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Abstract

It is shown that assuming the existence of a suitable ring homomorphism

is enough to get an algebraic presentation of nonstandard methods that is

equivalent to the popular superstructure approach, including κ-saturation.

1 Introduction

Several approaches to nonstandard analysis have been presented in the literature
which are aimed to avoid as much as possible a direct use of the formalism of math-
ematical logic. Two fundamental examples are H.J. Keisler’s [10] and C.W. Henson’s
[6]. The goal of those approaches is to provide “elementary” presentations that make
the nonstandard methods more easily accessible, especially to the mathematicians
who do not have a background in logic.

Already since the early sixties, the existence was pointed out of a bijective corre-
spondence between filters [ultrafilters] over a given set I, and ideals [maximal ideals,
resp.] in the ring of functions f : I → D, with D a given division ring (see [11] §8).
Since ultrafilters, by means of the corresponding ultrapowers, are the basic ingredi-
ent in constructing models of nonstandard analysis, this fact strongly suggests that
a purely algebraic presentation of the nonstandard methods should be found.

To the authors’ knowledge, this idea was first explicitly pursued by W. Hatcher
in [5], where the hyperreal numbers are introduced starting from a maximal ideal on
the ring of real N-sequences. In the same spirit, and independently, the first author
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[1] was able to get most of the elementary applications of real nonstandard analysis
by assuming a homomorphism from the ring of real N-sequences onto an ordered
field. Unfortunately, although in both of the mentioned approaches an ultrafilter
over N can be defined, the full strength of nonstandard methods was not obtained
because neither the Leibniz transfer principle, nor the κ-saturation property were
available.

The goal of this paper is to show that the algebraic approach actually has the
full strength of the superstructure approach, and so it provides a sound and gen-
eral foundational framework for the nonstandard methods. Starting from a suitable
class of ring homomorphisms, we show that a nonstandard embedding between su-
perstructures ∗ : V (R) → V (R∗) can be naturally defined in such a way that both
the Leibniz transfer principle and the κ-saturation property hold.

In the first section we review the algebraic approach, based on the so-called
hyperreal fields, defined as homomorphic images of rings of functions. Starting from
a given hyperreal field F, in the second section we show that there is a natural
way of defining an embedding ∗ : V (R) → V (F) that satisfies the Leibniz transfer
principle. The possibility of obtaining nonstandard embeddings by the algebraic
approach which are κ-saturated is proved the third section. Finally, the last section
contains some remarks about the uniqueness problem for hyperreal fields.

We tried to make this paper self-contained, but some familiarity with the super-
structure approach to nonstandard analysis is assumed (for a detailed presentation
including a formal definition of the Leibniz principle see [2] §4.4). Some knowledge
of ultrafilters and of the ultrapower construction can be useful, but is not necessary.

2 Hyper-homomorphisms

Let I be any set of indexes and let F(I, R) = {f | f : I → R} denote the ring of
I-sequences of real numbers where operations are defined pointwise.

Definition 2.1. A hyper-homomorphism is a ring homomorphism

ϕ : F(I, R) � F

onto a field F. We say that F is the hyperreal field originating from ϕ. Sometimes
we shall refer to F as a hyperreal field originating from the ring of real I-sequences.

It is a basic fact in algebra that the homomorphic image of a ring is a field if and
only if the kernel is a maximal ideal. Thus there are plenty of hyper-homomorphisms,
and F is a hyperreal field if and only if F ∼= F(I, R)/M with M a maximal ideal.

Notice that if f(i) 6= g(i) for all i, then ϕ(f) 6= ϕ(g). In fact, let h(i) be the
inverse (f(i) − g(i))−1. Then h · (f − g) = 1 ⇒ ϕ(h) · (ϕ(f) − ϕ(g)) = 1 and so
ϕ(f)−ϕ(g) 6= 0. For every r ∈ R, let cr denote the constant sequence with value r.
Clearly, r 6= r′ ⇒ ϕ(cr) 6= ϕ(cr′). For simplicity, we shall identify each real number
r with the corresponding ϕ(cr). In particular, we shall directly assume that R ⊆ F.
To avoid the trivial case, we always assume that R 6= F.

For every sequence f , denote by Z(f) = {i | f(i) = 0} its zero-set and consider
the following family of subsets of I:

U = {Z(f) | ϕ(f) = 0}
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Recall that a filter over a set I is a family of nonempty subsets of I that is closed
under supersets and finite intersections. An ultrafilter U is a maximal filter, i.e. a
filter U with the additional property that if a subset a /∈ U then its complement
I \ a ∈ U . A principal ultrafilter is an ultrafilter of the form U = {a ⊆ I | i ∈ a}
for some fixed i ∈ I. Notice that an ultrafilter U is non-principal if and only if it
contains no finite subset.

Proposition 2.2. U is a non-principal ultrafilter over I.

Proof. For each f , denote by f ′ the sequence such that f ′(i) = 0 when f(i) = 0 and
f ′(i) = 1 otherwise. Notice that ϕ(f) = 0 ⇔ ϕ(f ′) = 0. In fact, on the one hand,
f = f · f ′ and so if ϕ(f ′) = 0, then ϕ(f) = ϕ(f) · ϕ(f ′) = 0. Vice versa, notice
that f ′ = f · f ′′ where f ′′(i) = 0 if f(i) = 0 and f ′′(i) = 1/f(i) otherwise. Thus if
ϕ(f) = 0, then also ϕ(f ′) = ϕ(f) ·ϕ(f ′′) = 0. Now let a = Z(f) and b = Z(g) where
ϕ(f) = ϕ(g) = 0. Then Z(f ′ + g′) = Z(f ′)∩Z(g′) = Z(f)∩Z(g) = a∩ b ∈ U and U
is closed under finite intersections. If a /∈ U , let f be the sequence with f(i) = 1 if
i ∈ a and f(i) = 0 otherwise. f · (1− f) = 0 ⇒ ϕ(f) ·ϕ(1− f) = 0. Since ϕ(f) 6= 0
by hypothesis, we must have ϕ(1 − f) = 0, hence Z(1 − f) = I \ Z(f) ∈ U . As a
consequence, U is also closed under supersets. In fact, if we had b ⊇ a ∈ U for some
b /∈ U , then I \ b ∈ U and a ∩ (I \ b) = ∅ ∈ U . This is a contradiction because if
f(i) 6= 0 for all i, then ϕ(f) 6= 0. We are left to show that U is non-principal. By
contradiction, let us assume that there exists i∗ such that a ∈ U if and only if i∗ ∈ a.
Then for every f , ϕ(f) = f(i∗) (otherwise there is g with [ϕ(f)−ϕ(cf(i∗))] ·ϕ(g) = 1,
so b = {i | [f(i) − f(i∗)] · g(i) = 1} ∈ U , hence i∗ ∈ b, which is impossible). Now,
ϕ(f) = f(i∗) ∈ R for all f implies that ranϕ = R, contradicting the assumption
R 6= F. �

Corollary 2.3. ϕ(f) = ϕ(g) ⇔ {i | f(i) = g(i)} ∈ U .

Proof. One direction is the very definition of U . Vice versa, if a = {i | f(i) = g(i)}
∈ U but ϕ(f) 6= ϕ(g), then take h with h(i) = 1 if i ∈ a and h(i) = 0 otherwise.
Then ϕ(f − g) ·ϕ(h) = 0 implies ϕ(h) = 0 and so Z(h) = I \a ∈ U , a contradiction.

�

The reader who knows the ultrapower construction, can straightforwardly verify
that the hyperreal field F is isomorphic to the ultrapower RI/U . This fact was first
pointed out in the classic work by L. Gillman and M. Jerison [4]. We do not prove
it here because in this paper we are not assuming any knowledge of ultrapowers.

3 Getting a nonstandard embedding

Starting from a hyper-homomorphism ϕ, we now want to define a nonstandard
embedding

∗ : V (R) −→ V (F)

where V (R) and V (F) are the superstructures over R and F, respectively. Recall
that the superstructure V (X) over a set X is the union

⋃

n Vn(X) where V0(X) = X
and Vn+1(X) = Vn(X) ∪ P(Vn(X)) is the union of Vn(X) and all of its subsets. As
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customary in the superstructure approach, we assume that F ⊃ R is a set of atoms.
Now consider the following set of functions

F = {f | f : I → A for some A ∈ V (R)}

Definition 3.1. Let f, g ∈ F . We say that f and g are equal almost everywhere
(a.e.), and write f ∼ g, if {i | f(i) = g(i)} ∈ U . Similarly, we say that g belongs to
f a.e., and write g C f , when the set {i | f(i) ∈ g(i)} ∈ U .

By the properties of a filter, ∼ is an equivalence relation. Denote by [f ] =
{g ∈ F | f ∼ g} the ∼-equivalence class of f . We now extend the hyper-homo-
morphism ϕ to a mapping Ψ defined on the quotient F/∼ = {[f ] | f ∈ F} and
taking values in V (F). More precisely:

Proposition 3.2. There exists a unique 1-1 mapping Ψ : F/∼ → V (F) such that,
for every f ∈ F ,

Ψ([f ]) = ϕ(g) if f ∼ g ∈ F(I, R); Ψ([f ]) = {Ψ([g]) | g C f} otherwise.

Proof. For each n, let Fn = {[f ] ∈ F/∼ | {i | f(i) ∈ Vn(R)} ∈ U}. Proceeding by
induction on n, we shall show that there exists a unique 1-1 mapping Ψn : Fn →
Vn(F) that satisfies the above properties. Then the union Ψ =

⋃

n Ψn will satisfy
the requirements (indeed F/∼ =

⋃

n Fn). For f ∈ F0, pick g ∈ F(I, R) with f ∼ g
and let Ψ0([f ]) = ϕ(g). By Corollary 2.3, the definition of Ψ0 : F0 → F = V0(F)
is well-posed and Ψ0 is 1-1. Now let [f ] ∈ Fn+1. Notice that g C f ⇒ g ∈ Fn,
so we can apply the induction hypothesis and put Ψn+1([f ]) = {Ψn([g]) | g C f}.
It is easily verified that this definition is well-posed. To show that Ψn+1 is 1-1,
assume that [f ] 6= [f ′] are different elements of Fn+1. Without loss of generality
we can assume that for all i, both f(i) and f ′(i) are sets (i.e. f(i), f ′(i) /∈ R). For
each i ∈ a = {j | f(j) 6= g(j)} let xi be an element that witnesses that f(i) and
g(i) are different, i.e. either xi ∈ f(i) and xi /∈ f ′(i), or xi ∈ f ′(i) and xi /∈ f(i).
Thus b = {i ∈ a | xi ∈ f(i) \ f ′(i)} and b′ = {i ∈ a | xi ∈ f ′(i) \ f(i)} are disjoint
sets with b∪ b′ = a ∈ U . By the properties of a ultrafilter, either b ∈ U or b′ ∈ U . In
both cases, if ξ is any function with ξ(i) = xi for i ∈ a, then [ξ] ∈ Fn witnesses that
Ψn+1([f ]) 6= Ψn+1([f

′]). The uniqueness of Ψn+1 trivially follows from the definition.
�

Definition 3.3. The nonstandard embedding ∗ : V (R) → V (F) (determined by
the hyper-homomorphism ϕ) is the mapping where r∗ = r if r ∈ R is an atom, and
A∗ = {Ψ([f ]) | f : I → A} otherwise. The set A∗ is called the nonstandard extension
of A.

Notice that R∗ = {Ψ([f ]) | f : I → R} = {ϕ(f) | f : I → R} = F. The non-
standard extension N∗ is called the set of hypernaturals. In the next Proposition
we prove that our overall assumption R 6= R∗ is enough to bring about the usual
non-triviality property for nonstandard embeddings.
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Proposition 3.4. There are “nonstandard” hypernaturals, i.e. elements ξ ∈ N∗\N.

Proof. Assume by contradiction that N∗ = N. Then also P(N)∗ = P(N). In fact,
on the one hand, A = A∗ ∈ P(N)∗ for all A ⊆ N. Vice versa, if x ∈ y ∈ P(N)∗

then it is easily checked from the definitions that x ∈ N∗ = N, and so y ∈ P(N).
Now fix a bijection χ : R → P(N). For every f : I → R, consider the composition
χ ◦ f : I → P(N). Then Ψ(χ ◦ f) ∈ P(N)∗ = P(N) and so there is A ⊆ N with
Ψ(χ ◦ f) = A = A∗, i.e. {i | χ(f(i)) = A} = {i | f(i) = χ−1(A)} ∈ U . We conclude
that Ψ([f ]) = χ−1(A) ∈ R. Since this is true for all f : I → R, we have proved that
R∗ ⊆ R, a contradiction. �

We now show that ∗ satisfies the Leibniz transfer principle. This principle states
that every “elementary” property holds for elements a1, . . . , an if and only if the
same property holds for the corresponding nonstandard extensions a∗

1, . . . , a
∗
n. The

notion of “elementary” property is formalized as a bounded quantifier formula of
first-order logic. Loosely speaking, a bounded quantifier formula is a formula where
all quantifiers occur in the bounded forms ∀x (x ∈ y → . . .) or ∃x, (x ∈ y ∧ . . .). See
[2] §4.4 for a precise definition.

Theorem 3.5.

For every bounded quantifier formula σ(x1, . . . , xn) in the language of set theory,
and for every a1, . . . , an ∈ V (R),

σ(a1, . . . , an) ⇐⇒ σ(a∗
1, . . . , a

∗
n)

Proof. First we prove a more general fact, which is a version of the fundamental  Los
theorem of ultrapowers (see [2] §4.1). More precisely, if [f1], . . . , [fn] ∈ F/∼, and
σ(x1, . . . , xn) is a bounded quantifier formula, then:

σ (Ψ([f1]), . . . , Ψ([fn])) ⇐⇒ {i | σ (f1(i), . . . , fn(i))} ∈ U

This implies the theorem because by definition every a∗
j = Ψ([caj

]) where caj
is

the constant I-sequence with value aj , and trivially

{i | σ(ca1
(i), . . . , can

(i))} ∈ U ⇐⇒ σ(a1, . . . , an)

We proceed by induction on the complexity of formulas. Since Ψ is 1-1, Ψ([f1]) =
Ψ([f2]) ⇔ [f1] = [f2] ⇔ {i | f1(i) = f2(i)} ∈ U . Besides, by definition of Ψ,

Ψ([f1]) ∈ Ψ([f2]) ⇔ f1 C f2 ⇔ {i | f1(i) ∈ f2(i)} ∈ U .

Now notice that σ and σ′ satisfy the assertion in the theorem if and only if
the disjunction σ ∧ σ′ does. This is a straightforward consequence of the following
property of ultrafilters. a ∩ b ∈ U if and only if both a ∈ U and b ∈ U . Similarly,
since a ∈ U if and only if its complement I\a /∈ U , it is easily seen that σ satisfies the
assertion in the theorem if and only if its negation ¬σ does. Now let us concentrate
on the existential quantifier. Assume first that ∃x ∈ Ψ([g]) σ(x, Ψ([f1]), . . . , Ψ([fn])).
Then there is h C g with σ(Ψ([h]), Ψ([f1]), . . . , Ψ([fn])). We conclude that the set

{i | ∃x ∈ g(i) σ (x, f1(i), . . . , fn(i))} ∈ U
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because it includes {i | h(i) ∈ g(i)} ∩ {i | σ (h(i), f1(i), . . . , fn(i))}, the intersection
of two sets in U . Vice versa, assume

a = {i | ∃x ∈ g(i) σ (x, f1(i), . . . , fn(i))} ∈ U .

For each i ∈ a, pick xi ∈ g(i) such that σ (xi, f1(i), . . . , fn(i)) and consider any
I-sequence ξ such that ξ(i) = xi for i ∈ a. Then, by the induction hypothesis,

Ψ([ξ]) ∈ Ψ([g]) ∧ σ (Ψ([ξ]), Ψ([f1]), . . . , Ψ([fn]))

and so, in particular, ∃x ∈ Ψ([g]) σ(x, Ψ([f1]), . . . , Ψ([fn])). �

4 The saturation property

In the usual language of nonstandard analysis, an object x ∈ V (R∗) is called internal
if it belongs to some nonstandard extension, i.e. if x ∈ A∗ for some A. Thus, in our
context, x is internal if and only if x = Ψ([f ]) for some f ∈ F . Any nonstandard
extension A∗ is itself an internal set.

We say that a family B of sets has the finite intersection property (f.i.p.) if
B1∩ . . .∩Bn 6= ∅ for any choice of finitely many B1, . . . , Bn ∈ B. Now let an infinite
cardinal κ be given. A fundamental notion in nonstandard analysis is the following.

Definition 4.1. A nonstandard embedding ∗ is κ-saturated (satisfies the κ-satura-
tion property) if every bounded family B of internal sets of cardinality |B| < κ that
has the f.i.p., has nonempty intersection

⋂

B 6= ∅.

A family B is bounded if B ⊆ A∗ for some A.

To get the saturation property we need to consider hyper-homomorphisms with
additional properties. Denote by Fin(I) the collection of all finite subsets of I.

Definition 4.2. A hyper-homomorphism ϕ : F(I, R) � F is good if for every family
{fa | a ∈ Fin(I)} ⊆ ker ϕ such that Z(fb) ⊆ Z(fa) whenever b ⊇ a, there exists a
family {ga : a ∈ Fin(I)} ⊆ ker ϕ with Z(ga) ⊆ Z(fa) and Z(ga∪b) = Z(ga) ∩ Z(gb)
for all a, b.

The above definition is the counter-part in our context of the property of good-
ness for ultrafilters, which was introduced by H.J. Keisler [8], [9] in the sixties in
order to get saturated ultraproducts. The motivation for considering good hyper-
homomorphisms is given by the following result.

Theorem 4.3.

Let ϕ : F(I, R) � F be a hyper-homomorphism, and let κ = |I| be the cardinality
of the set of indexes. If ϕ is good then the corresponding nonstandard embedding is
κ+-saturated.1

1By κ
+ we denote the successor cardinal of κ.
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Proof. Let a bounded family B of internal sets with the f.i.p. be given, and assume
|B| ≤ κ. Pick f : I → N with Ψ([f ]) ∈ N∗ \ N. For every n, the set un =
{i | f(i) 6= n} ∈ U but clearly

⋂

n un = ∅. Since |B| ≤ |I|, we can enumerate
B = {Ψ([fj ]) | j ∈ I} (possibly with repetitions). For each a ∈ Fin(I), the set

ua = {i |
⋂

j∈a

fj(i) 6= ∅} ∈ U

because
⋂

j∈a Ψ([fj ]) 6= ∅ by the f.i.p. Now take fa with fa(i) = 0 if and only
if i ∈

⋂

n≤m un ∩ ua, where m is the (finite) cardinality of a. Clearly Z(fa) ∈ U
because it is a finite intersection of elements in U . Besides, trivially Z(fb) ⊆ Z(fa)
whenever b ⊇ a. By hypothesis, there is a family {ga | a ∈ Fin(I)} ⊆ ker ϕ such
that Z(ga) ⊆ Z(fa) and Z(ga∪b) = Z(ga)∩Z(gb) for all a, b. For each i, consider the
set

χ(i) =
{

j | i ∈ Z(g{j})
}

.

Notice that if χ(i) contains m elements, say j1, . . . , jm ∈ χ(i), then

i ∈ Z(g{j1}) ∩ . . . ∩ Z(g{jm}) = Z(g{j1,...,jm}) ⊆ Z(f{j1,...,jm}) ⊆
⋂

n≤m

un.

Since
⋂

n un = ∅, it follows that χ(i) must be finite. Now pick an element
h(i) ∈

⋂

{fj(i) | j ∈ χ(i)}. This is possible because, by definition of χ(i),

i ∈
⋂

{

Z(g{j}) | j ∈ χ(i)
}

= Z(gχ(i)) ⊆ Z(fχ(i)) ⊆ uχ(i),

and so
⋂

{fj(i) | j ∈ χ(i)} 6= ∅. As the family B is bounded, the I-sequence h
belongs to F . We get the assertion by showing that for every j, Ψ([h]) ∈ Ψ([fj ]).
This is true because i ∈ Z(g{j}) ⇔ j ∈ χ(i) ⇒ h(i) ∈ fj(i) and so Z(g{j}) ⊆
{i | h(i) ∈ fj(i)} ∈ U . �

If κ is not too large, then the converse holds. Recall that the cardinal iω (beth-
omega) is defined as sup {in | n ∈ N} where i0 = ℵ0 and in+1 = 2in.

Theorem 4.4.

Let ϕ : F(I, R) � F be a hyper-homomorphism which originates a κ+-saturated
nonstandard embedding, where κ = |I|. If κ < iω (or, equivalently, if κ = |A| for
some A ∈ V (R)) then ϕ is good.

Proof. Let {fa | a ∈ Fin(I)} ⊆ ker ϕ where Z(fb) ⊆ Z(fa) for b ⊇ a. We have to
show that there exists a family {ga | a ∈ Fin(I)} ⊆ ker ϕ with Z(ga) ⊆ Z(fa) and
Z(ga∪b) = Z(ga) ∩ Z(gb) for all a, b. By the hypothesis on κ, there is a bijection
χ : Fin(κ) → A for some A ∈ V (R). For every i ∈ I and a ∈ Fin(κ), let Ga(i) =
{χ(a′) | a ⊆ a′ and fa′(i) = 0}. We shall need the following facts, that can be proved
in a straightforward manner.

1. Ga(i) 6= ∅ ⇔ fa(i) = 0;

2. Ga∪b(i) = Ga(i) ∩ Gb(i);

3. {i | χ(a) ∈ Ga(i)} = Z(fa).
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Consider the family of internal sets B =
{

Ψ([G{ξ}]) | ξ ∈ κ
}

. Notice that B is

bounded since B ⊆ P(A)∗. For every {ξ1, . . . , ξn} = a ∈ Fin(κ), χ(a)∗ ∈ Ψ([G{ξ1}])∩
. . . ∩ Ψ([G{ξn}]) because

{

i | χ(a) ∈ G{ξ1}(i) ∩ . . . ∩ G{ξn}(i) = Ga(i)
}

= Z(fa) ∈ U .

Thus B has the f.i.p. By κ+-saturation, there is an element Ψ([h]) ∈
⋂

B. For
each a ∈ Fin(κ), take ga such that ga(i) = 0 if and only if h(i) ∈ Ga(i). Notice

that for every ξ ∈ a, Ψ([h]) ∈ Ψ([G{ξ}]), hence uξ =
{

i | h(i) ∈ G{ξ}(i)
}

∈ U . But

then Z(ga) = {i | h(i) ∈ Ga(i)} =
⋂

ξ∈a uξ ∈ U and so ϕ(ga) = 0. This proves
that the family {ga | a ∈ Fin(κ)} ⊆ ker ϕ. Notice that Z(ga) ⊆ Z(fa) because if
fa(i) 6= 0 then Ga(i) = ∅ and so ga(i) 6= 0. Finally, ga∪b(i) = 0 ⇔ h(i) ∈ Ga∪b(i) =
Ga(i) ∩Gb(i) ⇔ ga(i) = gb(i) = 0, i.e. Z(ga∪b) = Z(ga) ∩ Z(gb). This completes the
proof. �

If the index set I is countable, then the goodness property comes for free.

Proposition 4.5. If I is countable, all hyper-homomorphisms ϕ : F(I, R) � F are
good.

Proof. Without loss of generality, we directly assume I = N. For each finite a ⊂ N,
let ga = fa′ where a′ = {0, 1, . . . , max a}. Clearly, Z(ga) ⊆ Z(fa) because a ⊆ a′.
Now let x = max (a ∪ b) and assume x ∈ a (if x ∈ b the proof is similar). Notice
that b′ ⊆ (a ∪ b)′ = a′, hence Z(ga∪b) = Z(f(a∪b)′) = Z(fa′) = Z(fa′) ∩ Z(fb′) =
Z(ga) ∩ Z(gb). �

Thus every nonstandard embedding originating from a hyper-homomorphism on
the ring of real N-sequences satisfies the saturation property for countable families
(i.e. it is ℵ1-saturated). The general (uncountable) case is much harder and is
implied by the following existence result about good ultrafilters.

Proposition 4.6. For every infinite cardinal κ there exists a good hyper-homo-
morphism ϕ : F(κ, R) � F.

Proof. Recall the following definitions (see for instance [2] §4.3 and §6.1). An ultra-
filter U is countably incomplete if there is a countable family {un | n ∈ N} ⊆ U with
empty intersection

⋂

n un = ∅. A filter U over κ is good if for every anti-monotonic
function η : Fin(κ) → U there exists an anti-additive function θ : Fin(κ) → U such
that θ(a) ⊆ η(a) for all a. By definition, η is anti -monotonic if a ⊆ b ⇒ η(a) ⊇ η(b);
and θ is anti -additive if θ(a ∪ b) = θ(a) ∩ θ(b). Under the generalized continuum
hypothesis, H.J. Keisler [8] proved that there exist countably incomplete good ul-
trafilters over any given cardinal κ. Subsequently, K. Kunen [12] showed that the
generalized continuum hypothesis is not needed. We shall get the assertion by prov-
ing the following fact. If U is a countably incomplete good ultrafilter over κ, then
the canonical projection

ϕ : F(κ, R) � F(κ, R)/M

modulo the ideal M = {f | Z(f) ∈ U} is a good hyper-homomorphism. First, it
is easily seen that M is maximal because U is an ultrafilter. Hence the quotient



A ring homomorphism is enough to get nonstandard analysis 489

F(κ, R)/M = F is a field. Let us turn to the non-triviality condition R 6= F . Take a
countable family {un | n ∈ N} as given by the property of countable incompleteness.
Without loss of generality we assume that un ⊇ un+1 for all n (otherwise take
u′

n =
⋂

k≤n un). Let a0 = I \ u0; an+1 = un \ un+1 and let f be the function such
that f(i) = n if and only if i ∈ an. For every n, ϕ(f) 6= n because an /∈ U , and
so ϕ(f) is different from the image of any constant function. Now let a family
{fa | a ∈ Fin(κ)} ⊆ ker ϕ = M be given where Z(fb) ⊆ Z(fa) for b ⊇ a. The
function η : Fin(κ) → U where η(a) = Z(fa) is anti-monotonic, and so by hypothesis
there is an anti-additive θ : Fin(κ) → U with θ(a) ⊆ η(a). For each a ∈ Fin(κ), let ga

be a function with ga(i) = 0 if and only if i ∈ θ(a). Then {ga | a ∈ Fin(κ)} ⊆ ker ϕ
is the family we were looking for. �

5 On the uniqueness of the hyperreals

We conclude this paper with some remarks about the uniqueness problem of the
hyperreals. Since a homomorphic image of a ring is a field if and only if the kernel is
a maximal ideal, in principle there are as many hyperreal fields R∗ ∼= F(I, R)/M as
there are maximal ideals M in F(I, R). J. Roitman [13] proved that the following is
consistent with ZFC: “there are 2ℵ0 non-isomorphic hyperreal fields originating from
the ring F(N, R) of real N-sequences”. On the other hand, the goodness property
yields the following.

Theorem 5.1.

Let κ be a cardinal such that 2κ = κ+. Then all hyperreal fields originating from good
hyper-homomorphisms on rings F(I, R) where |I| = κ are isomorphic (as ordered
fields).

Proof. Recall that a linearly ordered set 〈L,≤〉 is an ηα-set if: (i) no subset of
cardinality < ℵα is unbounded (above or below) in L; (ii) for every A, B ⊂ L of
cardinality < ℵα with A < B (i.e. a < b for all a ∈ A and b ∈ B) there exists x with
A < {x} < B. A classic result by E. Erdös, L. Gillman and M. Henriksen [3] states
that any two real-closed fields that are ηα-sets of cardinality ℵα are isomorphic.
We shall get the assertion by proving the following. If the hyper-homomorphism
ϕ : F(κ, R) � R∗ is good, then the real-closed field R∗ is an ηα+1-set of cardinality
ℵα+1 = κ+. Clearly R∗ is real-closed because R is (use Leibniz principle). If A ⊂ R∗

has cardinality < κ+, then B = {[a, +∞) | x ∈ A} is a bounded family of internal
sets with the f.i.p. and |B| = |A| < κ+. If, by contradiction, A is unbounded above,
then

⋂

B = ∅, contradicting the saturation property. Similarly, A is proved to be also
bounded below. As for (ii), let us consider the family B = {[a, b] | a ∈ A and b ∈ B}.
Clearly B has the f.i.p. and its cardinality |B| = |A × B| = max {|A|, |B|} < κ+.
Then by saturation there is x ∈

⋂

B and so A < {x} < B. We are left to show
that |R∗| = κ+. Notice that B = {R∗ \ {x} | x ∈ R∗} is a bounded family of internal
sets with the f.i.p. and with empty intersection. Hence its cardinality must be
|B| = |R∗| ≥ κ+. On the other hand, the map ϕ is onto, so |R∗| ≤ |F(κ, R)| =
(

2ℵ0

)κ
= 2κ = κ+. �
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Putting together Proposition 4.5 and the previous Theorem, we get the following
fact, which was first pointed out by W.A.J. Luxemburg in his lecture notes [7].

Corollary 5.2. Under the continuum hypothesis, all hyperreal fields originating
from the ring of N-sequences are isomorphic (as ordered fields).
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