from this set. For every point $P$ of $\mathcal{A}$, i.e. for every partition $P$ of $\{0, \ldots, 2 n-1\}$ into $n$ sets of size 2 , we put $\phi(P):=\left\langle\left\{\left\langle\alpha_{i} \bar{e}_{i}+\alpha_{j} \bar{e}_{j}\right\rangle \mid\{i, j\} \in P\right\}\right\rangle$. Clearly $\phi(P)$ is a generator of $Y$ through $p$. Conversely, every generator of $Y$ through $p$ is of the form $\phi(P)$ for some point $P$ of $\mathcal{A}$. We will now show that $\phi$ determines an isomorphism between the collinearity graphs of $\mathcal{A}$ and $\mathcal{B}$. If $P_{1}$ and $P_{2}$ are two collinear points of $\mathcal{A}$, then $\phi\left(P_{1}\right) \cap \phi\left(P_{2}\right)$ is a good subspace of type $\left(2^{n-2}, 4^{1}\right)$; hence $\phi\left(P_{1}\right)$ and $\phi\left(P_{2}\right)$ are collinear in $\mathcal{B}$. Conversely, suppose that $\phi\left(P_{1}\right)$ and $\phi\left(P_{2}\right)$ are collinear in $\mathcal{B}$, then $\phi\left(P_{1}\right) \cap \phi\left(P_{2}\right)$ is a good subspace of type $\left(2^{n-1}\right)$ or $\left(2^{n-2}, 4^{1}\right)$. If $\phi\left(P_{1}\right) \cap \phi\left(P_{2}\right)$ has type ( $2^{n-1}$ ), then $\left|P_{1} \cap P_{2}\right| \geq n-1$ and hence $P_{1}=P_{2}$, a contradiction. As a consequence $\phi\left(P_{1}\right) \cap \phi\left(P_{2}\right)$ has type $\left(2^{n-2}, 4^{1}\right)$ and $P_{1}$ and $P_{2}$ are collinear in $\mathcal{A}$. Since the collinearity graphs of $\mathcal{A}$ and $\mathcal{B}$ are isomorphic, $\mathcal{A}$ and $\mathcal{B}$ themselves are isomorphic. (Notice that the lines of a near polygon correspond with the maximal cliques in its collinearity graph.)

Theorem 2 The geodetically closed sub near $(n-k)$-gons, $k \in\{0, \ldots, n\}$, of $\mathbb{G}_{n}$ are of the form $\mathbb{H}_{n_{1}-1} \times \cdots \times \mathbb{H}_{n_{k}-1} \times \mathbb{G}_{n_{k+1}}$ with $n_{1}, \ldots, n_{k} \geq 1, n_{k+1} \geq 0$ and $n_{1}+\cdots+n_{k+1}=n$.

Proof. Let $\mathcal{F}$ denote an arbitrary geodetically closed sub near $(n-k)$-gon, $k \in$ $\{0, \ldots, n\}$, and put $\mathcal{G}_{\pi_{\mathcal{F}}}=\left\{p_{1}, \ldots, p_{k}\right\}$. Let $S_{i}, i \in\{1, \ldots, k\}$, denote the support of $p_{i}$, and let $S_{k+1}=\{0, \ldots, 2 n-1\} \backslash\left(S_{1} \cup \cdots \cup S_{k}\right)$. For every $i \in\{1, \ldots, k+1\}$, we put $\left|S_{i}\right|=2 n_{i}$ and $\alpha_{i}:=\left\langle\bar{e}_{j} \mid j \in S_{i}\right\rangle$. Clearly, $n_{1}, \ldots, n_{k} \geq 1, n_{k+1} \geq 0$ and $n_{1}+$ $\cdots+n_{k+1}=n$. Also $\alpha_{i} \cap H$ is a nonsingular Hermitian variety of type $H\left(2 n_{i}-1,4\right)$. If $\pi$ is an arbitrary point of $\mathcal{F}$, or equivalently an arbitrary generator of $Y$ through $\pi_{\mathcal{F}}$, then $\pi=\left\langle\pi \cap \alpha_{1}, \cdots, \pi \cap \alpha_{k}, \pi \cap \alpha_{k+1}\right\rangle$. Moreover, $\pi \cap \alpha_{i}$ is a generator of $\alpha_{i} \cap H$ containing $n_{i}$ points of weight 2 , and $p_{i} \in \pi \cap \alpha_{i}$ if $i \neq k+1$. Conversely, if $\beta_{i}$, $i \in\{1, \ldots, k+1\}$, is a generator of $\alpha_{i} \cap H$ containing $n_{i}$ vertices of weight 2 such that $p_{i} \in \beta_{i}$ if $i \leq k$, then $\left\langle\beta_{1}, \ldots, \beta_{k+1}\right\rangle$ is a generator of $\mathcal{F}$ through $\pi_{\mathcal{F}}$. Hence, by Lemma 7 , the map $\pi \rightarrow\left(\pi \cap \alpha_{1}, \cdots, \pi \cap \alpha_{k}, \pi \cap \alpha_{k+1}\right)$ determines a bijection between the point sets of the near polygons $\mathcal{F}$ and $\mathbb{H}_{n_{1}-1} \times \cdots \times \mathbb{H}_{n_{k}-1} \times \mathbb{G}_{n_{k+1}}$. Now, two points $\pi_{1}$ and $\pi_{2}$ of $\mathcal{F}$ are collinear if and only if $\operatorname{dim}\left(\pi_{1} \cap \pi_{2}\right)=n-2$. This happens if and only if there exists a $j \in\{1, \ldots, k+1\}$ such that $\operatorname{dim}\left(\pi_{1} \cap \pi_{2} \cap \alpha_{j}\right)=n_{j}-2$ and $\operatorname{dim}\left(\pi_{1} \cap \pi_{2} \cap \alpha_{i}\right)=n_{i}-1$ for every $i \in\{1, \ldots, k+1\} \backslash\{j\}$. These conditions
are equivalent with $\operatorname{dim}\left(\left(\pi_{1} \cap \alpha_{j}\right) \cap\left(\pi_{2} \cap \alpha_{j}\right)\right)=n_{j}-2$ and $\pi_{1} \cap \alpha_{i}=\pi_{2} \cap \alpha_{i}$. Hence $\pi_{1}$ and $\pi_{2}$ are collinear in $\mathcal{F}$ if and only if ( $\pi_{1} \cap \alpha_{1}, \cdots, \pi_{1} \cap \alpha_{k+1}$ ) and $\left(\pi_{2} \cap \alpha_{1}, \cdots, \pi_{2} \cap \alpha_{k+1}\right)$ are collinear in $\mathbb{H}_{n_{1}-1} \times \cdots \times \mathbb{H}_{n_{k}-1} \times \mathbb{G}_{n_{k+1}}$. Since the collinearity graphs of $\mathcal{F}$ and $\mathbb{H}_{n_{1}-1} \times \cdots \times \mathbb{H}_{n_{k}-1} \times \mathbb{G}_{n_{k+1}}$ are isomorphic, the near polygons themselves are isomorphic.

### 3.4 Lines and quads in $\mathbb{G}_{n}$

Let $n \geq 3$. If $L$ is a line of $\mathbb{G}_{n}$, then there are two possibilities for $\pi_{L}(=L)$ :
(a) $\pi_{L}$ has type $\left(2^{n-1}\right)$;
(b) $\pi_{L}$ has type $\left(2^{n-2}, 4^{1}\right)$.

If $\mathcal{Q}$ is a quad of $\mathbb{G}_{n}$, then there are four possibilities for $\pi_{\mathcal{Q}}$.
(i) $\pi_{\mathcal{Q}}$ has type $\left(2^{n-2}\right)$.

By Lemma 4, each of the 27 generators through $\pi_{\mathcal{Q}}$ belongs to $Y$, proving that $\mathcal{Q}$ is a $Q(5,2)$-quad. The quad $\mathcal{Q}$ has 18 lines of type (a) and 27 lines of type (b). The 18 lines of type (a) define three grids which partition the point set of $\mathcal{Q}$.
(ii) $\pi_{\mathcal{Q}}$ has type $\left(2^{n-3}, 6^{1}\right)$.

From the 27 generators through $\pi_{\mathcal{Q}}, 15$ are contained in $Y$, proving that $\mathcal{Q}$ is a $W(2)$-quad. Clearly $\mathcal{Q}$ contains only lines of type (b).
(iii) $\pi_{\mathcal{Q}}$ has type $\left(2^{n-3}, 4^{1}\right)$.

From the 27 generators through $\pi_{\mathcal{Q}}$, nine are contained in $Y$, proving that $\mathcal{Q}$ is a grid. The quad $\mathcal{Q}$ contains three lines of type (a) and three lines of type (b). Three lines of the same type partition the point set of $\mathcal{Q}$.
(iv) $\pi_{\mathcal{Q}}$ has type $\left(2^{n-4}, 4^{2}\right)$.

This type of quad only exists if $n \geq 4$. From the 27 generators through $\pi_{\mathcal{Q}}$, nine are contained in $Y$, proving that $\mathcal{Q}$ is a grid. All six lines of $\mathcal{Q}$ have type (b).

By Lemma 6, it then easily follows:
Lemma 8 Consider the near polygon $\mathbb{G}_{n}$ with $n \geq 3$. Then

- each point is contained in $n$ lines of type (a) and $3 \frac{n(n-1)}{2}$ lines of type (b);
- each line of type ( $a$ ) is contained in exactly $n-1 Q(5,2)$-quads, $0 W(2)$-quads and $3 \frac{(n-1)(n-2)}{2}$ grid-quads;
- each line of type (b) is contained in a unique $Q(5,2)$-quad, $3(n-2) W(2)$-quads and $\frac{(n-2)(3 n-7)}{2}$ grid-quads;
- each line is contained in exactly $\frac{(n-1)(3 n-4)}{2}$ quads.

In the sequel lines of type (a) in $\mathbb{G}_{n}, n \geq 3$, will be called special, while lines of type (b) are called ordinary. Clearly, a line is special if and only if it is not contained in a $W(2)$-quad. For every permutation $\sigma$ of $\{0, \ldots, 2 n-1\}$ and for every $\lambda_{0}, \ldots, \lambda_{2 n-1} \in \mathrm{GF}(4)^{*}$, the linear transformation of $V(2 n, 4)$ defined by $\bar{e}_{i} \mapsto \lambda_{i} \bar{e}_{\sigma(i)}$, $i \in\{0, \ldots, 2 n-1\}$, determines an automorphism of $\mathbb{G}_{n}$. Using these automorphisms it is easily seen that any two lines of the same type are in the same $\operatorname{Aut}\left(\mathbb{G}_{n}\right)$-orbit. Similarly, any two quads of the same type are contained in the same $\operatorname{Aut}\left(\mathbb{G}_{n}\right)$-orbit. Since a special line can never be mapped to an ordinary line, $\operatorname{Aut}\left(\mathbb{G}_{n}\right)$ has two orbits on the set of lines and three or four orbits on the set of quads depending on whether $n=3$ or $n \geq 4$. In Section 4 we will determine $\operatorname{Aut}\left(\mathbb{G}_{n}\right)$.

Remark. The above remarks on the orbits of $\operatorname{Aut}\left(\mathbb{G}_{n}\right), n \geq 3$, do not hold for $\mathbb{G}_{2}$. Since $\mathbb{G}_{2} \cong Q(5,2)$ all lines are in the same orbit.

### 3.5 Some properties of $\mathbb{G}_{n}$

Lemma 9 The near $2 n$-gon $\mathbb{G}_{n}, n \geq 1$, has order $(s, t)=\left(2, \frac{3 n^{2}-n-2}{2}\right)$ and $v=$ $\frac{3^{n} \cdot(2 n)!}{2^{n} \cdot n!}$ points.
Proof. Clearly, the lemma holds if $n \in\{1,2\}$. So suppose that $n \geq 3$. $H(2 n-1,4)$ has exactly $\frac{3^{n} \cdot(2 n)!}{2^{n} \cdot n!}$ good subspaces of type $\left(2^{n}\right)$. We noticed earlier that every line is incident with exactly $s+1=3$ points, and by Lemma 8 , it follows that $t+1=$ $n+3 \frac{n(n-1)}{2}$.

Lemma 10 Let $\mathcal{F}$ be a geodetically closed sub near polygon of $\mathbb{G}_{n}$ isomophic to $\mathbb{G}_{k}$, $k \geq 2$, and let $x$ denote an arbitrary point of $\mathcal{F}$. Then $\pi_{\mathcal{F}}$ has type $\left(2^{n-k}\right)$ and precisely $k$ from the $n$ special lines through $x$ are contained in $\mathcal{F}$.

Proof. Recall that no near polygon of type $\mathbb{H}_{l}, l \geq 0$, has a $Q(5,2)$-quad. If $\mathcal{F} \cong \mathbb{H}_{l} \times \mathcal{A}$ for some $l \geq 1$ and some dense near $2(k-l)$-gon $\mathcal{A}$, then $\mathcal{F}$ has a line that is not contained in a $Q(5,2)$-quad, contradicting Lemma 8. By the proof of Theorem 2, it then follows that that $\pi_{\mathcal{F}}$ has type $\left(2^{n-k}\right)$. Lemma 6 now allows us to count the number of special lines through $x$ which are also contained in $\mathcal{F}$. It is easily seen that this number equals $k$.

Lemma 11 If $L_{1}, \ldots, L_{k}$ are different special lines of $\mathbb{G}_{n}, n \geq 3$, through a fixed point $x$, then $\mathcal{C}\left(L_{1}, \ldots, L_{k}\right) \cong \mathbb{G}_{k}$.

Proof. Put $\mathcal{F}=\mathcal{C}\left(L_{1}, \ldots, L_{k}\right)$. By Corollary $2, \pi_{\mathcal{F}}=\pi_{L_{1}} \cap \cdots \cap \pi_{L_{k}}$. Every $\pi_{L_{i}}$, $i \in\{1, \ldots, k\}$, is a good subspace of type $\left(2^{n-1}\right)$ contained in the good subspace of type $\left(2^{n}\right)$ associated with $x$. Hence $\pi_{\mathcal{F}}=\pi_{L_{1}} \cap \cdots \cap \pi_{L_{k}}$ is a good subspace of type $\left(2^{n-k}\right)$. By Theorem $2, \mathcal{F} \cong \underbrace{\mathbb{H}_{0} \times \cdots \times \mathbb{H}_{0}}_{n-k} \times \mathbb{G}_{k} \cong \mathbb{G}_{k}$.

Lemma 12 Let $\mathcal{F}$ be a geodetically closed sub near $2(n-1)$-gon of $\mathbb{G}_{n}, n \geq 3$.
(a) If $\mathcal{F} \cong \mathbb{G}_{n-1}$, then $\mathcal{F}$ is big in $\mathbb{G}_{n}$.
(b) If $\mathcal{F}$ is big in $\mathbb{G}_{n}$, then $\mathcal{F} \cong \mathbb{G}_{n-1}$ and $\pi_{\mathcal{F}}$ has type $\left(2^{1}\right)$.

Proof.
(a) If $\mathcal{F} \cong \mathbb{G}_{n-1}$, then the total number of points at distance at most 1 from $\mathcal{F}$ is equal to $|\mathcal{F}| \cdot\left(1+2\left(t-t_{\mathcal{F}}\right)\right)$ which is exactly the total number of points in $\mathbb{G}_{n}$. Hence $\mathcal{F}$ is big in $\mathbb{G}_{n}$.
(b) Take a line $L$ intersecting $\mathcal{F}$ in a point, then $L$ is contained in precisely $\frac{(n-1)(3 n-4)}{2}$ quads, see Lemma 8. Since $\mathcal{F}$ is big, each of these $\frac{(n-1)(3 n-4)}{2}$ quads meets $\mathcal{F}$ in a line. Hence $t_{\mathcal{F}}+1=\frac{(n-1)(3 n-4)}{2}$. Since $\mathcal{F}$ is a geodetically closed sub near $2(n-1)$-gon, $\pi_{\mathcal{F}}$ has type $\left((2 k)^{1}\right)$ for a certain $k \in\{1, \ldots, n\}$. By Theorem $2, \mathcal{F} \cong \mathbb{H}_{k-1} \times \mathbb{G}_{n-k}$. Hence $\frac{(n-1)(3 n-4)}{2}=t_{\mathcal{F}}+1=\frac{k(k-1)}{2}+\frac{(n-k)(3 n-3 k-1)}{2}$ or $(k-1)(6 n-4 k-4)=0$. Now $6 n-4 k-4=4(n-k)+2 n-4>0$ since $n \geq 3$. Hence $k=1, \mathcal{F} \cong \mathbb{G}_{n-1}$ and $\pi_{\mathcal{F}}$ has type ( $2^{1}$ ).

## 4 Determination of $\operatorname{Aut}\left(\mathbb{G}_{n}\right), n \geq 3$

Let $n \geq 3$ and let $B$ denote the set of all big geodetically closed sub near 2( $n-1$ )gons of $\mathbb{G}_{n}$ isomorphic to $\mathbb{G}_{n-1}$, or equivalently, the set of all geodetically closed sub near polygons $\mathcal{F}$ for which $\pi_{\mathcal{F}}$ has type $\left(2^{1}\right)$. Consider the following relation $R$ on the elements of $B:\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right) \in R \Leftrightarrow\left(\mathcal{F}_{1}=\mathcal{F}_{2}\right)$ or $\left(\mathcal{F}_{1} \cap \mathcal{F}_{2}=\emptyset\right.$ and every line meeting $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$ is special).

Lemma 13 The relation $R$ is an equivalence relation and each equivalence class contains exactly three elements.

Proof. For every element $\mathcal{F}$ of $B$, let $C_{\mathcal{F}}$ denote the set of all elements $\mathcal{F}^{\prime} \in B$ satisfying $\left(\mathcal{F}, \mathcal{F}^{\prime}\right) \in R$. If $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$ are two elements of $B$ such that $\pi_{\mathcal{F}_{1}}=\left\langle\bar{e}_{i}+\alpha_{1} \bar{e}_{j}\right\rangle$ and $\pi_{\mathcal{F}_{2}}=\left\langle\bar{e}_{i}+\alpha_{2} \bar{e}_{j}\right\rangle$, then one readily verifies that $\left(\mathcal{F}_{1}, \mathcal{F}_{2}\right) \in R$. Hence $\left|C_{\mathcal{F}}\right| \geq 3$ for every $\mathcal{F} \in B$. It now suffices to prove that $\left|C_{\mathcal{F}}\right| \leq 3$. Let $L$ denote an arbitrary special line intersecting $\mathcal{F}$ in a point. If $\mathcal{F}^{\prime}$ is an element of $C_{\mathcal{F}}$, then $\mathcal{F}^{\prime}$ intersects $L$ in a point. Now, each point $x$ on $L$ is contained in at most one element of $C_{\mathcal{F}}$, namely the element of $B$ generated by the $n-1$ special lines through $x$ different from $L$. Hence $\left|C_{\mathcal{F}}\right| \leq 3$. This proves our lemma.

Clearly the equivalence classes are in bijective correspondence with the pairs $\{i, j\} \subseteq$ $\{0, \ldots, 2 n-1\}$. Consider now the graph $\Gamma$ whose vertices are the equivalence classes, with two classes $C_{1}$ and $C_{2}$ adjacent if and only if $\mathcal{F}_{1} \cap \mathcal{F}_{2}=\emptyset$ for every $\mathcal{F}_{1} \in C_{1}$ and every $\mathcal{F}_{2} \in C_{2}$. Clearly two vertices are adjacent if and only if the corresponding pairs have one element in common. Hence, $\Gamma$ is a triangular graph.
If $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$ are two elements of $B$ satisfying $\pi_{\mathcal{F}_{1}}=\left\langle\bar{e}_{0}+r \bar{e}_{1}\right\rangle$ and $\pi_{\mathcal{F}_{2}}=\left\langle\bar{e}_{0}+s \bar{e}_{1}\right\rangle$, $r \neq s$, then $\mathcal{F}_{3}:=\mathcal{R}_{\mathcal{F}_{2}}\left(\mathcal{F}_{1}\right)$ (recall the definition of $\mathcal{R}_{\mathcal{F}_{2}}$ given in Section 2.2) is the unique element of $C_{\mathcal{F}_{1}}$ different from $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$; hence $\pi_{\mathcal{F}_{3}}=\left\langle\bar{e}_{0}+(r+s) \bar{e}_{1}\right\rangle$.

Lemma 14 If $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$ are two elements of $B$ satisfying $\pi_{\mathcal{F}_{1}}=\left\langle\bar{e}_{0}+r \bar{e}_{1}\right\rangle$ and $\pi_{\mathcal{F}_{2}}=\left\langle\bar{e}_{0}+s \bar{e}_{2}\right\rangle$, then $\mathcal{F}_{3}:=\mathcal{R}_{\mathcal{F}_{2}}\left(\mathcal{F}_{1}\right)$ satisfies $\pi_{\mathcal{F}_{3}}=\left\langle\bar{e}_{1}+r^{-1} \overline{\text { e }}_{2}\right\rangle$.

Proof. Every point $p$ of $\mathcal{F}_{1}$ is of the form $\left\langle\bar{e}_{0}+r \bar{e}_{1}, \bar{e}_{2}+t \bar{e}_{i}, \bar{v}_{3}, \cdots, \bar{v}_{n}\right\rangle$ for some $i \in\{3, \ldots, 2 n-1\}$, some $t \in \operatorname{GF}(4)^{*}$ and some vectors $\bar{v}_{j}, j \in\{3, \ldots, n\}$, of weight 2. The unique line $L$ through $p$ intersecting $\mathcal{F}_{2}$ is then equal to $\left\langle\bar{e}_{0}+r \bar{e}_{1}+s \bar{e}_{2}+\right.$ $\left.s t \bar{e}_{i}, \bar{v}_{3}, \cdots, \bar{v}_{n}\right\rangle$. The point $\left\langle\bar{e}_{0}+s t \bar{e}_{i}, \bar{e}_{1}+r^{-1} s \bar{e}_{2}, \bar{v}_{3}, \cdots, \bar{v}_{n}\right\rangle$ of $L$ is not contained in $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ and hence belongs to $\mathcal{F}_{3}$. Considering all possibilities for $i, t$ and $\bar{v}_{j}$, $j \in\{3, \ldots, 2 n-1\}$, we easily see that $\pi_{\mathcal{F}_{3}}=\left\langle\bar{e}_{1}+r^{-1} s \bar{e}_{2}\right\rangle$.

Theorem 3 For every permutation $\phi$ of $\{0, \ldots, 2 n-1\}$, every automorphism $\theta$ of $\mathrm{GF}(4)$, and all $\lambda_{0}, \ldots, \lambda_{2 n-1} \in \mathrm{GF}(4)^{*}$, the semilinear map $V(2 n, 4) \rightarrow V(2 n, 4)$ : $\sum \alpha_{i} \bar{e}_{i} \mapsto \sum \lambda_{i} \alpha_{i}^{\theta} \bar{e}_{\phi(i)}$ induces an automorphism of $\mathbb{G}_{n}$. Conversely, every automorphism of $\mathbb{G}_{n}, n \geq 3$, is obtained in this way.

Proof. Clearly every semilinear map $V(2 n, 4) \rightarrow V(2 n, 4): \sum \alpha_{i} \bar{e}_{i} \mapsto \sum \lambda_{i} \alpha_{i}^{\theta} \bar{e}_{\phi(i)}$ induces an automorphism of $\mathbb{G}_{n}$. We will now prove that every $\mu \in \operatorname{Aut}\left(\mathbb{G}_{n}\right)$ is derived from a semilinear map. The action of $\mu$ on the set $B$ determines an action on the vertices of $\Gamma$. Clearly, that action permutes the $2 n$ maximal cliques of size $2 n-1$ in $\Gamma$. Thus, there exists a permutation $\phi$ of $\{0, \ldots, 2 n-1\}$ such that, if $C$ is the equivalence class corresponding to the pair $\{i, j\}$, then $\mu(C)$ is the class corresponding to $\{\phi(i), \phi(j)\}$. Now, fix $i, j \in\{0, \ldots, 2 n-1\}$ with $i \neq j$. For all $r \in \mathrm{GF}(4)^{*}, \mu$ maps the element $\left\langle\bar{e}_{i}+r \bar{e}_{j}\right\rangle$ of $B$ to an element of the form $\left\langle\bar{e}_{\phi(i)}+r^{\prime} \bar{e}_{\phi(j)}\right\rangle$ (notice that we identify each element $\mathcal{F} \in B$ with $\left.\pi_{\mathcal{F}}\right)$; hence there exists an $\epsilon_{i j} \in\{1,2\}$ and a $\lambda_{i j} \in \mathrm{GF}(4)^{*}$ such that $\mu\left(\left\langle\bar{e}_{i}+r \bar{e}_{j}\right\rangle\right)=\left\langle\bar{e}_{\phi(i)}+\lambda_{i j} r^{\epsilon_{i j}} \bar{e}_{\phi(j)}\right\rangle$ for all $r \in G F(4)^{*}$. Clearly, $\lambda_{j i}=\lambda_{i j}^{-1}$ and $\epsilon_{j i}=\epsilon_{i j}$ for all $i, j \in\{0, \ldots, 2 n-1\}$ with $i \neq j$. Put $\lambda_{i i}$ equal to 1 for all $i \in\{0, \ldots, 2 n-1\}$. Now take mutually distinct $i, j, k \in\{0, \ldots, 2 n-1\}$. For all $r, s \in \mathrm{GF}(4)^{*}$, the reflection of $\left\langle\bar{e}_{i}+\right.$ $\left.r \bar{e}_{j}\right\rangle$ around $\left\langle\bar{e}_{i}+s \bar{e}_{k}\right\rangle$ equals $\left\langle\bar{e}_{j}+r^{-1} s \bar{e}_{k}\right\rangle$. Since $\mu \in \operatorname{Aut}\left(\mathbb{G}_{n}\right)$, the reflection of $\left\langle\bar{e}_{\phi(i)}+\lambda_{i j} r^{\epsilon_{i j}} \bar{e}_{\phi(j)}\right\rangle$ around $\left\langle\bar{e}_{\phi(i)}+\lambda_{i k} s^{\epsilon_{i k}} \bar{e}_{\phi(k)}\right\rangle$ equals $\left\langle\bar{e}_{\phi(j)}+\lambda_{j k}\left(r^{-1} s\right)^{\epsilon_{j k}} \bar{e}_{\phi(k)}\right\rangle$, or equivalently, $\lambda_{i j}^{-1} r^{-\epsilon_{i j}} \lambda_{i k} \epsilon^{\epsilon_{i k}}=\lambda_{j k} r^{-\epsilon_{j k}} s^{\epsilon_{j k}}$. Since this holds for all $r, s \in \mathrm{GF}(4)^{*}$, $\lambda_{i j} \lambda_{j k}=\lambda_{i k}, \epsilon_{i j}=\epsilon_{j k}$ and $\epsilon_{i k}=\epsilon_{j k}$. It now easily follows that $\epsilon_{i j}=\epsilon_{01}=\epsilon$ and $\lambda_{i j}=\lambda_{0 i}^{-1} \lambda_{0 j}$ for all $i, j \in\{0, \ldots, 2 n-1\}$ with $i \neq j$. For all $r \in \operatorname{GF}(4)^{*}$ and all $j, k \in\{0, \ldots, 2 n-1\}$ with $j \neq k, \mu\left(\left\langle\bar{e}_{j}+r \bar{e}_{k}\right\rangle\right)=\left\langle\bar{e}_{\phi(j)}+\lambda_{0 j}^{-1} \lambda_{0 k} r^{\epsilon} \bar{e}_{\phi(k)}\right\rangle=$ $\left\langle\lambda_{0 j} \bar{e}_{\phi(j)}+\lambda_{0 k} r^{\epsilon} \bar{e}_{\phi(k)}\right\rangle$. The action of $\mu$ on the elements of $B$ completely determines the action of $\mu$ on the points of $\mathbb{G}_{n}$. For, if $p$ is a point of $\mathbb{G}_{n}$, then $\mu(p)=\bigcap \mu(\mathcal{F})$ where $\mathcal{F}$ ranges over all the $n$ elements of $B$ through $p$. Hence $\mu$ is induced by the semilinear map $\sum \alpha_{i} \bar{e}_{i} \mapsto \sum \lambda_{0 i} \alpha_{i}^{\epsilon} \bar{e}_{\phi(i)}$.

Remark. We have $\left|\operatorname{Aut}\left(\mathbb{G}_{n}\right)\right|=2 \cdot 3^{2 n-1} \cdot(2 n)$ !. The condition $n \geq 3$ in Theorem 3 is necessarily. For $n=2$, the natural distinction between lines of type (a) and lines of type (b) disappears, see Section 3.4. Since $\mathbb{G}_{2} \cong Q(5,2),\left|\operatorname{Aut}\left(\mathbb{G}_{2}\right)\right|=$ $|P \Gamma U(4,4)|=103680$, while $2 \cdot 3^{3} \cdot 4!=1296$.

## 5 Spreads in $\mathbb{G}_{n}$

For two lines $K$ and $L$ of a near polygon, let $\mathrm{d}(K, L)$ denote the minimal distance between a point of $K$ and a point of $L$. By Lemma 1 of [2], one of the following possibilities occurs:
(a) there exist unique points $k \in K$ and $l \in L$ such that $\mathrm{d}(K, L)=\mathrm{d}(k, l)$;
(b) for every point $k \in K$ there exists a unique point $l \in L$ such that $\mathrm{d}(K, L)=$ $\mathrm{d}(k, l)$.

If condition (b) is satisfied, then $K$ and $L$ are called parallel. A spread of a near polygon is a set of lines partitioning the point set. A spread is called admissible if every two lines of it are parallel. Clearly, every spread of a generalized quadrangle is admissible. A spread $S$ of a near polygon $\mathcal{A}$ is called a spread of symmetry if for every line $K$ of $S$ and for every two points $k_{1}$ and $k_{2}$ on $K$, there exists an automorphism of $\mathcal{A}$ fixing each line of $S$ and mapping $k_{1}$ to $k_{2}$. We easily see that every spread of symmetry is an admissible spread. In this section, we will determine all admissible spreads of $\mathbb{G}_{n}, n \geq 2$. For $n \geq 3$ it will turn out that all admissible spreads are also spreads of symmetry. Suppose first that $n=2$. The generalized quadrangle $\mathbb{G}_{2}$ is the dual polar space $H^{D}(3,4)$ and every spread of $\mathbb{G}_{2}$ corresponds to a set $M$ of points on the Hermitian variety $H=H(3,4)$. By [3], there are two types of spreads in $H^{D}(3,4)$.
(i) If $\pi$ is a nontangent plane of $\mathrm{PG}(3,4)$, then $M:=\pi \cap H$ defines a spread of $H^{D}(3,4)$.
(ii) Let $\zeta$ denote the Hermitian polarity associated with $H(3,4)$, let $L$ be a line of $\operatorname{PG}(3,4)$ intersecting $H$ in three points and let $\pi$ be a nontangent plane through $l$. Then $M:=\left[(\pi \cap H) \cup\left(L^{\zeta} \cap H\right)\right] \backslash(L \cap H)$ defines a spread of $H^{D}(3,4)$.

As remarked earlier both spreads are admissible, but by [5] only the spreads of type (i) are spreads of symmetry. We now determine all admissible spreads in $\mathbb{G}_{n}, n \geq 3$.

For every $i, j \in\{0, \ldots, 2 n-1\}$ with $i \neq j$, let $A_{i, j}$ denote the set of all good subspaces $\alpha$ on $H=H(2 n-1,4)$ that satisfy the following properties:

- $\alpha$ has type $\left(2^{n-1}\right)$;
- $\left\langle\left\langle\bar{e}_{i}+r \bar{e}_{j}\right\rangle, \alpha\right\rangle$ is a generator of $H$ for every $r \in \mathrm{GF}(4)^{*}$.

Clearly, $\bigcup_{0 \leq i<j \leq 2 n-1} A_{i, j}$ is the set of all special lines of $\mathbb{G}_{n}$. For every $i \in\{0, \ldots, 2 n-$ $1\}$, we put $B_{i}:=\bigcup_{j \neq i} A_{i, j}$. Obviously $B_{i}$ consists of all good subspaces of type $\left(2^{n-1}\right)$ contained in $\left\langle\bar{e}_{i}\right\rangle^{\zeta} \cap H$. Here $\zeta$ denotes the Hermitian polarity associated with $H$.

Lemma 15 Let $n \geq 2$. For every $i \in\{0, \ldots, 2 n-1\}, B_{i}$ is a spread of symmetry of $\mathbb{G}_{n}$. As a consequence $B_{i}$ is also an admissible spread.

Proof. If $\pi$ is a point of $\mathbb{G}_{n}$, i.e. a good subspace of type $\left(2^{n}\right)$, then $\pi$ contains a unique point of the form $\left\langle\bar{e}_{i}+r \bar{e}_{j}\right\rangle$. Clearly $\left\langle(X \cap \pi) \backslash\left\{\left\langle\bar{e}_{i}+r \bar{e}_{j}\right\rangle\right\}\right\rangle$ is the unique line of $B_{i}$ incident with $\pi$. This proves that $B_{i}$ is a spread. For every $\lambda \in \operatorname{GF}(4)^{*}$, the linear map $\bar{e}_{i} \mapsto \lambda \bar{e}_{i}, \bar{e}_{j} \mapsto \bar{e}_{j}$ for all $j \neq i$, induces an automorphism $\theta_{\lambda}$ of $\mathbb{G}_{n}$ which fixes each line of $S$. Clearly, $\left\{\theta_{\lambda} \mid \lambda \in \mathrm{GF}(4)^{*}\right\}$ acts regularly on every line of $B_{i}$, proving that $B_{i}$ is a spread of symmetry.

Lemma 16 (Theorem 5 of [8]) Let $S$ be an admissible spread of a near polygon $\mathcal{A}$, let $L \in S$ and let $\mathcal{F}$ be a geodetically closed sub near polygon of $\mathcal{A}$ through $L$. Then every line of $S$ which meets $\mathcal{F}$ is completely contained in $\mathcal{F}$. As a consequence, the set of lines of $S$ contained in $\mathcal{F}$ is an admissible spread of $\mathcal{F}$.

Lemma 17 An admissible spread $S$ of $\mathbb{G}_{n}, n \geq 3$, only contains special lines.
Proof. Suppose that $S$ has an ordinary line $L$ and let $x$ denote an arbitrary point of $L$. By Lemmas 8 and 10, there exists a unique pair $\left\{L_{1}, L_{2}\right\}$ of special lines through $x$ such that $L \in \mathcal{C}\left(L_{1}, L_{2}\right)$. Let $L_{3}$ denote a special line through $x$ different from $L_{1}$ and $L_{2}$ and let $\mathcal{H}$ denote the hex $\mathcal{C}\left(L_{1}, L_{2}, L_{3}\right)$. By Lemma $11, \mathcal{H} \cong \mathbb{G}_{3}$. By Lemma 16, the spread $S$ induces an admissible spread $S^{\prime}$ in $\mathcal{H}$. By Lemma 8, there exist two $W(2)$-quads $\mathcal{Q}_{1}$ and $\mathcal{Q}_{2}$ in $\mathcal{H}$ through the line $L$. Let $S_{i}, i \in\{1,2\}$, denote the spread of $\mathcal{Q}_{i}$ induced by $S^{\prime}$. Let $L^{\prime}$ be an element of $S_{2}$ different from $L$, let $\mathcal{Q}_{3}$ denote a $Q(5,2)$-quad of $\mathcal{H}$ through $L^{\prime}$ and let $S_{3}$ denote the spread of $\mathcal{Q}_{3}$ induced by $S^{\prime}$. Now, $\mathcal{Q}_{1}$ and $\mathcal{Q}_{3}$ are disjoint, and since $\mathcal{Q}_{3}$ is big in $\mathcal{H}$, every point of $\mathcal{Q}_{1}$ has distance one to a unique point of $\mathcal{Q}_{3}$. As a consequence $\mathcal{Q}_{1}$ projects to a subGQ $\mathcal{Q}_{4}$ of $\mathcal{Q}_{3}$ isomorphic to $W(2)$. If $y \in \mathcal{Q}_{4}$ then $y$ is collinear with a unique point $y^{\prime}$ of $\mathcal{Q}_{1}$ and $y^{\prime}$ is contained in a unique line $M$ of $S_{1}$. The unique line of $S_{3}$ through $y$ is contained in the quads $\mathcal{C}(M, y)$ and $\mathcal{Q}_{3}$ and hence coincides with the line $\mathcal{C}(M, y) \cap \mathcal{Q}_{3}$ which is precisely the projection of $M$ on $\mathcal{Q}_{3}$. As a consequence the spread $S_{1}$ projects to a spread $S_{4}$ of $\mathcal{Q}_{4}$ and $S_{4} \subseteq S_{3}$. Let $z$ be a point of $\mathcal{Q}_{3} \backslash \mathcal{Q}_{4}$. Through $z$ there is a line of $S_{3}$ and five lines intersecting an element of $S_{4}$. (Notice that $\left|S_{4}\right|=5$ since $\mathcal{Q}_{4} \cong W(2)$.) Hence, the point $z$ of $\mathcal{Q}_{3}$ is contained in at least six lines, contradicting $\mathcal{Q}_{3} \cong \mathbb{G}_{2}$.

Lemma 18 Let $S$ be a spread of $\mathbb{G}_{n}, n \geq 3$, satisfying
(a) every line of $S$ is special,
(b) if a grid-quad contains one line of $S$, then it contains exactly three lines of $S$.

Then $S=B_{i}$ for a certain $i \in\{0, \ldots, 2 n-1\}$.
Proof. Suppose that $S$ contains a special line $K$ of the set $A_{2 n-2,2 n-1}$, e.g. let $K=$ $\left\langle\left\langle\alpha_{0} \bar{e}_{0}+\alpha_{1} \bar{e}_{1}\right\rangle,\left\langle\alpha_{2} \bar{e}_{2}+\alpha_{3} \bar{e}_{3}\right\rangle, \ldots,\left\langle\alpha_{2 n-4} \bar{e}_{2 n-4}+\alpha_{2 n-3} \bar{e}_{2 n-3}\right\rangle\right\rangle$ for certain $\alpha_{0}, \ldots, \alpha_{2 n-3} \in$ $\operatorname{GF}(4)^{*}$. Now, for every $\lambda \in \operatorname{GF}(4)^{*}$, the grid-quad $\mathcal{Q}$ for which $\pi_{\mathcal{Q}}=\left\langle\left\langle\alpha_{0} \bar{e}_{0}+\right.\right.$ $\left.\left.\alpha_{1} \bar{e}_{1}+\lambda \alpha_{2} \bar{e}_{2}+\lambda \alpha_{3} \bar{e}_{3}\right\rangle, \ldots,\left\langle\alpha_{2 n-4} \bar{e}_{2 n-4}+\alpha_{2 n-3} \bar{e}_{2 n-3}\right\rangle\right\rangle$ contains $K$. Hence, the two other lines in $\mathcal{Q}$ disjoint from $K$ are also contained in $S$, or equivalently,
$\left\langle\left\langle\alpha_{0} \bar{e}_{0}+\lambda \alpha_{2} \bar{e}_{2}\right\rangle,\left\langle\alpha_{1} \bar{e}_{1}+\lambda \alpha_{3} \bar{e}_{3}\right\rangle, \ldots,\left\langle\alpha_{2 n-4} \bar{e}_{2 n-4}+\alpha_{2 n-3} \bar{e}_{2 n-3}\right\rangle\right\rangle \in S$ and $\left\langle\left\langle\alpha_{0} \bar{e}_{0}+\right.\right.$ $\left.\left.\lambda \alpha_{3} \bar{e}_{3}\right\rangle,\left\langle\alpha_{1} \bar{e}_{1}+\lambda \alpha_{2} \bar{e}_{2}\right\rangle, \ldots,\left\langle\alpha_{2 n-4} \bar{e}_{2 n-4}+\alpha_{2 n-3} \bar{e}_{2 n-3}\right\rangle\right\rangle \in S$. Applying this several times, we see that every line of $A_{2 n-2,2 n-1}$ belongs to $S$. Hence $S$ is a union of sets of the form $A_{i, j}$. Since $S=\frac{|Y|}{3}, S$ is the union of $2 n-1$ sets of the form $A_{i, j}$. For all $i, j, k, l \in\{0, \ldots, 2 n-1\}$ with $i \neq j, k \neq l$ and $\{i, j\} \cap\{k, l\}=\emptyset, A_{i, j} \cup A_{k, l}$ always contains two intersecting lines. The lemma now easily follows.

Corollary 3 The spreads $B_{i}, i \in\{0, \ldots, 2 n-1\}$, are the only admissible spreads in $\mathbb{G}_{n}, n \geq 3$.

Proof. This follows immediately from Lemmas 15, 16, 17 and 18.

## 6 Glued near polygons derived from $\mathbb{G}_{n}$

By "glueing" near polygons it is possible to derive new near polygons. This procedure was described in [6] for generalized quadrangles and in [8] for the general case. We recall the construction.

Let $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ be two near polygons both with constant line size $s+1$, and suppose that their respective diameters $d_{1}$ and $d_{2}$ are at least 2. Let $S_{i}=\left\{L_{1}^{(i)}, \ldots, L_{\alpha_{i}}^{(i)}\right\}$, $i \in\{1,2\}$, be an admissible spread of $\mathcal{A}_{i}$. In $S_{i}$, a special line $L_{1}^{(i)}$ is chosen which we will call the base line. For every $i \in\{1,2\}$, for all $j, k \in\left\{1, \ldots, \alpha_{i}\right\}$ and for every $x \in L_{j}^{(i)}$, let $p_{j, k}^{(i)}(x)$ denote the unique point of $L_{k}^{(i)}$ nearest to $x$. We put $\Phi_{j, k}^{(i)}:=p_{k, 1}^{(i)} \circ p_{j, k}^{(i)} \circ p_{1, j}^{(i)}$. For every $i \in\{1,2\}$, the group $\Pi_{S_{i}}\left(L_{1}^{(i)}\right):=\left\langle\Phi_{j, k}^{(i)} \mid 1 \leq j, k \leq \alpha_{i}\right\rangle$ is called the group of projectivities of $L_{1}^{(i)}$ with respect to $S_{i}$.

For every bijection $\theta$ between $L_{1}^{(1)}$ and $L_{1}^{(2)}$, we consider the following graph $\Gamma$ with vertex set $L_{1}^{(1)} \times S_{1} \times S_{2}$. Two vertices $\left(x, L_{i_{1}}^{(1)}, L_{j_{1}}^{(2)}\right)$ and $\left(y, L_{i_{2}}^{(1)}, L_{j_{2}}^{(2)}\right)$ are adjacent if and only if exactly one of the following three conditions is satisfied:
(A) $L_{i_{1}}^{(1)}=L_{i_{2}}^{(1)}, L_{j_{1}}^{(2)}=L_{j_{2}}^{(2)}$ and $x \neq y$;
(B) $L_{j_{1}}^{(2)}=L_{j_{2}}^{(2)}, \mathrm{d}\left(L_{i_{1}}^{(1)}, L_{i_{2}}^{(1)}\right)=1$ and $\Phi_{i_{1}, i_{2}}^{(1)}(x)=y$;
(C) $L_{i_{1}}^{(1)}=L_{i_{2}}^{(1)}, \mathrm{d}\left(L_{j_{1}}^{(2)}, L_{j_{2}}^{(2)}\right)=1$ and $\Phi_{j_{1}, j_{2}}^{(2)} \circ \theta(x)=\theta(y)$.

By [8], the graph $\Gamma$ has diameter $d_{1}+d_{2}-1$ and every two adjacent vertices are contained in a unique maximal clique. Considering these maximal cliques as lines, we obtain a partial linear space $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$. If $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ is a near polygon, then it is called a glued near polygon. This precisely happens when the condition in the following theorem is satisfied.

Theorem 4 (Theorem 14 of [8]) The partial linear space $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ is a glued near polygon if and only if the commutator $\left[\Pi_{S_{1}}\left(L_{1}^{(1)}\right), \theta^{-1} \Pi_{S_{2}}\left(L_{1}^{(2)}\right) \theta\right]$ is the trivial group of permutations of $L_{1}^{(1)}$.

If $\mathcal{A}_{1} \cong \mathcal{B}_{1} \times L$ and if $S_{1}=\left\{L_{x} \mid x\right.$ is a point of $\left.\mathcal{B}_{1}\right\}$ with $L_{x}:=\{(x, y) \mid y \in L\}$ (we call such a spread a trivial spread of $\mathcal{A}_{1}$ ), then $\Pi_{S_{1}}\left(L_{1}^{(1)}\right)$ is the trivial group and $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ is a near polygon. In fact we have $\mathcal{A}_{1} \otimes \mathcal{A}_{2} \cong \mathcal{B}_{1} \times \mathcal{A}_{2}$. The following theorem shows the importance of the notion "spread of symmetry".

Theorem 5 (Theorems 11 and 16 of [8]) Suppose that each line of $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ is incident with three points and that none of the spreads $S_{1}$ and $S_{2}$ is trivial. Then $\mathcal{A}_{1} \otimes \mathcal{A}_{2}$ is a near polygon (for an arbitrary choice of the base lines and the bijection $\theta$ between these base lines) if and only if $S_{1}$ and $S_{2}$ are spreads of symmetry.

Now, suppose that $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$ are fixed near polygons with three points on each line and that $S_{1}$ and $S_{2}$ are fixed nontrivial spreads of symmetry in $\mathcal{A}_{1}$ and $\mathcal{A}_{2}$, respectively. By [8] every near polygon which can be obtained for a certain choice of the base lines can always be obtained for any other choice of the base lines (by changing the map $\theta$ accordingly). Hence we may also fix base lines $L_{1}^{(1)} \in S_{1}$ and $L_{1}^{(2)} \in S_{2}$. For every bijection $\theta$ between $L_{1}^{(1)}$ and $L_{1}^{(2)}$, there then exists a near polygon $\mathcal{A}_{1} \otimes_{\theta} \mathcal{A}_{2}$. By reasons of symmetry, all these near polygons are isomorphic if the group of automorphisms of $\mathcal{A}_{1}$ which fix $S_{1}$ and the base line $L_{1}^{(1)} \in S_{1}$ induces the full group of permutations on this base line.

Lemma 19 Let $S$ be a spread of symmetry of $\mathbb{G}_{n}, n \geq 2$, and let $K$ be a line of $S$. Then the group of automorphisms of $\mathbb{G}_{n}$ fixing $S$ and $K \in S$ induces the full group of permutations on the line $K$.

Proof. Since there is up to an isomorphism only one spread of symmetry in $\mathbb{G}_{n}$, $n \geq 2$, we may suppose that $S$ is the spread $B_{0}$ and that $K$ is the line $\left\langle\left\langle\bar{e}_{2}+\right.\right.$ $\left.\left.\bar{e}_{3}\right\rangle, \cdots,\left\langle\bar{e}_{2 n-2}+\bar{e}_{2 n-1}\right\rangle\right\rangle$. In Theorem 3 we determined all automorphisms of $\mathbb{G}_{n}$, $n \geq 3$. For $n=2$, the maps defined there still are automorphisms (but not all automorphisms are of this form). There are now precisely 6 automorphisms if we put $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{2 n-1}$ equal to 1 and $\phi$ equal to the trivial permutation of $\{0, \ldots, 2 n-$ $1\}$. We easily see that these six automorphisms induce the full group of permutations on the line $K$.

By the results of this section and the fact that there is up to an isomorphism only one spread of symmetry in $\mathbb{G}_{n}, n \geq 2$, we then have:

Corollary 4 For all positive integers $m, n \geq 2$, there exists a unique glued near polygon of the form $\mathbb{G}_{m} \otimes \mathbb{G}_{n}$.

Remark. Also the near polygons $H^{D}(2 n-1,4), n \geq 3$, and the near hexagon derived from the extended ternary Golay code (see [12]) are known to have spreads of symmetry. Hence, more glued near polygons can be derived from $\mathbb{G}_{n}$.

## References

[1] A. E. Brouwer, A. M. Cohen, J. I. Hall, and H. A. Wilbrink. Near polygons and Fischer spaces. Geom. Dedicata, 49:349-368, 1994.
[2] A. E. Brouwer and H. A. Wilbrink. The structure of near polygons with quads. Geom. Dedicata, 14:145-176, 1983.
[3] A. E. Brouwer and H. A. Wilbrink. Ovoids and fans in the generalized quadrangle $Q(4,2)$. Geom. Dedicata, 36:121-124, 1990.
[4] P. J. Cameron. Dual polar spaces. Geom. Dedicata, 12:75-86, 1982.
[5] B. De Bruyn. Generalized Quadrangles with a spread of symmetry. Europ. J. Comb., 20:759-771, 1999.
[6] B. De Bruyn. On near hexagons and spreads of generalized quadrangles. J. Alg. Comb., 11:211-226, 2000.
[7] B. De Bruyn. Glued near polygons. Europ. J. Comb., 22:973-981, 2001.
[8] B. De Bruyn. The glueing of near polygons. To appear in Bull. Belg. Math. Soc. - Simon Stevin (See also http://cage.rug.ac.be/geometry/preprints)
[9] B. De Bruyn. Near polygons having a big sub near polygon isomorphic to $\mathbb{H}_{n}$. Submitted to Annals of Combinatorics. (See also http://cage.rug.ac.be/geometry/preprints)
[10] B. De Bruyn. Near polygons having a big sub near polygon isomorphic to $\mathbb{G}_{n}$. Submitted to Bull. Belg. Math. Soc. - Simon Stevin (See also http://cage.rug.ac.be/geometry/preprints)
[11] S. E. Payne and J. A. Thas. Finite Generalized Quadrangles, volume 110 of Research Notes in Mathematics. Pitman, Boston, 1984.
[12] E. E. Shult and A. Yanushka. Near $n$-gons and line systems. Geom. Dedicata, 9:1-72, 1980.
[13] J. Tits. Sur la trialité et certains groupes qui s'en déduisent. Inst. Hautes Etudes Sci. Publ. Math., 2:14-60, 1959.
[14] H. Van Maldeghem. Generalized Polygons, volume 93 of Monographs in Mathematics. Birkhäuser, Basel, Boston, Berlin, 1998.

## Ghent University,

Department of Pure Mathematics and Computeralgebra, Galglaan 2, B-9000 Gent, Belgium, bdb@cage.ugent.be


[^0]:    *Postdoctoral Fellow of the Fund for Scientific Research - Flanders (Belgium)
    Received by the editors August 2002.
    Communicated by H. Van Maldeghem.
    1991 Mathematics Subject Classification : 05B20, 51E12, 51E20.
    Key words and phrases : near polygon, hermitean variety, generalized quadrangle.

