A ring homomorphism is enough to get
nonstandard analysis

Vieri Benci Mauro Di Nasso

Abstract

It is shown that assuming the existence of a suitable ring homomorphism
is enough to get an algebraic presentation of nonstandard methods that is
equivalent to the popular superstructure approach, including x-saturation.

1 Introduction

Several approaches to nonstandard analysis have been presented in the literature
which are aimed to avoid as much as possible a direct use of the formalism of math-
ematical logic. Two fundamental examples are H.J. Keisler’s [10] and C.W. Henson’s
[6]. The goal of those approaches is to provide “elementary” presentations that make
the nonstandard methods more easily accessible, especially to the mathematicians
who do not have a background in logic.

Already since the early sixties, the existence was pointed out of a bijective corre-
spondence between filters [ultrafilters] over a given set I, and ideals [maximal ideals,
resp.] in the ring of functions f : I — D, with D a given division ring (see [11] §8).
Since ultrafilters, by means of the corresponding ultrapowers, are the basic ingredi-
ent in constructing models of nonstandard analysis, this fact strongly suggests that
a purely algebraic presentation of the nonstandard methods should be found.

To the authors’ knowledge, this idea was first explicitly pursued by W. Hatcher
in [5], where the hyperreal numbers are introduced starting from a maximal ideal on
the ring of real N-sequences. In the same spirit, and independently, the first author

Received by the editors January 2002.

Communicated by H. Van Maldeghem.

2000 Mathematics Subject Classification : 16560, 54C40, 26E35.
Key words and phrases : Rings of functions, Nonstandard analysis.

Bull. Belg. Math. Soc. 10 (2003), 481-490



482 V. Benci — M. Di Nasso

[1] was able to get most of the elementary applications of real nonstandard analysis
by assuming a homomorphism from the ring of real N-sequences onto an ordered
field. Unfortunately, although in both of the mentioned approaches an ultrafilter
over N can be defined, the full strength of nonstandard methods was not obtained
because neither the Leibniz transfer principle, nor the k-saturation property were
available.

The goal of this paper is to show that the algebraic approach actually has the
full strength of the superstructure approach, and so it provides a sound and gen-
eral foundational framework for the nonstandard methods. Starting from a suitable
class of ring homomorphisms, we show that a nonstandard embedding between su-
perstructures * : V(R) — V(R*) can be naturally defined in such a way that both
the Leibniz transfer principle and the x-saturation property hold.

In the first section we review the algebraic approach, based on the so-called
hyperreal fields, defined as homomorphic images of rings of functions. Starting from
a given hyperreal field F, in the second section we show that there is a natural
way of defining an embedding * : V(R) — V/(F) that satisfies the Leibniz transfer
principle. The possibility of obtaining nonstandard embeddings by the algebraic
approach which are x-saturated is proved the third section. Finally, the last section
contains some remarks about the uniqueness problem for hyperreal fields.

We tried to make this paper self-contained, but some familiarity with the super-
structure approach to nonstandard analysis is assumed (for a detailed presentation
including a formal definition of the Leibniz principle see [2] §4.4). Some knowledge
of ultrafilters and of the ultrapower construction can be useful, but is not necessary.

2 Hyper-homomorphisms

Let I be any set of indexes and let F(I,R) = {f | f: I — R} denote the ring of
I-sequences of real numbers where operations are defined pointwise.

Definition 2.1. A hyper-homomorphism is a ring homomorphism
o: F(I,R) > TF

onto a field F. We say that F is the hyperreal field originating from ¢. Sometimes
we shall refer to I as a hyperreal field originating from the ring of real I-sequences.

It is a basic fact in algebra that the homomorphic image of a ring is a field if and
only if the kernel is a maximal ideal. Thus there are plenty of hyper-homomorphisms,
and FF is a hyperreal field if and only if F = F(I,R)/M with M a maximal ideal.

Notice that if f(i) # ¢(i) for all i, then ¢(f) # ¢(g). In fact, let h(i) be the
inverse (f(i) —g(i))~". Then h- (f —g) = 1 = ¢(h) - (¢(f) —¥(g9)) = 1 and so
o(f) —¢(g) # 0. For every r € R, let ¢, denote the constant sequence with value 7.
Clearly, r # 1" = ¢(¢,) # ¢(c,v). For simplicity, we shall identify each real number
r with the corresponding ¢(c,). In particular, we shall directly assume that R C F.
To avoid the trivial case, we always assume that R # F.

For every sequence f, denote by Z(f) = {i | f(i) = 0} its zero-set and consider
the following family of subsets of I:

U=1{2(f) 1 ¢(f) =0}
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Recall that a filter over a set [ is a family of nonempty subsets of I that is closed
under supersets and finite intersections. An wultrafilter U is a maximal filter, i.e. a
filter U with the additional property that if a subset a ¢ U then its complement
I'\a € U. A principal ultrafilter is an ultrafilter of the form U = {a C I |i € a}
for some fixed ¢ € I. Notice that an ultrafilter U is non-principal if and only if it
contains no finite subset.

Proposition 2.2. U is a non-principal ultrafilter over I.

Proof. For each f, denote by f’ the sequence such that f’(i) = 0 when f(i) = 0 and
f'(i) = 1 otherwise. Notice that ¢(f) =0 < ¢(f’) = 0. In fact, on the one hand,
f=f-f and so if o(f") = 0, then ¢o(f) = ¢(f) - ¢(f’) = 0. Vice versa, notice
that f" = f- f” where f”(i) = 0if f(i) = 0 and f”(i) = 1/f(i) otherwise. Thus if
o(f) =0, then also o(f') = @(f)-o(f") =0. Now let a = Z(f) and b = Z(g) where
o(f) = plg) = 0. Then Z(f'+ ) = Z(f) N Z(g) = Z(f) N Z(g) = anb € U and U
is closed under finite intersections. If a ¢ U, let f be the sequence with f(i) =1 if
i €aand f(i) = 0 otherwise. f-(1—f)=0= ¢(f) (1l —f)=0. Since p(f) #0
by hypothesis, we must have (1 — f) =0, hence Z(1 — f) =1\ Z(f) € U. As a
consequence, U is also closed under supersets. In fact, if we had b D a € U for some
b¢ U, then I\beU and an (I'\b) =0 € U. This is a contradiction because if
f(i) # 0 for all i, then ¢(f) # 0. We are left to show that ¢ is non-principal. By
contradiction, let us assume that there exists +* such that a € U if and only if ¢* € a.
Then for every f, o(f) = f(i*) (otherwise there is g with [¢(f) —(cru)]-w(9) = 1,
sob={i|[f(i)— f(i*)]-g(i) =1} € U, hence i* € b, which is impossible). Now,
o(f) = f(i*) € R for all f implies that ranp = R, contradicting the assumption
R #TF. [

Corollary 2.3. o(f) =p(g9) < {i | f(i) =g(i)} € U.

Proof. One direction is the very definition of U. Vice versa, if a = {i | f(i) = g(i)}
€ U but ¢(f) # ¢(g), then take h with h(i) = 1 if ¢ € a and h(i) = 0 otherwise.
Then ¢(f —g) - (h) = 0 implies ¢(h) = 0 and so Z(h) = I\ a € U, a contradiction.

]

The reader who knows the ultrapower construction, can straightforwardly verify
that the hyperreal field IF is isomorphic to the ultrapower R! /i{. This fact was first
pointed out in the classic work by L. Gillman and M. Jerison [4]. We do not prove
it here because in this paper we are not assuming any knowledge of ultrapowers.

3 Getting a nonstandard embedding

Starting from a hyper-homomorphism ¢, we now want to define a nonstandard
embedding
x: V(R) — V()

where V(R) and V(F) are the superstructures over R and I, respectively. Recall
that the superstructure V(X)) over a set X is the union U, V;,(X) where Vo(X) = X
and V,,11(X) = Vo, (X) UP(V,(X)) is the union of V,,(X) and all of its subsets. As
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customary in the superstructure approach, we assume that F O R is a set of atoms.
Now consider the following set of functions

F={f|f:I— Aforsome AeV(R)}

Definition 3.1. Let f,g € F. We say that f and g are equal almost everywhere
(a.e.), and write f ~ g, if {i | f(i) = g(i)} € U. Similarly, we say that g belongs to
f a.e., and write g < f, when the set {i | f(i) € g(i)} € U.

By the properties of a filter, ~ is an equivalence relation. Denote by [f] =
{9 € F| f~ g} the ~-equivalence class of f. We now extend the hyper-homo-
morphism ¢ to a mapping ¥ defined on the quotient F/~ = {[f] | f € F} and
taking values in V (IF). More precisely:

Proposition 3.2. There ezists a unique 1-1 mapping ¥V : F /~ — V(F) such that,
for every f € F,

U([f]) = lg) if f~ge FU,R); U([f]) ={Y(g]) | g < f} otherwise.

Proof. For each n, let F,, = {[f]€ F/~|{i| f(i) € V.,(R)} € U}. Proceeding by
induction on n, we shall show that there exists a unique 1-1 mapping ¥, : F, —
V,.(F) that satisfies the above properties. Then the union ¥ = |J,, ¥,, will satisfy
the requirements (indeed F/~ = U,, F,,). For [ € Fqy, pick g € F(I,R) with f ~ g
and let Uy([f]) = ¢(g). By Corollary 2.3, the definition of ¥y : Fy — F = V()
is well-posed and Wq is 1-1. Now let [f] € F,.1. Notice that ¢ < f = g € F,,
so we can apply the induction hypothesis and put ¥,.1([f]) = {¥.([9]) | ¢ < [}
It is easily verified that this definition is well-posed. To show that W, is 1-1,
assume that [f] # [f'] are different elements of F, ;. Without loss of generality
we can assume that for all 7, both f(i) and f’(i) are sets (i.e. f(i), f'(i) ¢ R). For
each i € a = {j| f(4) #9(j)} let z; be an element that witnesses that f(i) and
g(i) are different, i.e. either z; € f(i) and x; ¢ f'(i), or z; € f'(i) and z; & f(3).
Thus b = {ic€al|z; € fG)\ f(i)} and ¥ = {i€a|x; € f'(i)\ f(i)} are disjoint
sets with bUD = a € U. By the properties of a ultrafilter, either b € U or b’ € U. In
both cases, if £ is any function with £(i) = x; for i € a, then [£] € F,, witnesses that
U 1([f]) # ¥ori([f']). The uniqueness of ¥, trivially follows from the definition.

]

Definition 3.3. The nonstandard embedding * : V(R) — V(F) (determined by
the hyper-homomorphism ¢) is the mapping where r* = r if r € R is an atom, and
A* ={U([f]) | f: I — A} otherwise. The set A* is called the nonstandard extension
of A.

Notice that R* = {U([f]) | f: I =R} = {o(f)| f: I =R} = F. The non-
standard extension N* is called the set of hypernaturals. In the next Proposition
we prove that our overall assumption R # R* is enough to bring about the usual
non-triviality property for nonstandard embeddings.
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Proposition 3.4. There are “nonstandard” hypernaturals, i.e. elements € N*\N.

Proof. Assume by contradiction that N* = N. Then also P(N)* = P(N). In fact,
on the one hand, A = A* € P(N)* for all A C N. Vice versa, if z € y € P(N)*
then it is easily checked from the definitions that + € N* = N, and so y € P(N).
Now fix a bijection y : R — P(N). For every f : I — R, consider the composition
xof: I — P(N). Then ¥(yo f) € P(N)* = P(N) and so there is A C N with
U(xof)=A=A*ie {i|x(f()))=A}={i| f(i) =x"'(A)} € U. We conclude
that U([f]) = x " }(A4) € R. Since this is true for all f: I — R, we have proved that
R* C R, a contradiction. ]

We now show that x satisfies the Leibniz transfer principle. This principle states
that every “elementary” property holds for elements aq,...,a, if and only if the
same property holds for the corresponding nonstandard extensions aj,...,a’. The
notion of “elementary” property is formalized as a bounded quantifier formula of
first-order logic. Loosely speaking, a bounded quantifier formula is a formula where
all quantifiers occur in the bounded forms Vo (x € y — ...) or o, (x € y A...). See

[2] §4.4 for a precise definition.

Theorem 3.5.
For every bounded quantifier formula o(z1,...,x,) in the language of set theory,
and for every ay, ..., a, € V(R),

olay,...,a,) < o(aj,...,a;)

’r'n

Proof. First we prove a more general fact, which is a version of the fundamental Los
theorem of ultrapowers (see [2] §4.1). More precisely, if [fi],...,[f.] € F/~, and
o(xy1,...,x,) is a bounded quantifier formula, then:

o (U], V() == H{i [ o (), fuli))} €U

This implies the theorem because by definition every aj = W([c,,;]) where c,, is
the constant /-sequence with value a;, and trivially

{i|o(ca,(i),...,¢Ca,(1)} €U = 0(ar,...,a,)

We proceed by induction on the complexity of formulas. Since ¥ is 1-1, W([f]) =
U([fa]) & [fi] = [f2) © {i | f1(i) = f2(i)} € U. Besides, by definition of W,

U([A]) e V([fo]) & fi< oo {i| A1) € (i)} €U.

Now notice that o and o satisfy the assertion in the theorem if and only if
the disjunction o A ¢’ does. This is a straightforward consequence of the following
property of ultrafilters. a Nb € U if and only if both a € U and b € U. Similarly,
since a € U if and only if its complement I\ a ¢ U, it is easily seen that o satisfies the
assertion in the theorem if and only if its negation —o does. Now let us concentrate
on the existential quantifier. Assume first that 3z € U([g]) o(z, V([f1]), ..., Y([fa]))-
Then there is h <1 g with o(¥([h]), ¥([f1]),. .., ¥([fn])). We conclude that the set

{i |3z € g(i)o(z, f1(i),..., fa(i))} €U
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because it includes {i | k(i) € g(i)} N {i | o (h(3), f1(7), ..., fu(i))}, the intersection
of two sets in U. Vice versa, assume

a={i|3dxeg()o(z, f1(i),..., fu(i)} €U.

For each ¢ € a, pick z; € g(7) such that o (x;, f1(7),..., fu(i)) and consider any
I-sequence & such that £(i) = x; for ¢ € a. Then, by the induction hypothesis,

W([¢]) € w([g) Ao (B(ED, W(AD, - - ([ fa])

and so, in particular, 3z € U([g]) o(z, V([f1]), ..., Y([fn]))- [

4 The saturation property

In the usual language of nonstandard analysis, an object z € V(R*) is called internal
if it belongs to some nonstandard extension, i.e. if x € A* for some A. Thus, in our
context, x is internal if and only if x = U([f]) for some f € F. Any nonstandard
extension A* is itself an internal set.

We say that a family B of sets has the finite intersection property (f.i.p.) if
BiN...NB, # { for any choice of finitely many By, ..., B, € B. Now let an infinite
cardinal x be given. A fundamental notion in nonstandard analysis is the following.

Definition 4.1. A nonstandard embedding * is x-saturated (satisfies the k-satura-
tion property) if every bounded family B of internal sets of cardinality |B| < x that
has the f.i.p., has nonempty intersection N B # 0.

A family B is bounded if B C A* for some A.

To get the saturation property we need to consider hyper-homomorphisms with
additional properties. Denote by Fin(/) the collection of all finite subsets of I.

I,R) — Fis good if for every family
fa) whenever b O a, there exists a

Z(fa) and Z(gaub) = Z(ga) N Z(gb)

Definition 4.2. A hyper-homomorphism ¢ : F(
{fa|a € Fin(l)} C ker ¢ such that Z(f,) C Z(
family {g, : @ € Fin(I)} C ker ¢ with Z(g,) C
for all a, b.

The above definition is the counter-part in our context of the property of good-
ness for ultrafilters, which was introduced by H.J. Keisler [8], [9] in the sixties in
order to get saturated ultraproducts. The motivation for considering good hyper-
homomorphisms is given by the following result.

Theorem 4.3.

Let ¢ : F(I,R) — F be a hyper-homomorphism, and let k = |I| be the cardinality
of the set of indexes. If ¢ is good then the corresponding nonstandard embedding is
kT -saturated.*

By kt we denote the successor cardinal of .



A ring homomorphism is enough to get nonstandard analysis 487

Proof. Let a bounded family B of internal sets with the f.i.p. be given, and assume
|IB| < k. Pick f: I — N with ¥([f]) € N*\ N. For every n, the set u, =
{i| f(i) #n} € U but clearly N, u, = 0. Since |B| < |I|, we can enumerate
B ={Y([f;]) | 7 € I} (possibly with repetitions). For each a € Fin(I), the set

wa={i | () £6) #0} €U

j€a

because N, ¥([f;]) # 0 by the fip. Now take f, with f,(i) = 0 if and only
if i € Np<m Un N Uq, Where m is the (finite) cardinality of a. Clearly Z(f,) € U
because it is a finite intersection of elements in . Besides, trivially Z(f,) C Z(f.)
whenever b D a. By hypothesis, there is a family {g, | @ € Fin(I)} C ker ¢ such
that Z(g,) € Z(f,) and Z(gaw) = Z(94) N Z(gp) for all a,b. For each i, consider the
set

X() = {ilieZ(gy)}-

Notice that if x(¢) contains m elements, say ji, ..., jm € x(7), then

n<m

Since N, u, = 0, it follows that x(i) must be finite. Now pick an element
h(i) € N{f;(¢) | j € x(¢)}. This is possible because, by definition of x(7),

i€ {Z(Q{j}) |je X(i)} = Z(9x0)) € Z(fxa)) C Uy,

and so N{f;(0) | j € x(@)} # 0. As the family B is bounded, the I-sequence h
belongs to F. We get the assertion by showing that for every j, U([h]) € ¥([f;]).
This is true because i € Z(ggj3) < j € x(i) = h(i) € f;(i) and so Z(g(;) €
{i|h(i) e f;(i)} eU. ]

If £ is not too large, then the converse holds. Recall that the cardinal J,, (beth-
omega) is defined as sup {3, | n € N} where Jy = Xy and J,,;; = 27,

Theorem 4.4.

Let ¢ : F(I,R) — F be a hyper-homomorphism which originates a k" -saturated
nonstandard embedding, where k = |I|. If k < 3, (or, equivalently, if kK = |A]| for
some A € V(R)) then ¢ is good.

Proof. Let {f. | a € Fin(I)} C ker¢ where Z(f,) C Z(f,) for b O a. We have to
show that there exists a family {g, | « € Fin(/)} C ker ¢ with Z(g,) C Z(f,) and
Z(gaw) = Z(ga) N Z(gp) for all a,b. By the hypothesis on «, there is a bijection
X : Fin(k) — A for some A € V(R). For every i € I and a € Fin(k), let G,(i) =
{x(d') | a Ca" and f, (i) = 0}. We shall need the following facts, that can be proved
in a straightforward manner.

L. Go(i) # 0 & fa(i) = 0;
2. Gaup(i) = Ga(i) N Gy(7);
3. {i| x(a) € Gu(i)} = Z(fa)-
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Consider the family of internal sets B = { ([Gig)) | € € /-c} Notice that B is
bounded since B € P(A)*. For every {&,...,&,} = a € Fin(x), x(a)* € Y([Gy])N
. NY([Ge,y]) because

{i1x(a) € Gy () NN Gey (i) = Gali)} = Z(f2) € U.

Thus B has the fi.p. By x*-saturation, there is an element ¥([h]) € NB. For
each a € Fin(k), take g, such that g,(i) = 0 if and only if h(i) € G,(i). Notice
that for every £ € a, W([h]) € V([Gg]), hence ue = {z | h(i) € G{g}(i)} € U. But
then Z(ga) = {i | h(i) € Ga(i)} = Necate € U and so p(g,) = 0. This proves
that the family {g, | @ € Fin(k)} C ker . Notice that Z(g,) C Z(f,) because if
fa(i) # 0 then G, (i) = 0 and so g,(i) # 0. Finally, gas(i) = 0 < h(i) € Gau(i) =
Ga(i) NGy(i) < ga(i) = gp(i) = 0, i.e. Z(gaw) = Z(ga) N Z(gp). This completes the
proof. [ |

If the index set [ is countable, then the goodness property comes for free.

Proposition 4.5. If I is countable, all hyper-homomorphisms ¢ : F(I,R) — F are
good.

Proof. Without loss of generality, we directly assume I = N. For each finite a C N,
let g, = fo where o’ = {0,1,...,maxa}. Clearly, Z(g9,) C Z(f.) because a C a'.
Now let = max (e Ub) and assume = € a (if € b the proof is similar). Notice
that o C (aUb) = @, hence Z(gan) = Z(famy) = Z(fur) = Z(fur) N Z(fy) =
Z(00) N Z(g). .

Thus every nonstandard embedding originating from a hyper-homomorphism on
the ring of real N-sequences satisfies the saturation property for countable families
(i.e. it is Ny-saturated). The general (uncountable) case is much harder and is
implied by the following existence result about good ultrafilters.

Proposition 4.6. For every infinite cardinal x there exists a good hyper-homo-
morphism ¢ : F(k,R) — F.

Proof. Recall the following definitions (see for instance [2] §4.3 and §6.1). An ultra-
filter U is countably incomplete if there is a countable family {u, | n € N} C U with
empty intersection N, u, = 0. A filter U over k is good if for every anti-monotonic
function 7 : Fin(k) — U there exists an anti-additive function 6 : Fin(x) — U such
that 0(a) C n(a) for all a. By definition, 7 is anti-monotonic if a C b = n(a) 2 n(b);
and 0 is anti-additive if 0(a U b) = 0(a) N O(b). Under the generalized continuum
hypothesis, H.J. Keisler [8] proved that there exist countably incomplete good ul-
trafilters over any given cardinal k. Subsequently, K. Kunen [12] showed that the
generalized continuum hypothesis is not needed. We shall get the assertion by prov-
ing the following fact. If I/ is a countably incomplete good ultrafilter over x, then
the canonical projection

o F(k,R) - F(k,R)/M

modulo the ideal M = {f | Z(f) € U} is a good hyper-homomorphism. First, it
is easily seen that M is maximal because U/ is an ultrafilter. Hence the quotient
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F(k,R)/M =T is a field. Let us turn to the non-triviality condition R # F'. Take a
countable family {u, | n € N} as given by the property of countable incompleteness.
Without loss of generality we assume that w, 2O wu,y; for all n (otherwise take
Uy, = Np<nUn). Let ag = I\ uo; any1 = Uy \ Unq1 and let f be the function such
that f(i) = n if and only if ¢ € a,. For every n, ¢(f) # n because a, ¢ U, and
so ¢(f) is different from the image of any constant function. Now let a family
{f.|a €Fin(k)} C kero = M be given where Z(f,) C Z(f,) for b O a. The
function n : Fin(k) — U where n(a) = Z(f,) is anti-monotonic, and so by hypothesis
there is an anti-additive 0 : Fin(x) — U with 6(a) C n(a). For each a € Fin(x), let g,
be a function with g,(i) = 0 if and only if ¢ € #(a). Then {g, | @ € Fin(x)} C ker ¢
is the family we were looking for. [ |

5 On the uniqueness of the hyperreals

We conclude this paper with some remarks about the uniqueness problem of the
hyperreals. Since a homomorphic image of a ring is a field if and only if the kernel is
a maximal ideal, in principle there are as many hyperreal fields R* = F(I,R)/ M as
there are maximal ideals M in F(I,R). J. Roitman [13] proved that the following is
consistent with ZFC: “there are 2% non-isomorphic hyperreal fields originating from
the ring F(N,R) of real N-sequences”. On the other hand, the goodness property
yields the following.

Theorem 5.1.
Let k be a cardinal such that 25 = k™. Then all hyperreal fields originating from good
hyper-homomorphisms on rings F(I,R) where |I| = k are isomorphic (as ordered

fields).

Proof. Recall that a linearly ordered set (L, <) is an n,-set if: (i) no subset of
cardinality < N, is unbounded (above or below) in L; (ii) for every A, B C L of
cardinality < X, with A < B (i.e. a < bforall « € A and b € B) there exists x with
A <{z} < B. A classic result by E. Erdés, L. Gillman and M. Henriksen [3] states
that any two real-closed fields that are n,-sets of cardinality N, are isomorphic.
We shall get the assertion by proving the following. If the hyper-homomorphism
¢ F(r,R) - R* is good, then the real-closed field R* is an 7,.41-set of cardinality
N,11 = k1. Clearly R* is real-closed because R is (use Leibniz principle). If A C R*
has cardinality < T, then B = {[a,+00) | z € A} is a bounded family of internal
sets with the fi.p. and |B| = |A| < k™. If, by contradiction, A is unbounded above,
then N B = ), contradicting the saturation property. Similarly, A is proved to be also
bounded below. As for (ii), let us consider the family B = {[a,b] | a € A and b € B}.
Clearly B has the fi.p. and its cardinality |B| = |A x B| = max {|A|, |B|} < ™.
Then by saturation there is x € N B and so A < {z} < B. We are left to show
that |R*| = 7. Notice that B = {R*\ {z} | x € R*} is a bounded family of internal
sets with the f.i.p. and with empty intersection. Hence its cardinality must be
|IB| = |R*| > x*. On the other hand, the map ¢ is onto, so |R*| < |F(k,R)| =
(2%)" =27 = k. "
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Putting together Proposition 4.5 and the previous Theorem, we get the following
fact, which was first pointed out by W.A.J. Luxemburg in his lecture notes [7].

Corollary 5.2. Under the continuum hypothesis, all hyperreal fields originating
from the ring of N-sequences are isomorphic (as ordered fields).
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