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The ties between holomorphic functions and the distributions 
of Laurent Schwartz originated long before distributions were even 
discovered. According to Daniele Struppa [15] it was Francesco 
Severi who in 1924 suggested to Luigi Fantappiè to study the func­
tional which associates with a function its derivative at some point, 
i.e., what we call now the distributional derivative of the Dirac 
measure. 

Inspired by this suggestion, Fantappiè created the theory of ana­
lytic functional [3]. He considers holomorphic functions ƒ , each 
having as its domain of definition M a region of the Riemann 
sphere Pj(C). It is assumed that M ^ P^C) , and if the point at 
infinity œ belongs to M, then ƒ (œ) = 0. An analytic line is a 
function y(t, z) of two variables, holomorphic in each variable. 
An analytic functional is a map F which associates with each ƒ 
a scalar F[f] such that if F acts on the analytic line y(t, z) 
considered as a function of t, the resulting function F[y(-, z)] 
shall be holomorphic in z . A particular analytic line is given by 
2̂ 7 YZ\ , and Ft[^j-^rt] is called the Fantappiè indicatrix of F. 

The Portuguese mathematician José Sebastiâo e Silva, who stud­
ied in Rome during several years, made the first attempt to apply 
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the methods of modern linear functional analysis to Fantappiè's 
theory [10]. He considers a fixed closed subset C of P^C) and 
the holomorphic functions ƒ defined in some neighborhood U 
of C. In the set of all pairs (ƒ, U) he introduces the following 
equivalence relation; (f{, U{) ~ (/2, U2) if there exists an open 
neighborhood U of C contained in Ux D U2 such that f{ and f2 

coincide in U. He calls an equivalence class "an analytic function 
attached to the set C " [12, §16]; it is now called a germ of an ana­
lytic function on C. In the vector space H(C) of these germs he 
defines the convergence of a sequence ( fn) to ƒ as follows: there 
exists an open neighborhood U of C on which all the functions 
fn and ƒ are defined and bounded, and fn tends to ƒ uniformly 
on U [12, §17]. An analytic functional can then be defined as a 
continuous linear form on H(C). 

In the meanwhile distributions were discovered, and related to 
them the theory of locally convex spaces, in particular of (-S^)-
spaces, was developed. G. Köthe [8], A. Grothendieck [4], and the 
Brazilian mathematician C. L. da Silva Dias [13] simultaneously 
saw the possibility of applying the new concepts to the ideas of 
Sebastiâo e Silva. Let C be, as above, a closed subset of P^C), 
and A its complement in Pj(C). Denote by H{A) the vector 
space of all holomorphic functions in A. Consider a sequence 
(Kn) of compact subsets of A such that each Kn is contained 
in the interior of Kn+l, and \JKn = A. The sequence of norms 
||f\\n = supzeK \f(z)\ defines a metrizable, complete, locally con­
vex topology on H(A), i.e., H(A) is a Fréchet space. It is even 
a Montel space (i.e. every bounded subset is relatively compact), 
and therefore reflexive. On H(C) one defines a topology as fol­
lows: Let (Un) be a decreasing sequence of open neighborhoods 
of C such that f)Un = C. Denote by H(Un) the vector space 
of all functions holomorphic in Un and continuous on its closure 
Un. Equipped with the max-norm, H(Un) is a Banach space. 
There is a natural map jn : H(Un) -> H(C) which associates with 
each element of H(Un) the germ on C it defines, and one puts 
on H(C) the finest locally convex topology for which the jn are 
continuous. The convergence on H(C) introduced by Sebastiâo e 
Silva is the convergence in the sense of this topology. 

Let F be a continuous linear form on H(C). For each z e A 
the function 

2ni z -1 
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defines an element of H(C), and the Fantappiè indicatrix 
1 1 

F(z) = F 
2ni z -t\ 

is an element of H {A). Given any f e H(C) there corresponds 
to it a function, also denoted by ƒ , defined in some neighborhood 
U of C, and 

F[f] = jF{z)f{z)dz, 
where Y is a finite system of closed curves in U n A surrounding 
C . The map F \-> F is an isomorphism of H(C)f equipped with 
the strong topology onto H (A). 

Let now C be a simple closed analytic curve not going through 
co. Then H(C) is a dense subspace of the space IP(C) of in­
finitely differentiate functions on C, hence the transpose of the 
injection H(C) -> l?(C) is an injective map from the space l?'(C) 
of distributions on C into H(C)' = i/(^4). Köthe points out that 
the elements of H(C)' are more general than distributions [9, p. 
15]; it is therefore surprising to read in [1]: "C'est Sato qui le pre­
mier a étudié des fonctions généralisées définies a priori comme 
"valeurs au bord" de fonctions holomorphes." Köthe calls the el­
ements of H(C)r boundary distributions (Randverteilungen) for 
the following reason: If F G H(C)', then F is a pair of functions 
(Fx, F2), where Fx is defined in the domain Ax inside C , and F2 

in the domain A2 outside C . Let for a moment C be the unit cir­
cle \z\ = 1, so Ax= {z; \z\ < 1} and A2 = {z; \z\ > 1}. Choos­
ing 0 < r < 1, the functions t H+ Fx(rt) and t H+ F2(t/r) are 
elements of H(C), and can be considered as elements of H(C)' 
through the map which with g e H(C) associates the linear form 
f *~* fc/(0^(0dt. Then Fx{rt) + F2(t/r) converges in the sense 
of the topology of H(C)f to F as r -> 1. The general case, when 
C is not the unit circle, is taken care of by a conformai mapping, 
which takes the circles \z\ — r and \z\ = 1/r into certain curves 
Fx and T2 , respectively. 

Not only the elements of H(C) but any continuous function ƒ 
on C can be considered as an element of H(C)', and therefore 
we can consider its Fantappiè indicatrix ƒ = (fx, f2), where 
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The Slovenian mathematician J. Plemelj proved in 1908 that if ƒ 
is Holder-continuous and z tends to a point t e C, then 

l im/ 1 (z ) - I im/ 2 (z ) = / ( 0 

and 

lim/1(0 + lim/2(0 = ̂  f Ç&dx, 
Til }Q X — t 

where vp indicates the Cauchy principal value of the integral. 
The first half of the book under review is concerned with the 

analogues of the above considerations when C is replaced by 
the real line R, and also with the distributional analogue of the 
Plemelj relations. The pioneering work was done by Köthe's stu­
dent H. G. Tillmann, and continued by his students, the Mainz 
school: G. Bengel, P. P. Konder, R. Meise, E. Schmidt, D. Vogt, 
and W. Wild. An account of their work, with references, can be 
found in [11]. The book surveys in a fairly self-contained way most 
of these results, and also the extensive work done by the authors 
themselves. 

The representation problem for a distribution T € &'(R) con­
sists in finding a function F "locally" holomorphic in C\R such 
that 

(1) (T, <p) = lim f [F(x + is) - F(x - ie)]ç>(x) dx 

for appropriate test functions (p. The adverb "locally" is meant 
to indicate that F is in fact a pair (F{, F2) of holomorphic func­
tions, one defined in the upper and one in the lower half-plane. 
The solution is simple if T G l?'(R), i.e., T has compact sup­
port, since then one takes for F the Fantappiè indicatrix f of T 
defined by 

(2) f^J-^.-I-}. 

The authors call f the Cauchy integral of T ; the name Stieltjes 
transform would also be justified, and the expression 

J 1_ 
2ni t - z 

is the Cauchy kernel. The linear map which associates with F the 
distribution T given by (1) is a surjection from the space H0(C\R) 
of locally holomorphic functions satisfying \F(z)\ < M|y|~^ 
(z = x + iy, y ^ 0, M > 0, v > 0) onto ^ ' (R ) . Its kernel is 
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the subspace H0(C) of those F for which F{ and F2 have the 
same boundary values on R and can therefore, by a theorem of 
Painlevé (a distributional version of which is proved in the book), 
be extended to an entire function. The resulting isomorphism 

(3) g'(R)c.H0(C\R)/H0(C) 

has far-reaching consequences. 
Tillmann proved the existence of functions F representing tem­

pered distributions, some other classes of distributions, and finally 
the most general distributions. The authors also consider the rep­
resentation of distributions belonging to a certain space @'a intro­
duced by Bremermann. 

A completely different connection between Schwartz distribu­
tions and functions of complex variables was discovered by 
L. Ehrenpreis. The Fourier transformation y maps the Schwartz 
space S^(Rn) of rapidly decreasing infinitely differentiable func­
tions isomorphically onto itself. It maps the subspace 3f(Rn) of 
functions with compact support onto a subspace Z(Rn) which by 
the Paley-Wiener-Schwartz theorem consists of restrictions to Rn 

of entire functions of exponential type on Cn and which therefore 
satisfies &(Rn) n Z(Rn) = {0} . On Z(Rn) Ehrenpreis defines a 
locally convex topology such that & is a topological isomorphism 
from £&(Rn) onto Z(Rn). This makes it possible to introduce the 
dual space Z'{Rn), and by transposition the Fourier transform of 
any distribution which will be an element of Z'(R"). This concept 
helped Ehrenpreis to prove the existence of a fundamental solution 
of any linear partial differential operator with constant coefficients 
[2]. The elements of Z'(RW) are called sometimes ultradistribu­
tions, sometimes analytic functional, and they were introduced 
independently also by Gel'fand and Shilov. 

Another development was the definition by Laurent Schwartz of 
the Laplace transformation in a paper published in 1952 in honor 
of Marcel Riesz, which he included as Chapter VIII of the 1966 
edition of his book on distribution theory. Let us denote by z = 
(z{, ... , zn) = x + iy a point of Cn where x = (x{, ... , xn) € 
Rn , y = (y{, ... , yn) e Rn and Zj = Xj 4- />,- (1 < j < n). If 
t = (tx, ... , tn) e Rn , then y-t = yltl + --+ yntn and z -t = 
zxtx + • • • + zntn . The Laplace transform SPT ofTe Sf'{Rn) is 
defined for all z € Cn such that x e Rn and y belongs to the set 
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r c R " for which e~lnyHTt e S*'(Rn) by the formula 

(&T)(z) = f e2niz''T(t) dt = ^t{e~2nrtTt)x 

(this is the book's notation, Schwartz has x and y interchanged 
and omits the factor 2n in the exponent). Thus £?T associates 
with each y e T the distribution &;(e~2nrtTt) e S^(Rn) but 
under some mild condition can be thought of as a holomorphic 
function of the variable z e Rn + iT. 

The ultradistributions of Ehrenpreis and the Laplace transfor­
mation have brought us into the realm of holomorphic functions 
of several complex variables to which the second half of the book 
is devoted. Let a — (crl , ... , an) be one of the 2n vectors such 
that all the coordinates a; are equal to +1 or to - 1 . Denote by 
Qa the set of those y e Rn for which a.y^ > 0 (1 < j < n), the 
sets Q. are called quadrants in the book, though a coinage like 
" 2n-ants" would describe the situation more properly. The subset 
(C\R)" of Cn has the 2n components Ta = Rn + iQa , and the an­
alytic representation of a distribution T consists in 2n functions 
Fa , each holomorphic in the corresponding domain Ta , such that 

(T\ cp) = lim ƒ ^F^x + ieo)(p(x)dx 

for appropriate test functions (p . The «-dimensional Cauchy ker­
nel is given by 

A. Korânyi [7] on one hand and E. Stein, G. Weiss, and 
M. Weiss [14, Chapter III] on the other studied classes of holomor­
phic functions in tube domains. The authors of the book under 
review consider convex open cones C in Rn and the correspond­
ing tube T = Rn + iC in C" . The Cauchy kernel corresponding 
to Tc is defined by 

K(z - t) = / exp 2ni(z -t)-rjdri, 
Jc* 

where C* = {y eRn ', q -y > 0 for all y e C} is the cone dual 
to C, and K(z - t) gives rise to a Poisson kernel associated with 
T . The authors study the representation problem in the more 
general setting, where the quadrants Qa are replaced by cones C-



168 BOOK REVIEWS 

(1 < J < r) such that (J^=1 C* has a complement of measure zero 
in Rn and two different cones C* intersect in a negligible set. 
The cases of both scalar-valued and vector-valued distributions 
with compact support, of distributions in Bremermann's space &'a 

and in Schwartz's space 3f'LP are considered. 
Conversely, given a holomorphic function F in a tube T , the 

functions x »-» F(x + iy) can be considered as distributions on 
R" depending on the parameter y e C and it makes sense to ask 
whether F has a distribution T as its boundary value as y -• 0, 
y e C. Results in this direction, due in part to V. S. Vladimirov, 
are given under various growth conditions on F, and also concern­
ing the problem of recovering F as the Cauchy integral, the Pois­
son integral or the Laplace transform of T. The Cauchy integral of 
a tempered distribution is defined as a class of holomorphic func­
tions, two functions being equivalent if their difference is a pseudo-
polynomial P(z) = E ^ l Ê S o ^ ; ) ^ W h e r e 8js 1S a h 0 l ° -
morphic function of the variables zx, ... , z._x, z .+1, ... , zn , a 
concept used already by Tillmann, The growth and the representa­
tion of functions in Hp classes defined on tubes is another topic 
touched upon in the book. 

Beyond the scope of the book is an important outgrowth of the 
representation of distributions as boundary values of holomorphic 
functions. The representation theorems can be expressed as iso­
morphisms of the form (3), and this led M. Sato to introduce 
hyperfunctions. For n = 1 they are simple to describe. Let Q be 
an open subset of R, and V an open neighborhood in C of fi in 
which Q is relatively closed. The space of hyperfunctions on Q 
is the quotient H(V\Q)/H(V), which by the Mittag-Leffler the­
orem is independent of the choice of V. For higher dimensions 
H(V\Q) is equal to H(V), so this definition is worthless. The way 
out of this dilemma is the observation that the Mittag-Leffler the­
orem is equivalent to the vanishing of the first cohomology group 
Hl(V,(f) of V with coefficients in the sheaf @ of holomor­
phic functions. As D. Struppa and C. Turrini carefully explain 
in their excellent expository article [16], where detailed references 
can be found, Sato was led to define the space of hyperfunctions on 
Q c R " as the nth relative cohomology group Hn(V, V\Çl\0) 
with coefficients in ff, see also [1], A. Martineau pointed out in 
a lecture at the Bourbaki seminar that hyperfunctions can also be 
defined in a more classical way, paralleling that of distributions, 



BOOK REVIEWS 169 

and it is in this form that they are discussed in Chapter IX of 
Hörmander's book [5]. Finally, let me mention that hyperfunc-
tions have led to microfunctions and to "algebraic analysis" for 
which I refer to [6] which was reviewed in Bull. Amer. Math. 
Soc. (N.S.) 18(1988), 104-108. 
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Stochastic integration and differential equations—a new approach, 
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Stochastic integration and stochastic differential equations are 
important for a wide variety of applications in the physical, bi­
ological, and social sciences. In particular, the last decade has 
seen an explosion in applications to financial economics. The 
need for a theory of stochastic integration is readily seen by con­
sidering integrals of the form J[0 t] Xs dMs and noting that these 
can be defined path-by-path in a Stieltjes sense for all continuous 
integrands X only if the paths of M are locally of finite vari­
ation. This immediately precludes such important processes as 
Brownian motion and all continuous martingales as integrators, 
as well as many discontinuous martingales. Consequently, for a 
large class of martingales M, one must resort to a truly proba­
bilistic or stochastic definition of such integrals. The origins of 
the theory of stochastic integration lie in the early work of Wiener 
and the seminal work of Itô [11], where integrals with respect to 
Brownian motion were defined. Most importantly for applications, 
Itô developed a change of variables formula for C functions of 
Brownian motion. In presenting the results of Itô in his book 
[7], Doob recognized that the two critical properties of Brown­
ian motion B used in Itô's development of the stochastic integral 
were that B and {Bt - t, t > 0} are martingales. Extrapolating 
from this, Doob proposed a general integral with respect to L -
martingales, which hinged on an as yet unproved decomposition 
theorem for the square of an L2-martingale. This is a special case 
of a decomposition theorem for submartingales (the Doob-Meyer 
decomposition theorem), which was subsequently proved by Meyer 
[17, 18]. Using this decomposition result, Kunita and Watanabe 


