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Abstract

In this paper we study a boundary value problem for functional differential

equations of second order. Applying a quasilinearization technique we obtain

two monotone sequences showing that they converge to the unique solution

and this convergence is superlinear.

1 Introduction

Let C0 = C(J0, R) with J0 = [−τ, 0] for τ > 0 and put J = [0, 1]. Suppose that
f ∈ C(J × C0, R), Φ0 ∈ C0 and let us consider the functional differential problem
of the form

(1)

{

−x′′(t) = f(t, xt), t ∈ J,

x0 = Φ0, x(1) = k1.

Here, for any t ∈ J, xt ∈ C0 is defined by xt(s) = x(t + s) for s ∈ J0. According
to the above notation, x0 ∈ C0, and x0(s) = x(s), s ∈ J0. It means that in this
case the condition x0 = Φ0 implies that x(s) = Φ(s) on J0, where the function Φ is
given and continuous on J0. Note that the differential equation from problem (1)
includes, for example as special cases, ordinary differential equations, differential
equations with delayed arguments and integro–differential equations too. There
are some books devoted to functional differential equations (see for example [3],[4];
see also [2]). Second order nonlinear boundary problems arises in many physical
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phenomena. Many examples with some discussion about solutions (and sometimes
also about lower and upper solutions) are in [1], [2].

The method of quasilinearization has been widely applied in the study of nonlin-
ear differential problems with initial and boundary conditions (see, for example [6]–
[9]). In this paper we extend this method to boundary value problems for functional
differential equations of second order. Two monotone sequences are constructed and
sufficient conditions which imply the convergence of these sequences to the unique
solution of problem (1) are given. This convergence is superlinear. We must point
out that the treatment of our problem leads us to prove some results of existence and
uniqueness of solutions to linear problems of second order that are of independent
interest. Some examples which satisfy the assumptions are presented.

Finally, we note that the main result of this paper is new and problem (1) is
quite general containing others considered, for example, in [2], [7], [8].

2 Assumptions

Put C∗ = C(J̄ , R) ∩ C2(J, R) with J̄ = [−τ, 1]. A function u ∈ C∗ is said to be a
lower solution of problem (1) if

{

−u′′(t) ≤ f(t, ut), t ∈ J,

u0 ≤ Φ0, u(1) ≤ k1,

and an upper solution of (1) if the above inequalities are reversed.

We introduce the following assumptions:

(H1) f ∈ C(J × C0, R),

(H2) y0, z0 ∈ C∗ are lower and upper solutions of (1) and y0(t) ≤ z0(t) on J,

(H3) the Frechet derivative fΦ exists, is a continuous linear operator satisfying:

(a) |fΦ(t, Φ)v| ≤ L|v|0 for t ∈ J, Φ, v ∈ C0 with L ∈ [0, 8), and |v|0 =
max

s∈[−τ,0]
|v(s)|,

(b) if u, v ∈ C0, and y0,t ≤ u ≤ v ≤ z0,t, then

f(t, v) ≥ f(t, u) + fΦ(t, u)(v − u), t ∈ J,

(c) if v ≤ w, and u, v, w ∈ C0, then

fΦ(t, u)v ≤ fΦ(t, u)w, y0,t ≤ u ≤ z0,t,

(d) if u, v, w ∈ C0, u ≥ 0 and y0,t ≤ v ≤ w ≤ z0,t, then

fΦ(t, v)u ≤ fΦ(t, w)u,

(H4) there exist constants L1 ≥ 0 and α ∈ [0, 1] such that the condition

|fΦ(t, u)− fΦ(t, v)| ≤ L1|u− v|α0

holds for t ∈ J, u, v ∈ C0.
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3 Lemmas

Lemma 1 gives sufficient conditions under which problem (1) has at most one solu-
tion.

Lemma 1. Let the assumptions H1 and H3(a) hold. Then problem (1) has at
most one solution.

Proof. Assume that problem (1) has two distinct solutions x and y. Put p =
x− y. Then

{

−p′′(t) = f(t, xt)− f(t, yt), t ∈ J,

p(s) = 0, s ∈ J0, p(1) = 0.

Note that this is equivalent to the following integral equation











p(t) =
∫ 1

0
G(t, s)[f(s, xs)− f(s, ys)]ds, t ∈ J,

p(s) = 0, s ∈ J0

with G as the Green function defined by

G(t, s) =

{

s(1− t) if 0 ≤ s ≤ t,

t(1− s) if t < s ≤ 1.

Let |p|∗ = max
t∈J

|p(t)|. Then, a mean value theorem and assumption H3(a) yield

|p|∗ = max
t∈J

∣

∣

∣

∣

∫ 1

0
G(t, s)

∫ 1

0
fΦ(s, rxs + (1− r)ys)drpsds

∣

∣

∣

∣

≤
L

8
|p|∗.

Hence |p|∗ = 0 since L < 8. This proves that problem (1) has at most one solution.
The lemma is proved.

We shall now prove the basic comparison result.

Lemma 2. Let the assumptions H1, H3(a, b, c) hold. Let u, v ∈ C∗ be lower and
upper solutions of problem (1), respectively, and [u, v] ⊂ [y0, z0]. Then the problems

(2)

{

−p′′(t) = f(t, ut) + fΦ(t, ut)[pt − ut], t ∈ J,

p0 = Φ0, p(1) = k1,

and

(3)

{

−q′′(t) = f(t, vt) + fΦ(t, ut)[qt − vt], t ∈ J,

q0 = Φ0, q(1) = k1

have, in the segment [u, v], their unique solutions p, q ∈ C∗, and moreover p ≤ q.

Proof. Note that problems (2) and (3) are equivalent to the following integral
equations

(4)











p(t) =
∫ 1

0
G(t, s)U1(s, p)ds + Φ(0) + [k1 − Φ(0)]t ≡ A1p(t), t ∈ J,

p0 = Φ0,
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and

(5)











q(t) =
∫ 1

0
G(t, s)U2(s, q)ds + Φ(0) + [k1 − Φ(0)]t ≡ A2p(t), t ∈ J,

q0 = Φ0,

where
U1(t, p) = f(t, ut) + fΦ(t, ut)[pt − ut],

U2(t, p) = f(t, vt) + fΦ(t, ut)[pt − vt].

Knowing that u, v are lower and upper solutions of problem (1), respectively, and
using assumption H3(b), we get

U1(t, u) = f(t, ut) ≥ −u′′(t),

U1(t, v) = f(t, ut) + fΦ(t, ut)[vt − ut]− f(t, vt) + f(t, vt)

≤ f(t, vt) ≤ −v′′(t),

and
U2(t, u) = f(t, vt) + fΦ(t, ut)[ut − vt]− f(t, ut) + f(t, ut)

≥ f(t, ut) ≥ −u′′(t),

U2(t, v) = f(t, vt) ≤ −v′′(t).

Then integration by parts gives

A1u(t) =
∫ 1

0
G(t, s)U1(s, u)ds + Φ(0) + [k1 − Φ(0)]t

≥ −
∫ 1

0
G(t, s)u′′(s)ds + Φ(0) + [k1 − Φ(0)]t

=
∫ t

0
s(t− 1)u′′(s)ds +

∫ 1

t
t(s− 1)u′′(s)ds + Φ(0) + [k1 − Φ(0)]t

= u(t) + (1− t)[Φ(0)− u(0)] + t[k1 − u(1)]

≥ u(t), t ∈ J,

A1v(t) =
∫ 1

0
G(t, s)U1(s, v)ds + Φ(0) + [k1 − Φ(0)]t

≤ (t− 1)
∫ t

0
sv′′(s)ds + t

∫ 1

t
(s− 1)v′′(s)ds + Φ(0) + [k1 − Φ(0)]t

= v(t) + (1− t)[Φ(0)− v(0)] + t[k1 − v(1)]

≤ v(t), t ∈ J,

and

A2u(t) =
∫ 1

0
G(t, s)U2(s, u)ds + Φ(0) + [k1 − Φ(0)]t

≥ −
∫ 1

0
G(t, s)u′′(s)ds + Φ(0) + [k1 − Φ(0)]t

≥ u(t), t ∈ J,

A2v(t) =
∫ 1

0
G(t, s)U2(s, v)ds + Φ(0) + [k1 − Φ(0)]t

≤ −
∫ 1

0
G(t, s)v′′(s)ds + Φ(0) + [k1 − Φ(0)]t

≤ v(t), t ∈ J.
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Now, let u(t) ≤ v1(t) ≤ v2(t) ≤ v(t), t ∈ J, v1, v2 ∈ C∗. Assumption H3(c)
yields

A1v1(t) =
∫ 1

0
G(t, s)U1(s, v1)ds + Φ(0) + [k1 − Φ(0)]t

≤
∫ 1

0
G(t, s)U1(s, v2)ds + Φ(0) + [k1 − Φ(0)]t = A1v2(t), t ∈ J,

A2v1(t) =
∫ 1

0
G(t, s)U2(s, v1)ds + Φ(0) + [k1 − Φ(0)]t

≤
∫ 1

0
G(t, s)U2(s, v2)ds + Φ(0) + [k1 − Φ(0)]t = A2v2(t), t ∈ J

showing that operators A1 and A2 map the segment [u, v] into itself. Since A1 and A2

are completely continuous operators on [u, v], so the sequences ūn+1 = A1ūn, v̄n+1 =
A1v̄n, ū0 = u, v̄0 = v and ũn+1 = A2ũn, ṽn+1 = A2ṽn, ũ0 = u, ṽ0 = v converge
to fixed points ū, v̄, ũ, ṽ ∈ [u, v] of A1 and A2, respectively, and ū ≤ v̄, ũ ≤ ṽ.

Now we are going to show that problem (2) has a unique solution. Assume that
it has two distinct solutions x and y. Set m = x − y, so m(s) = 0 on J0, and
m(1) = 0. Then m satisfies the following problem:

(6)

{

−m′′(t) = fΦ(t, ut)mt, t ∈ J,

m(s) = 0, s ∈ J0, m(1) = 0.

Moreover, m(t) = 0, t ∈ J is a solution of (6). Since (6) is equivalent to the following
one











m(t) =
∫ 1

0
G(t, s)fΦ(s, us)msds, t ∈ J,

m(s) = 0, s ∈ J0,

using assumption H3(a), it is easy to show that m(t) = 0 on J is the unique solution
of (6). It proves that problem (2) has a unique solution p, so ū(t) = v̄(t) = p(t)
on J . Similarly, we can prove that problem (3) has a unique solution q, so ũ(t) =
ṽ(t) = q(t) on J.

Now, we need to show that p(t) ≤ q(t) on J . Note that for all w ∈ C∗, assumption
H3(b) yields U1(t, w) ≤ U2(t, w) which proves that A1w ≤ A2w. Since ū0 = u ≤ v =
ṽ0, then ū1 = A1ū0 ≤ A1ṽ0 ≤ A2ṽ0 = ṽ1. Assume that ūk ≤ ṽk for some fixed k > 1.
Then,

ūk+1 = A1ūk ≤ A1ṽk ≤ A2ṽk = ṽk+1.

By induction, it proves that ūn ≤ ṽn for all n ≥ 0. Now, if n →∞, then p(t) ≤ q(t)
on J showing that u(t) ≤ p(t) ≤ q(t) ≤ v(t) on J.

This completes the proof of the lemma.
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4 Main result

We are now in a position to prove the following main result of this paper.

Theorem 1. Let assumptions H1, H2, H3(a, c, d) and H4 hold. Then there exist
monotone sequences {yn}, {zn} which converge uniformly to the unique solution x

of problem (1) on J and that convergence is superlinear.

Proof. Note that assumption H3(d) and the mean value theorem prove that
H3(b) is satisfied. Let us define the sequences {yn}, {zn} by formulas

{

−y′′n+1(t) = f(t, yn,t) + fΦ(t, yn,t)[yn+1,t − yn,t], t ∈ J,

yn+1,0 = Φ0, yn+1(1) = k1,
{

−z′′n+1(t) = f(t, zn,t) + fΦ(t, yn,t)[zn+1,t − zn,t], t ∈ J,

zn+1,0 = Φ0, zn+1(1) = k1

for n = 0, 1, · · · . Since y0, z0 ∈ C∗ are lower and upper solutions of problem (1),
respectively, by Lemma 2, the elements y1, z1 are well defined and moreover

y0(t) ≤ y1(t) ≤ z1(t) ≤ z0(t), t ∈ J.

Next, using assumption H3(b, d), we obtain

−y′′1(t) = f(t, y0,t) + fΦ(t, y0,t)[y1,t − y0,t]− f(t, y1,t) + f(t, y1,t)

≤ f(t, y1,t), t ∈ J,

−z′′1 (t) = f(t, z0,t) + fΦ(t, y0,t)[z1,t − z0,t]− f(t, z1,t) + f(t, z1,t)

≥ f(t, z1,t), t ∈ J,

showing that y1, z1 are lower and upper solutions of problem (1), respectively.
Let us assume that

y0(t) ≤ y1(t) ≤ · · · ≤ yk−1(t) ≤ yk(t) ≤ zk(t) ≤ zk−1(t) ≤ · · · ≤ z1(t) ≤ z0(t), t ∈ J

and let yk, zk be lower and upper solutions of problem (1) for some k ≥ 1.
Note that, by Lemma 2, yk+1, zk+1 are well defined and

yk(t) ≤ yk+1(t) ≤ zk+1(t) ≤ zk(t), t ∈ J.

Hence, by induction, we have

y0(t) ≤ y1(t) ≤ · · · ≤ yn(t) ≤ zn(t) ≤ · · · ≤ z1(t) ≤ z0(t), t ∈ J

for all n. Employing standard techniques, it can be shown that the sequences {yn},
{zn} converge uniformly and monotonically to the unique solution x of problem (1).
The uniqueness of solutions of problem (1) is guaranteed by Lemma 1.

We shall next show that the convergence of yn, zn to the unique solution x of
problem (1) is superlinear. For this purpose, we consider

pn+1 = x− yn+1 ≥ 0, qn+1 = zn+1 − x ≥ 0 t ∈ J̄ .
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Note that pn+1(s) = qn+1(s) = 0 for s ∈ J0, and pn+1(1) = qn+1(1) = 0. Moreover,

−p′′n+1(t) = f(t, xt)− f(t, yn,t)− fΦ(t, yn,t)[yn+1,t − yn,t] ≡ Wn(t), t ∈ J,

so

pn+1(t) =
∫ 1

0
G(t, s)Wn(s)ds, t ∈ J.

Now, using the mean value theorem and assumptions H4 and H3(a), we get

pn+1(t) =
∫ 1

0
G(t, s)

{
∫ 1

0
fΦ(s, rxs + (1− r)yn,s)drpn,s

−fΦ(s, yn,s)[pn,s − pn+1,s]
}

ds

=
∫ 1

0
G(t, s)

{
∫ 1

0
[fΦ(s, rxs + (1− r)yn,s)− fΦ(s, yn,s)] pn,sdr

+fΦ(s, yn,s)pn+1,s

}

ds

≤
∫ 1

0
G(t, s)

{
∫ 1

0
L1r

α|pn,s|
α
0pn,sdr + L max

t∈J
|pn+1(t)|

}

ds

≤
L1

8
max
t∈J

|pn,t|
α+1
0 +

L

8
max
t∈J

|pn+1(t)|.

Hence

max
t∈J

|pn+1(t)| ≤
L1

8− L
max
t∈J

|pn,t|
α+1
0 .

Similarly, using the mean value theorem and assumptions H3(a), H4 we have an
estimation for qn+1, namely

max
t∈J

|qn+1(t)| ≤
L1

8− L

[

max
t∈J

|qn,t|
α+1
0 + max

t∈J
|pn,t|

α
0 |qn,t|0

]

.

The proof is complete.

Remark. If α = 1, then the convergence of sequences {yn}, {zn} is quadratic.

Examples 1. Consider the following problem

(7)



















−x′′(t) =
[

x

(

t−
1

2

)]2

− 2, t ∈ J = [0, 1],

x(s) = 0, s ∈
[

−
1

2
, 0

]

, x(1) = 1.

If we take y0(t) = 0 for t ∈ [− 1
2
, 0], y0(t) = t2 for t ∈ J, and z0(t) = 1, t ∈ [−1

2
, 1],

then it is easy to verify that assumptions H3, H4 are satisfied. Moreover, y0, and z0

are respectively a lower and an upper solution of problem (7) and y0(t) ≤ z0(t) on
J.

2. Let

(8)











−x′′(t) = x

(

1

2
t

)

, t ∈ J = [0, 1],

x(0) = 0, x(1) = 1.

Then Assumptions H3, H4 hold. Note that y0(t) = 0, z0(t) = 2 − t2, t ∈ J are a
lower and an upper solution of (8) and y0(t) ≤ z0(t) on J.
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