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Abstract

Toeplitz operators on Hardy spaces Hp have been studied extensively dur-

ing the past 40 years or so. An important special case is that of the operators

of multiplication by a bounded analytic function ϕ: Mϕ(f) = ϕf (analytic

Toeplitz operators). However, many results about them are either only for-

mulated in the case p = 2, or are not so easy to find in an explicit form.

The purpose of this paper is to give a complete overview of the spectral

theory of these analytic Toeplitz operators on a general space H p, 1 ≤ p < ∞.

The treatment is kept as elementary as possible, placing a special emphasis

on the key role played by certain extremal functions related to the Poisson

kernel.

Introduction

Denote by T the unit circle and by D the unit disk in the complex plane C. For

1 ≤ p < ∞, the classical Hardy space Hp is defined as the set of all functions f

analytic in D such that the (increasing) integral means

Mp(r; f) =
(

1

2π

∫
2π

0

|f(reiθ)|pdθ
)1/p
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are bounded for 0 < r < 1. It is a Banach space with respect to the norm

‖f‖p = lim
r→1−

Mp(r; f) .

Let H∞ denote the Banach space of all bounded analytic functions in D equipped

with the usual supremum norm. By a generalization of a theorem of Fatou, whenever

f ∈ Hp and 1 ≤ p ≤ ∞, the radial limits f̃(θ) = limr→1− f(reiθ) exist for almost

every θ in [0, 2π). Moreover, the space Hp can be identified with the closed subspace

of Lp(T, dθ/(2π)) consisting of the functions with vanishing Fourier coefficients with

negative indices, and theHp norm can also be computed by integrating the boundary

values:

‖f‖p =
(

1

2π

∫
2π

0

|f̃(θ)|pdθ
)1/p

. (1)

We refer the reader to the standard texts, e.g., [H], [Du], [K], or [G].

A function ϕ defined on D is said to be a pointwise multiplier of Hp if ϕf ∈ Hp

for all f in Hp. By the Closed Graph Theorem, we see that this happens if and only

if the multiplication operator Mϕ : Hp → Hp, given by Mϕ(f) = ϕf , is bounded.

The function ϕ is called the symbol of Mϕ. The multiplication operators form a

special subclass within the larger family of Toeplitz operators.

The Toeplitz operator with symbol ϕ, denoted Tϕ, is defined for any ϕ in L∞(T)

as the multiplication by ϕ followed by the analytic Szegö projection from Lp(T)

onto its closed subspace Hp; that is, Tϕ(f) = P (ϕf). This makes sense even for

p 6= 2, when there is no orthogonality. Thus, the operators of multiplication by

H∞ functions are precisely the Toeplitz operators with analytic symbols, and are

often also called analytic Toeplitz operators. The theory of Toeplitz operators with

various types of general L∞(T) symbols was developed over a long period by a

number of important analysts. It would take us way beyond the scope of this article

to give an overview of the general theory, or even to list the names of important

contributors and their achievements. We only mention a few references in book form

(or collections of articles), in the order of appearance: Douglas [Do], Nikol’skĭı [N1],

[N2], Böttcher and Silbermann [BS], Zhu [Z], and Böttcher and Karlovich [BK].

In spite of the vast literature on this important subject, most of the papers are

usually only concerned with the case p = 2 and rely on the Hilbert space techniques

(which do not work for other values of p). Sometimes the study of Toeplitz operators

requires a restriction to a certain important class of symbols, which automatically

excludes the most general analytic multipliers. Consequently, it does not seem

easy to find in the existing literature an elementary exposition on multiplication

operators on general Hp spaces. The purpose of this survey is precisely to fill this

gap in the (otherwise extremely rich) literature on the Toeplitz operators. We try

to present as complete an account of results for 1 ≤ p < ∞ as can fit in a short

space, in a unified and systematic way. Though often simple, our results are always

conclusive and complete. The exposition includes a characterization of the analytic

Toeplitz operators and the computation of their norms (Section 1), essential norms
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and approximation numbers (Section 2), as well as a detailed classification of spectral

points and a discussion of the Fredholm property and Fredholm index (Section 3).

Although almost all the results presented here are likely to be known at least

when p = 2 (either they can be found in the texts cited, or are considered “folk

knowledge” among the experts), some of them still might be stated here for the first

time explicitly in the context of general Hp spaces. The methods employed resemble

those used in our recent article [V] on the Bergman space multipliers. We emphasize

the role played by the Poisson integrals and by the closely related extremal functions

for point evaluations, which take part in most proofs.

There are two relevant recent papers: [BDL], where the multipliers between

weighted H∞w spaces are studied, and [SZ], where a characterization of the multipliers

from Hp into Hq when q ≤ p is contained as a special case, and the commutants of

multiplication operators on H2 are described when the symbols are inner functions.

Analytic Toeplitz operators on the closely related Bergman spaces have also received

a lot of attention (cf. [At], [Ax], [L], [V]); occasionally it will be useful to compare

the results in the two situations.

1 Boundedness, norms, and general facts

We begin by characterizing the bounded analytic Toeplitz operators on Hp in terms

of their symbols and computing their norms.

The following sharp estimate is well-known and has various proofs. A typical one

relies on the Hardy space factorization methods, reducing the problem to the easy

case p = 2 (see p. 285 of [N1], Appendix 2). Another proof can be given by using

the isometries of Hp generated by the involutive conformal disk automorphisms and

reducing the problem to the estimate for the origin. Yet another proof is possible

by a typical variational method for the problem of maximizing |f(ζ)| among all

functions f in Hp of norm one and the usual guess-and-check strategy. The proof is

left as an exercise.

Lemma 1. If 1 ≤ p <∞, f ∈ Hp, and ζ ∈ D, then

(1− |ζ|2)1/p|f(ζ)| ≤ ‖f‖p .

For arbitrary ζ in D, the equality holds for

fζ(z) =
(1− |ζ|2)1/p

(1− ζz)2/p
,

(with a suitable analytic branch chosen in the denominator) and ‖fζ‖p = 1.

The sharpness of the above estimate will be crucial in some of the proofs that

follow.
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Proposition 2. Let 1 ≤ p <∞. Then the following statements are equivalent:

(a) ϕHp ⊂ Hp.

(b) ϕ is analytic in D and the multiplication operator Mϕ : Hp → Hp, given by

Mϕ(f) = ϕf , is bounded.

(c) ϕ ∈ H∞.

If any (and therefore each) of the above conditions is fulfilled, then the norm of the

operator Mϕ : Hp → Hp is ‖Mϕ‖ = ‖ϕ‖
∞

.

Proof. (c) ⇒ (a) is trivial.

To prove (a) ⇒ (b), observe first because of ϕ = 1 · ϕ we have ϕ ∈ Hp, hence

ϕ is analytic in D. Next, note that norm convergence in Hp implies the uniform

convergence on compact sets in D (for example, by Lemma 1). Now a standard

application of the Closed Graph Theorem shows that Mϕ is bounded.

(b) ⇒ (c). Suppose Mϕ is a bounded operator on Hp. Then for each fixed ζ in

D and for every f in Hp we have

(1− |ζ|2)1/p|ϕ(ζ)f(ζ)| ≤ ‖ϕf‖p ≤ ‖Mϕ‖ · ‖f‖p .

By Lemma 1, we can choose f = fζ so that (1 − |ζ|2)1/p|fζ(ζ)| = ‖fζ‖p = 1. The

inequality |ϕ(ζ)| ≤ ‖Mϕ‖ then follows for arbitrary ζ in D.

The norm formula follows from the inequality ‖ϕ‖
∞
≤ ‖Mϕ‖ obtained above

and from the obvious estimate ‖ϕf‖p ≤ ‖ϕ‖
∞
‖f‖p . �

Remarks. (1) Another proof can be given, similar to the one of Proposition 1.7 in

[At] for Bergman spaces: show that ‖ϕn‖p ≤ ‖Mϕ‖
n for all n and then let n→∞.

(2) The inequality ‖Mϕ‖ ≥ ‖ϕ‖
∞

holds in more general spaces of analytic func-

tions. See Lemma 11 of [DRS] or Proposition 3 of [BSh]. We included the specific

details above, as they will be useful later.

(3) It can be observed from the above proof that, given ϕ in H∞, there exists

a sequence (ζn)
∞

n=1 in D such that limn→∞ ‖ϕfζn
‖p = ‖ϕ‖

∞
. Moreover, by invoking

the maximum modulus principle, one gets |ζn| → 1. This is used in the forthcoming

Theorem 5.

A sequence (an)∞n=1 in D is the zero set of some Hp function if and only if it

satisfies the Blaschke condition:
∑
∞

n=1(1 − |an|) < ∞. For such a sequence, the

corresponding Blaschke product

B(z) =
∞∏

n=1

|an|

an

an − z

1− anz

(when an = 0, the term z is to be used instead of the corresponding fraction)

defines an H∞ function whose boundary values have modulus one; this function

vanishes only at the points an, taking the multiplicities into account. Thus, by (1),

the Blaschke product B which corresponds to the zero set of some f in Hp is an

isometric zero-divisor: f/B is a zero-free function in Hp such that ‖f/B‖p = ‖f‖p.
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Corollary 3. Denote by Mp the algebra of all bounded analytic Toeplitz operators

on Hp. The following statements are true.

(a) The mapping Ip : H∞ →Mp given by Ip(ϕ) = Mϕ is an algebra isomorphism

and an isometry.

(b) The unit ball of the Banach algebra Mp is the closure of the convex hull of

the set of all multipliers MB whose symbols are Blaschke products.

Proof. (a) It is clear that Ip : H∞ → Mp is an algebra isomorphism; the equality

of the norms follows from Proposition 2.

(b) By a theorem of D. Marshall (cf . [K], Chapter VII, Section B, or [G],

Chapter 5, Corollary 2.6), the unit ball of H∞ is the closed convex hull of Blaschke

products. �

The most elementary multiplication operator on Hp is the shift operator Mz,

that is, the operator of multiplication by z. We now show that the property of

commuting with this operator characterizes the pointwise multiplication operators

among all bounded operators on Hp. This resembles Theorem 2 from the classical

paper [BH] by Brown and Halmos on the Laurent (multiplication) operators on

L2(T).

Theorem 4. A bounded operator T acting on Hp (1 ≤ p < ∞) is a pointwise

multiplication operator if and only if it commutes with the shift operator Mz.

Proof. Any two multiplication operators commute, so the necessity is clear. For

the sufficiency, suppose that T is bounded on Hp and commutes with the operator

of multiplication by z. We will show that T coincides with the operator Mϕ of

multiplication by the analytic function ϕ = T (1). Observe that T (zn) = zn · T1 by

assumption, hence T (p) = p · ϕ for every polynomial p.

We claim ϕ is also bounded. First of all, note that ‖ϕ‖p = ‖T1‖p ≤ ‖T‖. Since

the polynomials are dense in Hp, 1 ≤ p < ∞ ([Du], Chapter 3), there exists a

sequence of polynomials (qn) which converges to ϕ in the Hp norm (and, thus, also

uniformly on the compact subsets of D). Then Tqn → Tϕ in Hp norm, hence also

uniformly on compact sets. On the other hand, Tqn = ϕqn → ϕ2 uniformly on

compact sets. It follows that Tϕ = ϕ2, hence ϕ2 ∈ Hp, too. Proceed inductively

to show that Tϕn = ϕn+1 and ϕn ∈ Hp, for all n in N. Thus, we have ‖ϕ2‖p ≤

‖T‖·‖ϕ‖p ≤ ‖T‖2 and, by induction, ‖ϕn‖p ≤ ‖T‖n. This tells us that ‖ϕ‖np ≤ ‖T‖.

Let n→∞ to conclude that ‖ϕ‖
∞
≤ ‖T‖. This proves the claim.

Now for each f in Hp there is a sequence of polynomials (pn) such that pn → f

in the Hp norm. Since T is a continuous operator and ϕ ∈ H∞, we have Tf =

limn→∞ T (pn) = limn→∞ ϕpn = ϕf . This completes the proof. �
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2 Compactness

Given a Banach space X, let us agree to denote by B(X) the set of all bounded linear

operators on X, and by K(X) the set of the compact ones among them. Recall that

for an operator T ∈ B(X) its essential norm is defined as

‖T‖e = inf{‖T −K‖ : K ∈ K(X)} .

This norm measures the non-compactness of T . Since K(X) is closed in B(X) in

the operator norm topology, it follows that T is compact if and only if ‖T‖e = 0.

In order to obtain a further measure of non-compactness, the n-th approximation

number of T is defined as

an(T ) = inf{‖T − An‖ : An ∈ B(X) , rankAn ≤ n} .

Since the finite-rank operators are compact, it follows that ‖T‖e ≤ an(T ) ≤ ‖T‖

for all positive integers n. For the properties of approximation numbers, the reader

may consult [P].

We return to analytic Toeplitz operators Mϕ : Hp → Hp with some precise state-

ments about their compactness, analogous to the corresponding results for Bergman

spaces obtained in [V]. The simplest example is, as we said, the shift operator Mz,

and the reader may wish to test the results of this section on this example. Several

results for the Bergman space, as well as some for H2 (identified with l2) can be

found in Chapter XI, Section 4 of [C]. Various results on other multiplication op-

erators can be deduced from the theorems in Appendix IV, pp. 299–398 of [N1], as

well as from some of the other sources cited.

Theorem 5. Let 1 ≤ p < ∞, ϕ ∈ H∞, and consider the operator Mϕ : Hp → Hp.

Then we have the following equality of norms and approximation numbers:

‖Mϕ‖e = ‖Mϕ‖ = ‖ϕ‖
∞

= an , for all n .

Thus, Mϕ is compact if and only if ϕ ≡ 0.

Proof. We already know that ‖Mϕ‖e ≤ an ≤ ‖Mϕ‖, and Proposition 2 tells us that

‖Mϕ‖ = ‖ϕ‖
∞

. Thus, we need only show that ‖Mϕ‖e ≥ ‖ϕ‖
∞

.

By Remark (3) following Proposition 2, there exists a sequence of points (ζn)∞n=1

in D such that

lim
n→∞

‖ϕfζn
‖p = ‖ϕ‖

∞
and lim

n→∞
|ζn| = 1 .

The functions fζn
all have norm one and converge pointwise to zero as n→∞. Also,

Hp is a dual space of a Banach space whenever 1 ≤ p <∞ (see [K], Chapter VII).

Thus, a corollary on p. 272 of [BSh] (see also p. 318 of [Sh]) implies that fζn
→ 0

weakly. For any compact operator K on Hp, the sequence Kfζn
→ 0 strongly. This

implies

‖Mϕ −K‖ ≥ lim sup
n→∞

‖ϕfζn
−Kfζn

‖p ≥ lim sup
n→∞

(‖ϕfζn
‖p − ‖Kfζn

‖p) = ‖ϕ‖
∞
.

Taking the infimum over all compact operators K acting on Hp, we deduce the

desired inequality. �
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Corollary 6. The mapping J of H∞ into the Calkin algebra B(Hp)/K(Hp), given

by J (ϕ) = {Mϕ +K : K ∈ K(Hp)}, is an algebra isomorphism and an isometry.

Proof. The algebra isomorphism part follows from the conclusion on compactness

in Theorem 5. The isometry part follows from the formula for essential norm. �

3 Fredholm and spectral properties

Note that the multiplication operator Mϕ on Hp is injective if and only if ϕ 6≡ 0, by

the basic properties of analytic functions. Hence, Mϕ has no eigenvalues unless ϕ ≡

const. The next question is that of determining the other points in the spectrum.

Recall that the spectrum of a bounded operator T is the set of all λ in C for which

the operator T − λI is not invertible. It turns out that the spectra of multipliers of

Hardy spaces have the same simple description as in Bergman spaces (cf. [Ax] or

[V]).

A function g in Hp is said to be a cyclic vector for Hp if the polynomial multiples

of g are dense in Hp (in its norm topology). This is equivalent to saying that the

constant function one can be approximated by png in the norm, for some sequence of

polynomials (pn)∞n=1. This equivalence holds for a generic class of functional Banach

spaces (cf . Proposition 5 in Shields [Sh]). However, in Hp spaces there is a more

direct characterization. Namely, the classical theorem of Beurling which describes

the invariant subspaces of H2 under the operator Mz extends without difficulties

to the other values 1 ≤ p < ∞ (as was shown by Srinivasan and Wang; see [K],

Chapter 4), and from here one easily sees that the only cyclic vectors in Hp are the

outer functions for Hp (see [Du], Chapter 7, or [G], Chapter II, Section 7). Recall

that a function F is outer for Hp if

F (z) = eit0 exp

{
1

2π

∫
2π

0

eit + z

eit − z
logψ(t)dt

}

for some real number t0 and a non-negative function ψ ∈ Lp(T) such that logψ ∈

L1(T).

The above results will help us describe the continuous spectrum of Mϕ. Recall

that a complex number λ in the spectrum of a bounded operator T belongs to the

continuous spectrum σc(T ) if and only if T − λI is one-to-one and has dense range

([DS], Chapter VII, p. 580). If T − λI is injective, but does not have dense range,

then we say that λ ∈ σr(T ), the residual spectrum of T .

Theorem 7. Let 1 ≤ p <∞.

(a) For a non-zero H∞ symbol ϕ , the operator Mϕ acting on Hp is onto (equiv-

alently, it is invertible) if and only if ϕ is bounded away from zero in D.

(b) The spectrum of Mϕ is σ(Mϕ) = ϕ(D).

(c) Assume ϕ 6≡ const. Then the continuous spectrum σc(Mϕ) consists of those

values of λ for which ϕ−λ is an outer H∞ function, and it is a subset of ϕ(D)\ϕ(D).

The residual spectrum σr(Mϕ) is the set of all λ for which ϕ− λ is not outer.
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Proof. (a) By the injectivity of Mϕ, the equivalence of the surjectivity and invert-

ibility is immediate by a usual application of the Closed Graph Theorem or the

Open Mapping Theorem. Proposition 2 tells us that either of the two properties is

equivalent to the requirement that ϕ be bounded away from zero.

(b) The trivial identity Mϕ − λI = Mϕ−λ implies that the spectrum of Mϕ is

σ(Mϕ) = ϕ(D).

(c) By definition, λ ∈ σc(Mϕ) if and only if the set (ϕ − λ)Hp is dense in Hp

(since the operator Mϕ − λI = Mϕ−λ is injective). Because the polynomials are

dense in Hp for 1 ≤ p < ∞, it is easily seen that this is equivalent to saying that

the polynomial multiples of ϕ− λ are dense in Hp, that is, to ϕ− λ being a cyclic

vector. By generalized Beurling’s theorem, the only cyclic vectors in Hp are the

outer functions. The outer functions for Hp differ with the value of p. However, an

outer Hp function which belongs to H∞ is also going to be an outer function for

H∞ (for example, by a theorem on p. 69, Chapter 5 of [H]). By Proposition 4 of

Shields’ survey article [Sh], in order that ϕ − λ be cyclic, it must not vanish in D,

so λ 6∈ ϕ(D), and we are done. �

The operator T is said to have closed range if T (X) is a closed subspace of X. Since

Mϕ is always injective on Hp (unless ϕ ≡ 0), it follows from the Open Mapping

Theorem ([DS], Lemma VI.6.1) that a nonzero multiplication operatorMϕ has closed

range if and only if there exists a positive constant m such that the inequality

‖ϕf‖p ≥ m‖f‖p (2)

holds for all f ∈ Hp; that is, if and only if

inf{‖ϕf‖p : f ∈ Hp , ‖f‖p = 1} > 0 . (3)

The characterization of the multipliers of Hardy spaces with closed range is simpler

than the one for Bergman spaces (compare with Luecking [L]), due to the better

boundary behavior of Hardy functions. A statement like the one below will still

make sense for Bergman spaces in the case of symbols ϕ which belong to the disk

algebra (see [V], for example) or similar special classes.

Theorem 8. Let 1 ≤ p <∞, ϕ ∈ H∞, and let ϕ̃ denote the boundary function on

T. Then Mϕ (acting on any Hp, 1 ≤ p < ∞) has closed range if and only if there

exists a constant m > 0 such that |ϕ̃| ≥ m almost everywhere on T. In fact,

inf{‖Mϕf‖p : f ∈ Hp , ‖f‖p = 1} = ess inf{|ϕ̃(θ)| : θ ∈ [0, 2π)} .

Proof. The sufficiency of essential boundedness from below for having the closed

range property is obvious from the norm formula (1) and inequality (2).

To prove the necessity, suppose that Mϕ has closed range; then (2) holds for

some m > 0 and all f in Hp. By assumption, the boundary values ϕ̃ ∈ L∞[0, 2π].
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Choose an increasing sequence (rn)∞n=1 of positive numbers which tend to one.

Let

Pn(t) =
1− r2

n

1− 2rn cos t + r2
n

, t ∈ [0, 2π] ,

be the corresponding sequence of Poisson kernels, and therefore an approximate

identity. Then the convolutions

(|ϕ̃|p ∗ Pn)(t) =
∫

2π

0

|ϕ̃(θ)|p
1− r2

n

1− 2rn cos(t− θ) + r2
n

dθ

converge to |ϕ̃(t)|p in L1[0, 2π] ([H], Chapter 3), hence a subsequence converges for

almost every t in [0, 2π]. Fix such a t outside the exceptional set of measure zero,

and denote the indices of the corresponding subsequence again by n in order not to

burden the notation. Choose

ζn = rne
it ∈ D , so that |ζn| = rn → 1 as n→∞ .

Let

fn(z) =
(1− |ζn|

2)1/p

(1− ζnz)2/p
,

as in Lemma 1. The pointwise convergence (|ϕ̃|p ∗ Pn)(t) → |ϕ̃(t)|p and inequality

(2) now yield

|ϕ̃(t)|p = lim
n→∞

∫
2π

0

|ϕ̃(θ)|p Pn(t− θ)
dθ

2π
= lim

n→∞

∫
2π

0

|ϕ̃(θ)|p
1− |ζn|

2

|1− ζneiθ|2
dθ

2π

= lim
n→∞

‖ϕfn‖
p
p ≥ mp lim sup

n→∞
‖fn‖

p
p = mp .

Since this holds for almost every t, the statement about the essential boundedness

from below follows. The actual formula for the infimum in (3) is easy to read off

from the proof. �

Like for the multipliers of H∞, the answer can also be expressed in terms of the

Shilov boundary (see [BDL] for a general result on weighted H∞ spaces), but the

one above is quite descriptive.

Example. Here is an example of an operator Mϕ with closed range whose symbol

is zero “often” near the unit circle, in the sense that its boundary values ϕ̃ are

zero at each rational point of T (which is still allowed by Theorem 8). Let (qn)

be an enumeration of all rational numbers in [0, 2π), and choose a double array of

numbers rn,k in (0, 1) so that
∑
∞

k=1(1 − rn,k) < 1/n2 for each fixed n in N. Then

the set {rn,ke
iqn : n, k ∈ N} satisfies the Blaschke condition, and we can form the

Blaschke product B which has precisely these points as zeros. Then, on the one

hand, B has radial limits zero at every point eiqn and, on the other hand, |B̃| = 1

almost everywhere on T, whence the operator MB has closed range by Theorem 8.

Recall that λ is in the approximate point spectrum of T , denoted by σap(T ), if

there is a sequence (fn) of unit vectors such that ‖(T − λI)fn‖ → 0 as n→∞.
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Corollary 9. σap(Mϕ) = ess ran{ϕ̃(T)}.

Proof. By Proposition 6.4 of Chapter VII of [C], we know that λ 6∈ σap(Mϕ) if and

only if Mϕ − λI = Mϕ−λ is bounded from below. By our Theorem 8, it follows that

λ ∈ σap(Mϕ) if and only if ess inf{|ϕ̃(θ) − λ| : θ ∈ [0, 2π)} = 0. This is equivalent

to saying that the measure of the set {θ ∈ [0, 2π) : |ϕ̃(θ)− λ| < ε} is positive for all

ε > 0. By the very definition of the essential range, this is the same as saying that

λ ∈ ess ran ϕ̃(T). �

Among the operators with closed range, an important class is that of the Fredholm

operators: those for which both the dimension M of the kernel and the codimension

N of the range are finite. The difference M − N is called the Fredholm index . A

complex number λ is said to belong to the essential spectrum σe(T ) of a bounded

operator T if T −λI is not Fredholm. For the basic theory in the Hilbert space case,

we refer the reader to [C], Chapter XI.

Every multiplication operator is injective, hence M = 0. It has been known for

quite some time that a general Toeplitz operator on H2 is Fredholm if and only if

its symbol is bounded away from zero on a neighborhood of the boundary (cf. [N1]

and [Do], for example); the situation is similar for Bergman spaces Ap (see Axler’s

remarkable paper [Ax]). We now prove a statement of this type for an analytic

Toeplitz operator on Hp. The index part resembles Proposition 4.3 of [V], but is

more general.

Theorem 10. Let 1 ≤ p < ∞ and ϕ ∈ H∞. Then the multiplication operator Mϕ

(acting on Hp) is Fredholm if and only if |ϕ̃| ≥ m almost everywhere on T for some

m > 0 and ϕ has finitely many zeros in D. If ϕ has n zeros in D (counting the

multiplicities), then the Fredholm index of Mϕ is equal to −n.

Proof. If Mϕ is Fredholm, then it automatically has closed range, hence ϕ̃ is essen-

tially bounded away from zero on T by Theorem 8. The other condition stated is

also necessary: suppose that ϕ has infinitely many zeros in D and denote them by

an, n ∈ N. Assume first that they are all simple zeros and denote by Bn the single

Blaschke factor corresponding to the point an. The functions ϕ/Bn are easily seen

to be linearly independent as follows. Consider some finite collection denoted B1,

B2, . . . , Bn (for the sake of simplicity) and suppose that
∑n

k=1 ckϕ/Bk ≡ 0. Evaluate

the function on the left-hand side at aj for any fixed j to conclude that cj = 0. The

linear independence is easily transferred to the cosets (ϕ/Bn)+ϕHp in the quotient

set Hp/ϕHp. Namely, the equality of the cosets

N∑

k=1

ckϕ/Bk + ϕHp = ϕHp

implies
∑N

k=1 ckϕ/Bk = ϕf for some f in Hp. Evaluate both sides again at aj to

infer that cj = 0. In the case of multiple zeros, only minimum modifications are
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needed: if ak is a zero of multiplicity m > 1, use the collection of powers Bk, B
2
k,

. . . , Bm
k instead of Bk, and everything else is similar.

In order to prove the converse, suppose that |ϕ̃| ≥ m on T for some m > 0 and

ϕ has only finitely many simple zeros ak, 1 ≤ k ≤ N , in D. Let Bk be a single

Blaschke factor which corresponds to ak. We claim that an arbitrary function g in

Hp can be written as

g =
N∑

k=1

ckϕ/Bk + ϕf (4)

where f ∈ Hp. This will in turn imply that the cosets ϕ/Bn + ϕHp (which are

linearly independent) generate the quotient set Hp/ϕHp, and the statement of the

theorem follows.

To prove the claim, note that the function B/ϕ ∈ H∞, as |B̃/ϕ̃| ≤ 1/m a.e. on

T. Next, choose ck = (gBk/ϕ)(ak). It is immediate that the Hp function

h = g −
N∑

k=1

ckϕ/Bk

vanishes at each aj. Thus, f = h/ϕ ∈ Hp, too. We have obtained the representation

(4) we sought. For multiple zeros, the proof can be modified as before. �

Corollary 11. A complex number λ ∈ σe(Mϕ) if and only if one of the following

happens: either ϕ̃ − λ is not essentially bounded away from zero on T, or ϕ takes

on the value λ infinitely often in D.

Example. The Blaschke product B constructed in the example following Theorem 8

induces the multiplication operator MB on Hp which has closed range but is not

Fredholm. Moreover, since every value in the closed disk D is taken on infinitely often

by B (by Theorem 6.6 of Chapter II and the discussion on p. 80 of [G]), it follows

that σe(MB) = D. By Corollary 9, the approximate point spectrum is much smaller

in this case, as σap(MB) ⊂ T. This is in a sharp contrast with the shift operator

Mz, which is Fredholm of index −1 and has the property σe(Mz) = T = σap(Mz).
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