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Abstract

Kazhdan constants for Sp (n,Ω) where Ω is a commutative topological ring
with dense finitely generated subring with unity are determined. This implies
Kazhdan’s property T for these groups. As application explicit Kazhdan con-
stants are determined for the loop groups corresponding to Sp (n,C). These
are further examples of groups with property T which are infinite dimensional
Lie groups and not locally compact.

1 Introduction

Let G be a Hausdorff topological group, ε > 0, Q ⊂ G compact, and π a strongly
continuous unitary representation of G on a Hilbert space Hπ. In this paper, “rep-
resentation” shall always mean “unitary representation”. The representation π has
a (Q, ε)-invariant vector if there exists a ξ ∈ Hπ such that ‖π (g) ξ − ξ‖ < ε ‖ξ‖ for
all g ∈ Q. Such a pair (Q, ε) is a Kazhdan pair if every representation π of G which
has a (Q, ε)-invariant vector has in fact a nonzero invariant vector. If there exists
a Kazhdan pair (Q, ε) for the group G then G has Kazhdan’s property T. For an
account of this group theoretic property and its remarkable applications see [1] and
[6].

The methods used here are due to Y. Shalom for SL (n,Ω) and adapted for
Sp (n,Ω), where Ω is a commutative topological ring with unit 1. The strategy here
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will therefore be similar to the one of Shalom in [4]. The main difference appears
in Theorem 1.1. In comparison with [4, Main Theorem] the Kazhdan set has to be
enlarged. Namely not only the generating elements of the finitely generated subring
have to be taken into account but also all products of different generating elements.
The reason for this can be observed in the proof of Proposition 3.2. It is due to
the action of elementary matrices of SL (2,Ω [t]) ∼= Sp (1,Ω [t]) on the dual group

of S2
(
(Ω [t])2

)
where S2 (Ω2) is the Ω-module of symmetric 2 × 2-matrices. This

action does not only involve linear terms in t as it is the case in [4, Main Theorem]
for the action on (Ω [t])2 but also quadratic terms in t2.

Let now In ∈ Ωn×n be the identity matrix and

J =

(
0 −In
In 0

)
,

then the symplectic group is defined by

G = Sp (n,Ω) =
{
g ∈ GL (2n,Ω) : gTJg = J

}
.

Let Ej,k ∈ Ωn×n be the elementary matrix which is zero in every entry except
for the entry 1 at (j, k). The elementary symplectic matrices are the following

aj,k (x) =

(
In + xEj,k 0

0 In − xEk,j

)
,

bj,k (x) =

(
In x (Ej,k + Ek,j)
0 In

)
, cj,k (x) = (bj,k (x))T

for j, k = 1, . . . , n, j 6= k and

bk,k (x) =

(
In xEk,k

0 In

)
, ck,k (x) = (bk,k (x))T .

The group G is called boundedly elementary generated if there exists an integer
ν such that every element g ∈ G is a product of at most ν elementary symplectic
matrices. The smallest such ν will be denoted by νn (Ω). If Ω is a field, G is always
boundedly elementary generated. This can be observed by using a “Gauss algo-
rithm” which is adapted to the symplectic case by using only elementary symplectic
matrices. For further details see also the proof of Theorem 6.2 which shows bounded
elementary generation for G with Ω the ring of continuous functions f : S1 → C

where S1 = {x ∈ C : |x| = 1}.

Theorem 1.1. Let n ≥ 2 and G boundedly elementary generated. Suppose for
1 ≤ m < ∞ that there are elements α1, . . . , αm ∈ Ω generating a dense subring.
Let Q1 ⊂ G be the (finite) set of elementary symplectic matrices with x = 1 and

Q2 the set of ak,k+1 (αr), 1 ≤ k ≤ n − 1 and 1 ≤ r ≤ m, and bj,k
(
αr1

· · ·αrp

)
,

cj,k
(
αr1

· · ·αrp

)
with 1 ≤ j, k ≤ n, 0 ≤ p ≤ m, and 1 ≤ r1 < . . . < rp ≤ m. Let

Q = Q1 ∪Q2 and ε = 3×14−2m−2 (νn (Ω))−1 then (Q, ε) is a Kazhdan pair for G. If
every neighborhood of 0 ∈ Ω contains such α1, . . . , αm ∈ Ω for fixed m, then (Q1, ε)
is a Kazhdan pair of G.
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This will be applied to the loop group L (Sp (n,C)), the group of all continuous
mappings g : S1 → Sp (n,C) with pointwise multiplication and the topology of
uniform convergence. The loop group is isomorphic to Sp (n,Ω) where Ω is the ring
of continuous functions α : S1 → C. A dense subgroup of this ring is generated by
the functions

α0 (x) =
√

2 + i, α1 (x) = x, α2 (x) = x

by the Stone–Weierstrass theorem. So the theorem above can be applied.

Theorem 1.2. For n ≥ 2, ε = 3 × 14−8 (3n2 + 4n)
−1

, and Q1 the set of elemen-
tary symplectic matrices with off-diagonal entry 1 the group L (Sp (n,C)) has the
Kazhdan pair (Q1, ε).

Note that there are plenty of unitary representations of L (Sp (n,C)). For exam-
ple every unitary representation of Sp (n,C) gives rise to a unitary representation of
L (Sp (n,C)) by evaluating the elements of L (Sp (n,C)) at a fixed point and then
applying the representation of Sp (n,C).

These loop groups give further examples of groups with Kazhdan’s property T
which are not finite dimensional and not locally compact. The first examples of such
groups, namely the loop groups associated with SL (n,C) were shown in [4] to have
Kazhdan’s property T.

In contrast to this result L (Sp (n,R)) does not have property T as the funda-
mental group π1 (Sp (n,R)) ∼= Z, see for example [2, page 173], and the fundamental
group is the factor group of L (Sp (n,R)) by the connected component of the identity.

In [5] it is shown that Sp (n, o), n ≥ 2, is boundedly elementary generated where
o is the ring of integers of an algebraic number field. More generally, this result
is proved for rings of algebraic S-integers and general Chevalley groups of normal
and twisted type having rank ≥ 2. But an explicit upper bound for νn (o) is only
provided for the rank 2 case in which the estimate ν2 (o) ≤ 180∆+27 is determined
where ∆ denotes the number of distinct prime divisors of the discriminant of the
number field. For n ≥ 3 the estimate νn (o) ≤ 3n2 + 4n+ 68∆ + 16 can be deduced
from [7]. Hence the following holds.

Corollary 1.3. Let n ≥ 2, ε = 14−2m−2 (60∆ + 9) in the case n = 2 and ε =
3×14−2m−2 (3n2 + 4n + 68∆ + 16)

−1
in the case n ≥ 3. For Sp (n, o) the elementary

symplectic matrices together with ε form a Kazhdan pair if there exist 1, α1, . . . , αm ∈
o which generate o as a ring.

For Sp (n,Ω) subgroups isomorphic to SL (2,Ω) n S2 (Ω2) are considered. For
such semi-direct products relative Kazhdan pairs, defined as follows, are computed,
see Corollary 4.2.

Let U be a closed subgroup of G, Q ⊂ G compact and ε > 0, then (Q, ε) is a
relative Kazhdan pair of (G,U) if every representation π of G which has a (Q, ε)-
invariant vector has in fact a U -invariant vector.

Sections 2 and 3 contain the induction argument to transfer relative Kazhdan
pairs with respect to a ring to those with respect to its polynomial ring. In Section 4
invariant vectors of the semi-direct product are considered. Section 5 contains the
proof of Theorem 1.1. In the last section the results are applied to the loop group.



540 M. Neuhauser

It is a pleasure to thank M. B. Bekka, H. Führ, P. de la Harpe, G. Schlichting, A.
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2 The ring of integers

Now Ω = Z and a relative Kazhdan pair of (SL (2,Z) n S2 (Z2) , S2 (Z2)) will be
determined in the next theorem. By the isomorphism S2 (Z2) ∼= Z3, in the first part

SL (2,Z)-invariant means on (S1)
3 ∼= Ẑ3 will be considered. For the proof of the

theorem only SL (2,Z)-invariant means on R3 are needed.

Lemma 2.1. Let µ be a mean defined on the Borel sets of R3\{0}, then there exists

a Borel set W ⊂ R3 \ {0} and an element g ∈
{
u±1, u

T
±1

}
, where ub =

(
1 b
0 1

)
,

such that |µ (gW ) − µ (W )| ≥ 1
12

.

Proof. Let

A =







x
y
z


 ∈ R3 : 0 < y ≤ 2x





,

Â =







x
y
z


 ∈ R3 : 0 ≤ 2x < y





,

then u−1 ·
(
A ∪ Â

)
⊂ Â. Indeed,

g

(
x′ y′

y′ z′

)
gT =

(
a2x′ + 2aby′ + b2z′ acx′ + (ad+ bc) y′ + bdz′

acx′ + (ad+ bc) y′ + bdz′ c2x′ + 2cdy′ + d2z′

)

for g =

(
a b
c d

)
and hence the action of u−1 on the dual R̂3 ∼= R3 can be identi-

fied with the inverse transpose action given in dual coordinates by u−1 ·



x
y
z


 =




x
2x+ y
x+ y + z


 . So u−1 maps the elements of A ∪ Â into Â as 2x + y > 2x ≥ 0. If

the inequality would not hold

1

12
> µ

(
A ∪ Â

)
− µ

(
u−1 ·

(
A ∪ Â

))
≥ µ

(
A ∪ Â

)
− µ

(
Â
)

= µ (A) .

Similarly u−1 ·
(
−A ∪ −Â

)
⊂ −Â and µ (−A) < 1

12
.
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It holds that u1 ·
(
B ∪ B̂

)
⊂ B̂ for

B =







x
y
z


 ∈ R3 : 0 ≤ −y < 2x





,

B̂ =







x
y
z


 ∈ R3 : 0 < 2x ≤ −y





,

as u1 ·



x
y
z


 =




x
−2x+ y
x− y + z


 and 2x− y ≥ 2x > 0. So µ (B) < 1

12
. Analogously

u1 ·
(
−B ∪ −B̂

)
⊂ −B̂ and so µ (−B) < 1

12
.

Let ω =

(
0 −1
1 0

)
. Then holds uT

±1 = ωu∓1ω
−1 and the corresponding inequal-

ities µ (ω · (±A)) < 1
12

and µ (ω · (±B)) < 1
12

.
For

C =







x
y
z


 ∈ R3 : y > 0,−y ≤ 2x < y,−y < 2z ≤ y





holds R3 \ {0} = A ∪ B ∪ (−A) ∪ (−B) ∪ C ∪ ω · (A ∪B ∪ (−A) ∪ (−B) ∪ C).

As uT
−1 ·



x
y
z


 =



x+ y + z
y + 2z
z


, 2x+ 2y+ 2z ≥ y+ 2z > 0, and 2x+ y ≥ 0 for



x
y
z


 ∈ C, uT

−1 · C ⊂ A. This shows

1

12
> µ (C) − µ

(
uT
−1 · C

)
≥ µ (C) − µ (A)

implying µ (C) < 1
6
. Similarly µ (ω · C) < 1

6
.

From the above follows the contradiction

1 = µ (A ∪ (−A) ∪ B ∪ (−B) ∪ C ∪ ω · (A ∪ (−A) ∪ B ∪ (−B) ∪ C))

<
8

12
+

2

6
= 1.

�

A relative Kazhdan pair for (SL (2,Z) n S2 (Z2) , S2 (Z2)) can now be determined
with this lemma.

Theorem 2.2. Let u±1, u
T
±1 ∈ SL (2,Z) be as above,

α± =

(
±1 0
0 0

)
, β± = ±

(
0 1
1 0

)
, γ± =

(
0 0
0 ±1

)
∈ S2

(
Z2
)

and Q the subset of SL (2,Z) n S2 (Z2) consisting of the corresponding 10 elements.

Let π be a unitary representation of G on Hπ with a
(
Q, 1

26

)
-invariant vector, then

Hπ has a nonzero S2 (Z2)-invariant vector.
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Proof. Let E be the spectral measure corresponding to π|S2(Z2). Suppose for ε =
1
26

there exists a (Q, ε)-invariant unit vector ξ ∈ Hπ, but no nonzero S2 (Z2)-

invariant vector. Let µξ be the corresponding measure on (S1)
3 ∼= Ŝ2 (Z2), where

µξ (B) = 〈E (B) ξ|ξ〉. By assumption µξ ({0}) = 0. Now Ŝ2 (Z2) is identified
with ] − 1/2, 1/2]3, where (x, y, z) ∈] − 1/2, 1/2]3 corresponds to the character
χ(n1, n2, n3) = e2πi(xn1+yn2+zn3). In the following W = ]−1/6, 1/6[3 is considered.

It holds, that 〈π (z) ξ|ξ〉 =
∫
χ (z) dµξ (χ) for z ∈ S2 (Z2). With the identification

of (S1)
3

and ]−1/2, 1/2]3, this shows that

∫

]−1/2,1/2]3

∣∣∣e±2πix − 1
∣∣∣
2
dµξ (x, y, z) =

∥∥∥π
(
α±
)
ξ − ξ

∥∥∥
2 ≤ ε2,

∫

]−1/2,1/2]3

∣∣∣e±2πiy − 1
∣∣∣
2
dµξ (x, y, z) =

∥∥∥π
(
β±
)
ξ − ξ

∥∥∥
2 ≤ ε2,

∫

]−1/2,1/2]3

∣∣∣e±2πiz − 1
∣∣∣
2
dµξ (x, y, z) =

∥∥∥π
(
γ±
)
ξ − ξ

∥∥∥
2 ≤ ε2.

As |e±2πit − 1| = |eπit − e−πit| = 2 |sin (πt)| ≥ 1, for 1/6 ≤ |t| ≤ 1/2, this implies

µξ ({(x, y, z) : |x| ≥ 1/6}) ≤ ε2,

µξ ({(x, y, z) : |y| ≥ 1/6}) ≤ ε2,

µξ ({(x, y, z) : |z| ≥ 1/6}) ≤ ε2.

So µξ (W ) ≥ 1 − 3ε2.

For all measurable B ⊂ ]−1/2, 1/2]3 and g ∈
{
u±1, u

T
±1

}
, the following holds

|µξ (gB) − µξ (B)| ≤ 2ε.

Indeed,

|µξ (gB) − µξ (B)| =
∣∣∣
〈
π (g)E (B)π

(
g−1

)
ξ|ξ
〉
− 〈E (B) ξ|ξ〉

∣∣∣

and this is bounded from above by
∣∣∣
〈
π (g)E (B)

(
π
(
g−1

)
ξ − ξ

)
|ξ
〉∣∣∣+

∣∣∣
〈
E (B) ξ|π

(
g−1

)
ξ − ξ

〉∣∣∣ ≤ 2ε.

Now let µW be defined on ]−1/2, 1/2]3 by µW (B) = µξ (B ∩W ), then 0 ≤
µξ (B) − µW (B) ≤ 3ε2.

For the Borel sets B and g ∈
{
u±1, u

T
±1

}
now holds

µW (gB) − µW (B) ≤ 0 + 2ε+ 3ε2.

Let µ =
(
µW (W )

)−1
µW , then for every measurable B and g ∈

{
u±1, u

T
±1

}
,

|µ (gB) − µ (B)| ≤ 2ε+ 3ε2

1 − 3ε2
=

55

673
<

1

12
.

As gW ⊂ ]−1/2, 1/2[3 for every such g, the measure µ can be considered to be
defined on R3 which yields a contradiction to Lemma 2.1. �
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3 The polynomial ring

Now Ω is supposed to be discrete. In this section the step from Ω to Ω [t] will be
investigated. For a Kazhdan pair (Q, ε) of (SL (2,Ω) n S2 (Ω2) , S2 (Ω2)) a Kazhdan

pair (Qt, δ) of
(
SL (2,Ω [t]) n S2

(
(Ω [t])2

)
, S2

(
(Ω [t])2

))
is determined.

For the following see [4].

The dual group is considered as the group of all characters χ : Ω → R/Z with
χ (r + s) = χ (r) + χ (s) and denoted by Ω̂. As Ω is discrete Ω̂ is compact.

Let X be the group of formal power series
∑∞

k=0 χkt
−k, χk ∈ Ω̂, then X is an (ad-

ditive) abelian group. It is equipped with the product topology via the identification
X ∼= ∏∞

k=0 Ω̂, which makes X a compact topological group.

The group X is embedded in Ω̂ [t] by χ (r) =
∑∞

k=0 χk (rk) ∈ R/Z, where χ =∑∞
k=0 χkt

−k with χk ∈ Ω̂ and r =
∑∞

k=0 rkt
k ∈ Ω [t]. Of course, only finitely many rk

are different from zero.

Lemma 3.1. The mapping X → Ω̂ [t] is a topological group isomorphism.

Let X̃ be the group of all formal power series
∑∞

k=m χkt
−k with m ∈ Z. The

group X can be embedded in X̃. By identifying two elements χ and ψ if χk = ψk

for all k ≥ 0, the group X̃ is isomorphic to Ω̂ [t].

Let SL (2,Ω [t]) act on X̃3 by the dual of the action on S2
(
(Ω [t])2

)
. By definition

(g · χ) (s) = χ
(
g−1s

(
gT
)−1

)

for g ∈ SL (2,Ω [t]), χ ∈ X̃3, and s ∈ S2
(
(Ω [t])2

)
.

The following is the analogue of Lemma 2.1 for Ω [t].

Proposition 3.2. Let Ω be a discrete ring and µ a mean defined on the Borel
sets of X̃3 \ {0}. Let Q be a finite subset of SL (2,Ω [t]) that contains the ele-
ments u±1, u±t, u

T
±1, u

T
±t, then exists a g ∈ Q and a Borel set W ⊂ X̃3 \ {0} with

|µ (gW ) − µ (W )| ≥ 1
34

.

Proof. For an element χ =
∑∞

n=m χnt
−n define v (χ) = 2−m if χm 6= 0, then v (tχ) =

2v (χ) and v (χ + ψ) ≤ max {v (χ) , v (ψ)}, where for v (χ) 6= v (ψ) even equality
holds. In case χ = 0, let v (χ) = 0.

Let now

As1,s2
=







χ1

χ2

χ3


 ∈ X̃3 :

sgn (v (χ2) − v (2χ1)) = s1

sgn (v (2χ3) − v (χ2)) = s2





then uT
−1 · (A−1,1 ∪ A0,1 ∪ A1,1) ⊂ A−1,0 ∪A0,0 ∪A1,0 as

uT
−1 ·



χ1

χ2

χ3


 =



χ1 + χ2 + χ3

χ2 + 2χ3

χ3
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and v (χ2) < v (2χ3), so v (χ2 + 2χ3) = v (2χ3). As

uT
−t ·



χ1

χ2

χ3


 =



χ1 + tχ2 + t2χ3

χ2 + 2tχ3

χ3


 ,

holds uT
−t · (A0,0 ∪ A0,1 ∪ A1,0 ∪A1,1) ⊂ A−1,−1. Indeed, v (χ2) < v (2tχ3) and

v (2χ1) < v (tχ2), so

v (2χ3) < v (χ2 + 2tχ3) ,

v (2χ1 + tχ2) < v
(
tχ2 + 2t2χ3

)

and hence v (χ2 + 2tχ3) < v (2 (χ1 + tχ2 + t2χ3)). Let ω =

(
0 −1
1 0

)
, then

u−1u
T
1 u−1 =

(
1 −1
0 1

)(
1 0
1 1

)(
1 −1
0 1

)
=

(
0 −1
1 0

)
= ω

and ω ·As1,s2
= A−s2,−s1

, as

ω ·



χ1

χ2

χ3


 =




χ3

−χ2

χ1


 .

So similarly to the preceding case ut · (A0,0 ∪A−1,0 ∪A0,−1 ∪A−1,−1) ⊂ A1,1 and
u1 · (A−1,1 ∪A−1,0 ∪A−1,−1) ⊂ A0,1 ∪A0,0 ∪ A0,−1.

Suppose there is no g and W with |µ (W ) − µ (gW )| ≥ 1
34

, hence

µ (A0,1 ∪ A0,0 ∪ A1,0) = µ (A1,1 ∪ A0,1 ∪A0,0 ∪A1,0) − µ (A1,1) <
2

17
,

µ (A−1,0 ∪ A0,−1) ≤ µ (A−1,−1 ∪ A−1,0 ∪ A0,0 ∪ A0,−1) − µ (A−1,−1)

<
2

17
.

This yields

µ (A−1,1) ≤ µ (A1,1 ∪A0,1 ∪A−1,1) − µ (A1,1)

<
1

34
+ µ (A−1,0 ∪ A0,0) + µ (A1,0) − µ (A1,1)

<
2

17
+ µ (A−1,0 ∪ A0,0 ∪ A0,−1) − µ (A1,1) <

5

34

and similarly µ (A1,−1) <
5
34

. Further

µ (A1,1) <
1

34
+ µ (A−1,0 ∪A0,0 ∪A1,0)

<
2

17
+ µ (A0,1) + µ (A0,0 ∪A1,0) <

4

17

and again similarly µ (A−1,−1) <
4
17

. The inequality

µ




1⋃

s1,s2=−1

As1,s2


 <

4

17
+

5

17
+

8

17
= 1

yields a contradiction. �
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With the help of the last lemma the following can be proved.

Theorem 3.3. Let Ω be a discrete ring. Let Q ⊂ SL (2,Ω) n S2 (Ω2) be a finite set

with Q ⊇
{
u±1, u

T
±1

}
and ε > 0 such that (Q, ε) is a Kazhdan pair. The ring Ω is

canonically embedded in Ω [t], which yields an embedding of SL (2,Ω) n S2 (Ω2) into

SL (2,Ω [t]) n S2
(
(Ω [t])2

)
.

Let 0 < δ < ε/
√

2 such that
(
δ + 2

√
2δ/ε

)
/
(
1 −

√
2δ/ε

)
≤ 1

68
, then (Qt, δ) is a

Kazhdan pair of
(
SL (2,Ω [t]) n S2

(
(Ω [t])2

)
, S2

(
(Ω [t])2

))
, where Qt is the union

of Q with
{
u±t, u

T
±t

}
and all elements in Q where the S2 (Ω2)-part is replaced by

itself multiplied with t.

Proof. Consider the isomorphic semi-direct products SL (2,Ω) n S2
(
(Ωt)2

)
and

SL (2,Ω)nS2 (Ω2). LetQ′ be the set corresponding toQ where the S2 (Ω2)-part is re-
placed by itself multiplied with t, then (Q′, ε) is a Kazhdan pair of(
SL (2,Ω) n S2

(
(Ωt)2

)
, S2

(
(Ωt)2

))
.

Let now π be a representation of SL (2,Ω [t])nS2
(
(Ω [t])2

)
on Hπ, ξ ∈ Hπ a unit

vector which is (Qt, δ)-invariant, H0 ⊂ Hπ the space of S2
(
(Ω + Ωt)2

)
-invariant

vectors, and H1 the orthogonal complement of H0 in the space of S2 (Ω2)-invariant

vectors, H2 the orthogonal complement of H0 in the space of S2
(
(Ωt)2

)
-invariant

vectors, and H3 the orthogonal complement of H0 ⊕ H1 ⊕ H2 in Hπ, then H0 ⊕
H1 and H2 ⊕ H3 are SL (2,Ω) n S2 (Ω2)-invariant and H0 ⊕ H2 and H1 ⊕ H3 are

SL (2,Ω) n S2
(
(Ωt)2

)
-invariant. This yields the corresponding decomposition ξ =

ξ0 + ξ1 + ξ2 + ξ3. Hence

δ2 ≥ ‖π (g) ξ − ξ‖2

= ‖π (g) (ξ0 + ξ1) − (ξ0 + ξ1)‖2 + ‖π (g) (ξ2 + ξ3) − (ξ2 + ξ3)‖2

for all g ∈ Q and in a similar way

δ2 ≥ ‖π (g) (ξ0 + ξ2) − (ξ0 + ξ2)‖2 + ‖π (g) (ξ1 + ξ3) − (ξ1 + ξ3)‖2

for all g ∈ Q′. As H2⊕H3 contains no S2 (Ω2)-invariant vector, there exists a g1 ∈ Q
with

ε ‖ξ2 + ξ3‖ ≤ ‖π (g1) (ξ2 + ξ3) − (ξ2 + ξ3)‖ ≤ δ.

So ‖ξ2 + ξ3‖ ≤ δ/ε. Just as well ‖ξ1 + ξ3‖ ≤ δ/ε and hence

‖ξ0‖2 = ‖ξ‖2 − ‖ξ1 + ξ3‖2 − ‖ξ2 + ξ3‖2 + ‖ξ3‖2 ≥ 1 − 2 (δ/ε)2 ,

i. e. ‖ξ0‖ ≥
√(

1 −
√

2δ/ε
) (

1 +
√

2δ/ε
)
> 1 −

√
2δ/ε.

For all g ∈ Qt,

‖π (g) ξ0 − ξ0‖ ≤ ‖π (g) ξ − ξ‖ + 2 ‖ξ1 + ξ2 + ξ3‖ ≤ δ + 2
√

2δ/ε.

For η = ξ0/ ‖ξ0‖ this implies

‖π (g) η − η‖ < 1

68
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for all g ∈ Qt by the choice of δ.
Let E be the spectral measure corresponding to the restriction of π to S2

(
(Ω [t])2

)

on the dual group S2 ((Ω [t])2) and µη(B) = 〈E(B)η|η〉 defined onX3 ∼= ̂S2 ((Ω [t])2),

then (t−2X)
3

is the support of µη. If there were no S2
(
(Ω [t])2

)
-invariant vectors in

Hπ, it would hold that µη ({0}) = 0.
Like in the proof of Theorem 2.2 the 1

68
-invariance of η implies that for all

measurable B ⊂ X3 holds |µη (gB) − µη (B)| < 1
34

. As gB ⊂ X3 for B ⊂ (t−2X)
3

and g ∈
{
u±1, u

T
±1, u±t, u

T
±t

}
this yields a contradiction to Lemma 3.2. �

4 Invariant vectors

Theorem 4.1. Let m ≥ 0 and Ωm = Z [x1, . . . , xm]. Let Q consist of

α±xj1 · · ·xjk
, β±xj1 · · ·xjk

, γ±xj1 · · ·xjk
∈ S2

(
Ω2

m

)
,

0 ≤ k ≤ m, 1 ≤ j1 < . . . < jk ≤ n, and the 4 (m+ 1) matrices u±b, u
T
±b in SL (2,Ωm)

with b = 1, x1, . . . , xm, then every unitary representation of SL (2,Ωm) n S2 (Ω2
m)

with a (Q, 6 × 14−2m−2)-invariant vector contains a vector distinct from 0 which is
S2 (Ω2

m)-invariant.

Proof. The case m = 0 follows from Theorem 2.2. By induction and Theorem 3.3
this implies the theorem. Indeed,

δ + 2
√

2δ/ε

1 −
√

2δ/ε
=

6 × 14−2m−2 + 2
√

2

142 −
√

2
<

1

68

for ε = 6 × 14−2m−2 and δ = 6 × 14−2m−4. �

The following yields a lower bound for the diameter of an orbit of the S2 (Ω2)-
part.

Corollary 4.2. Let Ω be a topological commutative ring with unit. Assume that
there exist elements α0 = 1, α1, . . . , αm ∈ Ω generating a dense subring D ⊂ Ω. Let
Q ⊂ SL (2,Ω) n S2 (Ω2) be the subset in Theorem 4.1 where αj replaces xj. For
a unitary representation π of SL (2,Ω) n S2 (Ω2) on Hπ and a unit vector ξ ∈ Hπ

which is (Q, 3 × 14−2m−2ε)-invariant for an ε > 0 holds ‖π (g) ξ − ξ‖ ≤ ε for every
g ∈ S2 (Ω2).

Proof. The mapping of 1, x1, . . . , xm ∈ Ωm onto 1, α1, . . . , αm ∈ D ⊂ Ω can be
canonically extended to a ring epimorphism inducing a group homomorphism

Φ : SL (2,Ωm) n S2
(
Ω2

m

)
→ SL (2, D) n S2

(
D2
)
⊂ SL (2,Ω) n S2

(
Ω2
)

.

Let H0 ⊂ Hπ be the subspace of S2 (Ω2)-invariant vectors and H1 ⊂ Hπ its
orthogonal complement, then for ξ ∈ Hπ there exist unique ξ0 ∈ H0 and ξ1 ∈ H1

with ξ = ξ0 + ξ1. As D is dense in Ω there are no nonzero S2 (D2)-invariant vectors
of the representation π on H1 and hence also for the representation π ◦ Φ of the
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group SL (2,Ωm) n S2 (Ω2
m). So Theorem 4.1 implies that there exists a g0 ∈ Q

which fulfills 6× 14−2m−2 ‖ξ1‖ ≤ ‖π (g0) ξ1 − ξ1‖. On the other hand by assumption

‖π (g0) ξ0 − ξ0‖2 + ‖π (g0) ξ1 − ξ1‖2 = ‖π (g0) ξ − ξ‖2

≤
(
3 × 14−2m−2ε

)2

and hence 6 × 14−2m−2 ‖ξ1‖ ≤ 3 × 14−2m−2ε, i. e. ‖ξ1‖ ≤ ε
2
. Finally the S2 (Ω2)-

invariance of ξ0 implies ‖π (g) ξ − ξ‖ = ‖π (g) ξ1 − ξ1‖ ≤ 2 ‖ξ1‖ ≤ ε for all g ∈
S2 (Ω2). �

5 Proof of Theorem 1.1

To prove Theorem 1.1 two more results are needed.
Let ρj,k : SL (2,Ω) → Sp (n,Ω) be the homomorphisms

ρj,k

(
a b
c d

)
=

(
In + (a− 1) (Ej,j + Ek,k) b (Ej,k + Ek,j)

c (Ej,k + Ek,j) In + (d− 1) (Ej,j + Ek,k)

)

and ρ̃j,k : SL (2,Ω) → SL (n,Ω) the homomorphisms

ρ̃j,k

(
a b
c d

)
= In + (a− 1)Ej,j + bEj,k + cEk,j + (d− 1)Ek,k

for j, k = 1, . . . , n. Let

Gj,k = ρj,k (SL (2,Ω)) ,

G̃j,k =






 ρ̃j,k (g) 0

0
(
ρ̃j,k (g)T

)−1


 : g ∈ SL (2,Ω)





for j, k = 1, . . . , n be the corresponding subgroups.

Lemma 5.1. Let n ≥ 2, then for every elementary symplectic matrix in Sp (n,Ω)
there exists a copy of a subgroup isomorphic to S2 (Ω2) canonically contained in a
semi-direct product isomorphic to SL (2,Ω) n S2 (Ω2). There the SL (2,Ω)-part can
be chosen to be a G̃k,k+1 or a Gk,k+1 with 1 ≤ k ≤ n− 1.

Proof. For n = 2 there are four natural embeddings of SL (2,Ω)nS2 (Ω2) in Sp (2,Ω)
where the union of the S2 (Ω2)-parts contains every elementary symplectic matrix.
The subgroups contain the following matrices with x, y, z ∈ Ω




1 0 x y
0 1 y z
0 0 1 0
0 0 0 1


 ,




1 0 0 0
0 1 0 0
x y 1 0
y z 0 1


 ,




1 y x 0
0 1 0 0
0 0 1 0
0 z −y 1


 ,




1 0 0 0
y 1 0 z
x 0 1 −y
0 0 0 1


 .

For example the first of these are contained in the S2 (Ω2)-part of the embedding

mapping (a, b) to


 a ab

0
(
aT
)−1


 ∈ Sp (2,Ω) for a ∈ SL (2,Ω) and b ∈ S2 (Ω2).

Embedding Sp (n− 1,Ω) into Sp (n,Ω) and induction finishes the proof. �
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Lemma 5.2. Let π be a unitary representation of G on Hπ and for a unit vector
ξ ∈ Hπ, let ‖π (g) ξ − ξ‖ ≤ 1 for all g ∈ G, then there exists a G-invariant unit
vector in Hπ.

Proof. The assumption is equivalent to Re 〈π (g) ξ|ξ〉 ≥ 1/2 for all g ∈ G. Let C
be the closed convex hull of π (G) ξ, and let η be the point of minimal norm in C.
Then η is G-invariant and η 6= 0 since Re 〈η|ξ〉 ≥ 1/2. �

Now Theorem 1.1 can be proved.

Proof. As ‖π (h) ξ − ξ‖ = ‖π (h−1) ξ − ξ‖ it can be supposed that Q is symmetric.
So replace Q by Q ∪Q−1.

Let now ξ ∈ Hπ be a
(
Q, 3 × 14−2m−2 (νn (Ω))−1

)
-invariant vector and h ∈

Sp (n,Ω) an elementary symplectic matrix, then by Lemma 5.1 there exists a sub-
group isomorphic to SL (2,Ω)nS2 (Ω2) such that h ∈ S2 (Ω2). Hence ‖π (h) ξ − ξ‖ ≤
(νn (Ω))−1 by Corollary 4.2.

Let ν = νn (Ω), g ∈ Sp (n,Ω), and g = g0g1 · · · gν where g0 = I2n and g1, . . . , gν

are elementary symplectic matrices, then

π (g) ξ − ξ =
ν−1∑

j=0

π (g0g1 · · · gν−j) ξ − π (g0g1 · · · gν−j−1) ξ

and

‖π (g) ξ − ξ‖ ≤
ν−1∑

j=0

‖π (g0g1 · · · gν−j) ξ − π (g0g1 · · · gν−j−1) ξ‖

=
ν−1∑

j=0

‖π (gν−j) ξ − ξ‖ ≤ νν−1 = 1.

By Lemma 5.2 there exists a nonzero G-invariant vector.
Let π be a representation of Sp (n,Ω) on Hπ without nonzero invariant vectors,

ξ ∈ Hπ a unit vector, and U a neighborhood of 0 ∈ Ω such that ‖π (g (t)) ξ − ξ‖ <
ε = 3× 14−2m−2 (νn (Ω))−1 for every elementary symplectic matrix g (t) with t ∈ U ,
then there is a g ∈ Q1 with ‖π (g) ξ − ξ‖ ≥ ε. �

6 The loop group

This section contains the proof of Theorem 1.2. Let in the following Ω be the ring
of continuous functions f : S1 → C. For preparation two results are needed.

The following lemma is also proven in [4]. But the proof here is different and
the statement a little bit stronger.

Lemma 6.1. Let f, f̃ : S1 → C be two continuous functions with no common zero.
Then there exists a continuous function Φ : S1 → S1 ⊂ C such that f̃ + Φf has no
zero.
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Proof. Let A =
{
x ∈ S1 :

∣∣∣f̃ (x)
∣∣∣ = |f (x)|

}
, then A is closed. For x ∈ A let Φ (x) =

f̃(x)
f(x)

∈ S1. If A 6= S1 there is a continuous function Φ̃ : A → R such that Φ (x) =

exp
(
iΦ̃ (x)

)
for x ∈ A. As A is compact and Φ̃ is continuous Φ̃ (A) is compact and in

particular contained in a bounded interval [a, b]. A theorem of Tietze and Urysohn,
see for example [3, page 83], assures that Φ̃ can be extended to a continuous function
on S1.

This Φ proves the lemma. Indeed, |f (x)| 6=
∣∣∣f̃ (x)

∣∣∣ for x /∈ A and hence∣∣∣f̃ (x) + Φ (x) f (x)
∣∣∣ ≥

∣∣∣|f (x)| −
∣∣∣f̃ (x)

∣∣∣
∣∣∣ > 0. In the other case x ∈ A holds that

f̃ (x) + Φ (x) f (x) = 2f̃ (x) 6= 0. �

Theorem 6.2. For n ≥ 2 and the ring Ω the group G is boundedly elementary
generated and νn (Ω) ≤ 3n2 + 4n.

Proof. Let g ∈ Sp (n,Ω) be arbitrary and (f1, . . . , f2n) the first column of the matrix
g, then the functions f1, . . . , f2n have no common zero as g is invertible. In particular
the functions f̃ = f1 and f = |f2|2 + · · · + |f2n|2 have no common zero. Let
Φ : S1 → C be as in Lemma 6.1, then add to the first row the second multiplied by
Φf2 and so on to the last row. After these 2n − 1 steps the entry in the first row
and first column is a function without zero. Four further steps yield the function
constant 1 in this entry. Then in 2n−1 steps the second to the 2n-th entry becomes
the zero function. For the first row this employs a total of 2 (2n− 1) + 4 = 4n + 2
steps.

Similarly the next n−1 columns yield 4 (n+ 1 − k)+2 steps in the k-th column.
In total

∑n
k=1 (4 (n+ 1 − k) + 2) = 2n2 + 4n. The remaining entries can be made

to zero in
∑n

k=1 (k − 1) = (n2 − n) /2 and
∑n

k=1 k = (n2 + n) /2 steps. This yields a
total of 3n2 + 4n = 2n2 + 4n+ (n2 − n) /2 + (n2 + n) /2 steps. �

The ring Ω has a dense subring generated by the functions x 7→ x, x 7→ x, and
x 7→

√
2+ i. This can be deduced using the Stone–Weierstrass theorem and the fact

that
√

2 + i generates a dense subring of C. By choosing the functions x 7→ n−1x,
x 7→ n−1x and x 7→ n−1

(√
2 + i

)
for any positive integer n also the last statement

of Theorem 1.1 holds. This proves Theorem 1.2.
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