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Stochastic integration and stochastic differential equations are 
important for a wide variety of applications in the physical, bi­
ological, and social sciences. In particular, the last decade has 
seen an explosion in applications to financial economics. The 
need for a theory of stochastic integration is readily seen by con­
sidering integrals of the form J[0 t] Xs dMs and noting that these 
can be defined path-by-path in a Stieltjes sense for all continuous 
integrands X only if the paths of M are locally of finite vari­
ation. This immediately precludes such important processes as 
Brownian motion and all continuous martingales as integrators, 
as well as many discontinuous martingales. Consequently, for a 
large class of martingales M, one must resort to a truly proba­
bilistic or stochastic definition of such integrals. The origins of 
the theory of stochastic integration lie in the early work of Wiener 
and the seminal work of Itô [11], where integrals with respect to 
Brownian motion were defined. Most importantly for applications, 
Itô developed a change of variables formula for C functions of 
Brownian motion. In presenting the results of Itô in his book 
[7], Doob recognized that the two critical properties of Brown­
ian motion B used in Itô's development of the stochastic integral 
were that B and {Bt - t, t > 0} are martingales. Extrapolating 
from this, Doob proposed a general integral with respect to L -
martingales, which hinged on an as yet unproved decomposition 
theorem for the square of an L2-martingale. This is a special case 
of a decomposition theorem for submartingales (the Doob-Meyer 
decomposition theorem), which was subsequently proved by Meyer 
[17, 18]. Using this decomposition result, Kunita and Watanabe 
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[14] made the next significant step in developing the stochastic in­
tegral, and an attendant change of variables formula, for a large 
class of square integrable martingales, including the continuous 
ones. Following the work of Kunita and Watanabe, Meyer and 
Doleans-Dade [19, 6] extended the definition of the stochastic in­
tegral and the change of variables formula to all local martingales 
and subsequently to semimartingales. It was in these works that 
the confinement to predictable integrands was seen to be essential 
[19], and the restriction, inherited from Markov process theory, 
that the filtrations be quasi-left continuous was removed [6], The 
extension from square integrable martingales to local martingales 
(and hence to semimartingales) was later greatly simplified by the 
fundamental theorem for local martingales, which is due to Jia-an 
Yan [21] and Catherine Doléans-Dade [6A], independently. The 
natural role of semimartingales in the theory of stochastic inte­
gration was made clear by the discovery of Bichteler [1,2] and 
Dellacherie [4], that semimartingales are the most general class of 
integrators for which one can have a reasonable definition of a 
stochastic integral against predictable integrands. Inspired by the 
survey article of Dellacherie [4], Protter has taken this as his start­
ing point for a novel approach to stochastic integration. His book 
contains many results that he has either developed himself or given 
alternative proofs. To facilitate comparison of this alternative ap­
proach with the more conventional one, a summary of one version 
of the conventional approach is given below. The reader seeking 
a more cryptic analysis of Protter's book is free to turn to the last 
paragraph. 

We take as given a complete probability space (Q, &, P), to­
gether with a filtration {^} , i.e., an increasing family of sub- o-
fields of &, which is assumed to satisfy the usual conditions of 
right continuity and inclusion of all P-null sets. A stochastic pro­
cess is a function Z : R+ x £2 —• R such that for each t > 0, 
Zt — Z(t, •) is a measurable function from (Q, ^) into R (with 
the Borel cr-field); Z is said to be adapted (to {^}) if for each 
t, Zt is a measurable function from (Q, Sty into R ; Z is said 
to be cadlag (after the French: continu à droite limité à gauche) 
if its sample paths {t -• Zt(œ)9 co e Q} are right continuous 
with finite left limits. All (local) martingales will be assumed to 
have cadlag paths (in fact, there always exists a version with this 
property). A semimartingale is a cadlag, adapted stochastic 
process that can be decomposed as the sum of a (cadlag) local 
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martingale and a cadlag, adapted process whose paths are locally 
of finite variation. Since one can make sense of integrals with 
respect to processes of the latter type in a path-by-path Stieltjes 
sense, to define stochastic integrals with respect to semimartin-
gales, it suffices to define integrals with respect to local martin­
gales. In fact, by the fundamental theorem for local martingales 
[21], any local martingale can be decomposed as the sum of a local 
L2-martingale and a process whose paths are locally of finite vari­
ation. Thus, it suffices to define stochastic integrals with respect to 
local L2 -martingales, and by localization, one can further reduce 
to L -martingales. An important, desirable property for such in­
tegrals is that for an L2-martingale M and bounded integrand 
X, the integrals {L t]XsdMs, t > 0} define an L2-martingale. 

That is, the L -martingale property should be preserved by the 
stochastic integral. The general class of integrands X for which 
this holds for arbitrary L -martingale integrators (in particular, 
for those with discontinuities), is the class of predictable processes. 
The predictable cr-field ^ on R+ x Q is the cr-field generated by 
the left continuous, adapted stochastic processes. Alternatively, the 
predictable cx-field is generated by the sets of the form (s9t]xFs, 
for Fs e &, 0 < s < t < oo, together with the sets of the form 
{0} x F0, for F0 e ̂  . For an L -martingale M, the stochastic 
integral ƒ X dM = f[Q , X dM is first defined for simple pre­
dictable integrands X of the form: 

n 

(1) X(t,œ) = c0l{0}xFo(t,œ) + J2ci\siji]xF(t>c°)> 

(t, co) GR+ x Q , 

where c0 e R, FQ e ^ , ct e R, 0 < st < tt < oo, and Ft e &s , 
for 1 < i < n ; in which case, 

(2) [xdM^c^iM-MJ. 

It can be shown that there is a unique cr-finite measure juM on 
(R+ x Q ^ ) such that 

»M((s,t]xF) = E(lF(Mt-Mf) 

for all 0 < s < t < oo and F E ^ , and 
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for all F0 e 3^. Indeed, for all A e S0, 

tiM(A) = E[ f lA(s,co)d[M,M]\ , 
\J[0,oo) J 

where [M, M] is the quadratic variation process of M, which is 
the cadlag, increasing, adapted process such that for each t, 

i 

where the sum is over all i such that t" , fi+l e nn , and for each 
n , 7cw is a partition 0 = t% < f J < • • • < t\ =t of [0,t] such that 
\nn\ = maxt \t

n
i+x - tn

t\ -• 0 as « -+ oc . Then, by the orthogonality 
properties of the L2-martingale M, ƒ X rfM as defined in (2) 
satisfies 

(3) £ ( ( / X « ) 2 ) = / R ^ ^ ^ . 

This isometry is the key to the extension of the stochastic integral 
to other predictable integrands. Indeed, since simple functions of 
the form (1) are dense in Sf = L (R+ x û , ^ , /uM), one can 
extend the definition of the integral ƒ X dM via the L -isometry 
(3), to all X e -S*2. Then, for X such that 1 [ (M]* = l [0) / ]xf i^ e 
S?1 for each t, one can define 

J X3dMs = Jll09t]XdM. 

It can be shown that this defines an L2-martingale Y = {Yt = 
Jro /] Xs dMs, t > 0}. One can extend the integral to local L2-
martingale integrators and suitable predictable integrands, using a 
localization procedure via stopping times; and then one can finally 
extend to semimartingales as integrators. A change of variables 
formula for C2 functions of semimartingales can then be derived. 
The quadratic variation process [Z, Z] for a semimartingale Z 
is defined in an analogous manner to that for an L -martingale. 
The path-by-path continuous part of this cadlag, increasing process 
is denoted by [Z, Z]c. In particular, one has 

[Z,Z]t = [Z,Z]c
t+ £ ( A Z J 2 , 

0<s<* 
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where AZs denotes the jump of Z at s. We can now state the 
change of variables formula for a semimartingale Z and a func­
tion ƒ e C2(R) : the process f(Z) is a semimartingale and the 
following formula holds, 
(4) 

f(Zt) - f(Z0) = f / ( Z , J dZs + U f(Zs_)d[Z, Z]c
s 

+ £{ / (ZJ- / (Z,_) - / (Z S _)AZJ. 
0<s<t 

Here Zs_ denotes the left limit of Z at s (defined to equal Zs 

for s = 0), and the first integral in (4) is a stochastic integral 
whereas the second is an ordinary Stieltjes integral. Note that the 
last term only comes into play when Z has jumps (i.e., is discon­
tinuous). The first line of (4) thus represents the simplified change 
of variables formula for the case when Z is continuous (in this 
case, [Z, Z] = [Z, Z]c). Here one clearly sees how stochastic 
calculus differs from ordinary Newton calculus with the addition 
of the integral with respect to [Z, Z]c, which comes from the un­
bounded variation of the continuous local martingale part of Z . 
A multidimensional version of (4) for «-tuples of semimartingales 
can also be derived. Here the polarization of [Z, Z]c for a pair 
of semimartingales comes into play. For the remainder of this 
review, to distinguish them from the semimartingales defined by 
Protter, we shall refer to semimartingales as defined above as clas­
sical semimartingales. We also continue to view (Q, ^ , {^}, P) 
as the ambient filtered probability space on which all stochastic 
processes are defined. 

In his approach to stochastic integration, Protter takes as prim­
itive, simple predictable integrands of the form 

n 

X(t,co) = H0(co)l{Q}(t) + J2ni(co)liTi{whTM{(o)](t) 
1=1 

for (*, o>) e R+ x Q, 

where HQ e 5^, 0 < Tx < T2 < • • • < Tn < oo are finite-valued 
stopping times, and H. e ^T with \H\ < oo for 1 < i < n. 

1 i 

Denoting the collection of all such X by S, we endow it with 
the topology of uniform convergence on R + x f l , Let L° denote 
the space of all real-valued random variables on (Q, &, P), with 
the topology induced by convergence in probability. For a given 
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stochastic process Z , define 

(5) Iz{X) = YéHi{ZTM-ZT). 

(Protter also includes a term H0Z0 in his definition of IZ(X). 
This integral corresponds to an implicit assumption that Z0_ = 0 
and consequently that Z has a jump from zero to Z0 at time 
zero. The advantage of this is not clear. In fact, it is mislead­
ing when Z is continuous and leads to a more cautious statement 
of the change of variables formula. Since there is not common 
agreement on the correct convention, the choice that is consistent 
with the preceding paragraph has been elected here. Another way 
of achieving agreement between the two definitions would be to 
simply require that Z0 = 0.) Protter defines a semimartingale to 
be a cadlag, adapted process Z such that for each t > 0, the map­
ping Iz,.At) : S —• L° is continuous. It can be readily verified that 

each local L2-martingale is a semimartingale, and so is each cad­
lag, adapted process that is locally of finite variation. This allows 
one to show that Brownian motion, as well as Levy process, are 
semimartingales. Using his definition of a semimartingale, Protter 
is able to give simple proofs of some results in stochastic integra­
tion that are nontrivial to prove when the classical definition of a 
semimartingale is used. For example, he gives a simple proof of 
Strieker's theorem: if Z is a semimartingale with respect to the 
filtration & = {3^}, and & = {&t} is a subfiltration of & such 
that Z is adapted to *§, then Z is a semimartingale with respect 
to 9. Given a semimartingale Z , one can define a stochastic 
integral process JZ(X) = {Jz(X)(t), t > 0}, in the same way that 
Jro t] Xs dMs was defined from ƒ X dM : 

n 

I = 1 

Let L denote the space of all adapted, caglad (left continuous 
with finite right limits) processes, and D the space of all adapted, 
cadlag processes. Note that S c L and the stochastic integral 
process JZ(X) is in D. Because of the localization to the interval 
[0, t] that is implicit in the definition of Jz(X)(t), we need to 
define new topologies on L and D before extending the definition 
of JZ(X) to all X e L. A sequence of processes {Xn} is said 
to converge to a process X uniformly on compacts in probability 
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(ucp) if for each t > 0, 

sup \X* - X | -• 0 in probability as n -• oo. 

Now, S is dense in L with the ucp topology, D with the ucp 
topology is metrizable as a complete metric space, and the lin­
ear mapping Jz : S —• D is continuous when S c L and D are 
endowed with their ucp topologies. It follows that Jz can be ex­
tended to a continuous linear mapping from L into D . This then 
defines the stochastic integral J[0 t]XsdZs = Jz(X)(t) of X e L 
with respect to Z on [0, t], for each t > 0. The class of in­
tegrands L suffices for the purposes of deriving the change of 
variables formula (4) and for the many applications that derive 
from it. As examples, Protter derives the formula for the stochas­
tic exponential, i.e., the unique semimartingale solution Y of the 
stochastic equation 

Yt=l+[ Ys_dZs, t>0, 

which is 

Yt = exp (zt - i [ Z , Z],) [ J t1 + AZs) exP (~AZs + \^Zsf) • 

Other applications he gives are a derivation of Levy's character­
ization of Brownian motion, and Levy's stochastic area formula. 
However, the space L is not sufficiently large for the treatment 
of some important topics such as local time and the martingale 
representation theorem, the latter being crucial for some recent 
applications of stochastic calculus in financial economics. To ex­
tend the definition of the stochastic integral to a larger class of 
predictable integrands, Protter needs to make connection with the 
conventional theory. In Chapter 3, he gives elementary proofs 
of some of the deep theorems in classical (semi)martingale the­
ory, including the Doob-Meyer decomposition theorem, the fun­
damental theorem for local martingales, and the Girsanov change 
of measure formula, which culminate in a proof of the Bichteler-
Dellacherie theorem that shows a classical semimartingale is the 
same as a semimartingale. In this exposition, Protter resurrects 
the notion of a natural process, which has all but disappeared 
from the modern literature, being replaced by the notion of a pre­
dictable process. (These two notions, as defined by Protter, are 
equivalent for bounded finite variation processes.) Having shown 
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the equivalence of the two notions of semimartingale in Chap­
ter 3, in the next chapter Protter is able to extend the definition 
of the stochastic integral to the most general class of predictable 
integrands, and to give applications to local time and the martin­
gale representation theorem. A welcome last section in Chapter 
4 treats Azema's martingale—a subject not often found in other 
texts. The final chapter (5), is devoted to stochastic differential 
equations. Besides establishing existence and uniqueness under 
Lipschitz conditions on the coefficients, Protter discusses stability 
of stochastic differential equations, Stratonovitch equations, and 
stochastic flows. He proves the Markov property for stochastic 
differential equations driven by Levy processes (including Brow-
nian motion) using results established in the previous chapter on 
the dependence of stochastic integrals on a parameter; this affords 
an elegant proof of a delicate measurability property which is of­
ten overlooked by less careful authors. The chapter on stochastic 
differential equations is quite lengthy and technical in parts. It is 
most likely that it will be used as a reference by applied researchers 
interested in stability, and by stochastic differential geometers in­
terested in stochastic flows. 

In reading the text, this reviewer encountered occasional items 
that would prove frustrating to the diligent student. Several of 
these are listed here for the convenience of the reader. The term 
square integrable martingale is used frequently before its first def­
inition on p. 147. Although this term has wide acceptance in the 
theoretical martingale community, the uninitiated might confuse 
these martingales with those that are square integrable at each time 
t. At the bottom of p. 34, the author states that a locally square in­
tegrable local martingale is a locally square integrable martingale. 
Taken literally this implies that a locally square integrable local 
martingale is a martingale, which is certainly not true. In Chapter 
3, the author defines the term natural for a finite variation process 
of integrable variation, and then in some subsequent uses of the 
term (and its local analogue) neglects to proclaim that the process 
is of integrable variation. Presumably, the author means this lat­
ter property to be part of the definition of natural in such circum­
stances. The introduction to Levy processes given in §1.4 is very 
welcome; such a summary being difficult to find in any other text. 
The reader should note however that this material has not been 
vetted for minor errors as well as many other sections of the book. 
For example, in the proof of Theorem 30, the set A is used with at 
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least two different meanings, without warning of this. Throughout 
the text, there are a number of cross-references to theorems that 
are off by some random integer. Some more applications for Levy 
processes in the later parts of the text would be a good addition to 
a revised edition. 

To summarize, there are by now a variety of books on stochastic 
integration and its applications. These range from those present­
ing the abstract theory, e.g., [5, 12, 16], through those containing 
a mix of the general (discontinuous) theory with applications, e.g., 
[23], to those that largely confine themselves to the simpler, albeit 
very important, case of continuous martingales or even Brownian 
motion, e.g., [3, 8, 9, 10, 13, 15, 22]. A common feature of all of 
these texts is that they adopt the conventional approach to stochas­
tic integration of first defining stochastic integrals with respect to 
L (or even L -bounded) martingales, before extending to local 
martingales and semimartingales. Following the model presented 
in Dellacherie [4], Protter has taken the Bichteler-Dellacherie the­
orem as starting point and defined semimartingales as "good" in­
tegrators acting on simple predictable integrands. One weakness 
with his approach is that although Protter gives a reason as to why 
one might want to choose adapted processes as integrands, he does 
not give a rationale for why one should single out the predictable 
ones, rather than say the optional ones. Of course, in the conven­
tional theory, the desire to have L2-martingales yield stochastic 
integrals that are L2-martingales provides a very clear rationale. 
This (anticipating) point aside, Protter's approach allows him to 
very quickly define stochastic integrals with respect to left con­
tinuous, adapted processes, and to prove the change of variables 
formula for semimartingales. This suffices for a wide variety of 
applications, and for such it could be argued that Protter's ap­
proach provides a more streamlined entrée to them. However, for 
other important applications, it is necessary to make the connec­
tion with the conventional theory, as is done in Chapter 3 with 
an elementary development of the Bichteler-Dellacherie theorem. 
From this point on, it is doubtful that one could argue that one of 
the approaches, either the conventional one or the novel approach 
presented in this book, is more efficient. The author does however 
round out the book with two Chapters (4 and 5) on various impor­
tant topics such as local time for semimartingales, the martingale 
representation theorem, and stochastic differential equations. The 
applications given in Protter's book have some overlap with those 
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in other texts, but the selection of material is not duplicated in any 
one text. The style and choice of applications is definitely influ­
enced by the French, with an attendant striving for generality and 
beauty. This book fills the need for an accessible account of the 
general theory of stochastic integration and for a detailed exposi­
tion of such topics as the stochastic exponential, local time for 
semimartingales, the martingale representation theory, Azema's 
martingale, and stochastic differential equations, in generality. I 
see this book as lying between [22 and 12]. It could be used for 
a second graduate course in probability, with desirable prerequi­
sites being a knowledge of martingale theory and some stochastic 
processes. It should be particularly useful for probability students 
interested in the general theory of stochastic integration, and for 
students from other fields such as economics and electrical engi­
neering who may have an interest in applications that require the 
full generality of the discontinuous martingale stochastic integral. 
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Uniform Fréchet algebras, by H. Goldmann. North-Holland, Am­
sterdam, 1990, 355 pp., $102.50. ISBN 0-444-88488-2 

Uniform Fréchet algebras are a class of topological algebras 
modeled on the algebra Hol(Q) of all holomorphic functions on 
a given plane domain Q. In the topology of uniform convergence 
on compact subsets of Q, Hol(Q) is a complete metrizable topo­
logical algebra. 

A Fréchet algebra (F-algebra) is a commutative topological al­
gebra which is complete metrizable and which has a neighborhood 
basis of 0 consisting of multiplicative and convex sets. Let X be 
a locally compact HausdorflF space and let C(X) be the algebra 
of all complex-valued continuous functions on X. We give C(X) 


