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A CONSTRUCTION OF NONSTANDARD UNISERIAL 
MODULES OVER VALUATION DOMAINS 

BARBARA L. OSOFSKY 

A uniserial module over a ring (with 1) is a module whose sub-
modules are linearly ordered by inclusion. A valuation ring is a 
commutative ring which is uniserial as a module over itself, and 
a valuation domain is a valuation ring without (nonzero) zero-
divisors. If D is a valuation domain with quotient field Q(D), a 
uniserial Z>-module U is called standard if U embeds in a quo­
tient Q(D)/J where / is a Z>-submodule of Q{D). If there is 
no such embedding, U is called nonstandard. 

Kaplansky conjectured that every valuation ring is a quotient of 
a valuation domain. Nonstandard uniserials were initially studied 
to get a counter-example to this conjecture. Given a valuation 
domain D and a divisible uniserial D-module U, the ring A 
with additive group D e U and (d, u)(d', u) = (dd', du + ud') 
is a valuation ring. Fuchs and Salce [F-Sa] show that A is not a 
quotient of a valuation domain if (and only if) U is nonstandard. 

Proof of the existence of a nonstandard uniserial module U was 
the most difficult part in obtaining the counterexample to Kaplan-
sky's conjecture. Cyclic and countably generated uniserial modules 
are always standard, and an almost maximal valuation domain 
(proper quotients of the domain are topologically complete in the 
ideal topology) has no nonstandard uniserials. Moreover, every 
proper submodule of a uniserial module must be standard, so get­
ting nonstandard uniserials requires being able to get embeddings 
on 'arbitrarily large' submodules of a uniserial U, but none of 
those embeddings can extend to all of U . 

Previous proofs that nonstandard uniserial modules exist have 
used extra set theoretic axioms and/or model theoretic techniques. 
Shelah [S] was the first to show that nonstandard uniserials exist. 
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He used forcing and absoluteness in model theory. Fuchs and 
Salce [F-Sa] use the axiom 0W and Franzen and Göbel [F-G] the 

axiom 2**1 > 2**° to get a construction of nonstandard uniserials. 
Fuchs and Shelah [F-Sh] use a model theoretic argument and the 
Fuchs-Salce result to conclude that the existence of divisible non­
standard uniserial modules is actually a consequence of the usual 
axioms of set theory, ZFC. Their methods give no idea of what 
the valuation domains are nor how to actually get the nonstandard 
uniserial modules. Bazzoni and Salce in [B-Sl] and [B-S2] study 
quotients of nonstandard uniserials, first looking at quotients of 
a given nonstandard uniserial and then at which uniserials can 
arise as quotients of other uniserials. Their construction, based on 
the construction in [F-Sa], uses 0W to give examples of a vari­
ety of different kinds of nonstandard uniserials. Eklof [E] extends 
the Fuchs-Shelah arguments to show that 0W is not necessary to 
prove existence of the kinds of nonstandard uniserials constructed 
in [B-S2]. 

This paper constructs any possible kind of nonstandard unise­
rial modules directly, without any need for extra axioms indepen­
dent of the usual set theory axioms ZFC, and without the use of 
model theory. The set theory used is basic material in the study 
of axiomatic set theory, having as upper bound on the level of un-
familiarity an easy to prove Pressing-Down Lemma on stationary 
sets which we state below. 

Since even stating the main theorem in all its generality involves 
some messy notation, in this announcement I will give the con­
struction only in a special case. The valuation domain is the same 
one used in [F-Sa] to get their counterexample to Kaplansky's con­
jecture, but the nonstandard uniserial does not require $œ for its 
definition. I will then state the complete theorem and try to give 
some idea how its proof differs from the special case. 

THE CONSTRUCTION IN A SPECIAL CASE 

Let T be the free abelian group on the set col, 

r=£«z. 
a<0)l 

Order T antilexicographically, that is, if y = YlT^i aiza. anc* ^ = 

E l *a.u are in T, then y < S if and only if z < u for a the 7=1 j a ' ' J a a 
largest element of cox where y and ô have different projections. 
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For a € cox, let a denote the element of T which has projection 
0 on each term of the direct sum except for the ath where it has 
projection 1. Let K be the field of real numbers or any other 
uncountable field. 

There is a well known construction of a maximally complete 
valuation domain (every quotient is topologically complete in its 
ideal topology) with value group T and residue field K. See for 
example [Kr] where this is referenced to a 1907 paper of H. Hahn. 
Take 'long formal power series' 

R = (%2 ksxS I iko) £ K > A a w e l 1 ordered subset of T+ u {0}} 

where r + is the positive cone of T. The operations of addition, 
multiplication, and taking inverses of these long series are essen­
tially the same as for ordinary power series. As in the case of ordi­
nary power series, any family {Xn = x (mod Ip) \ {1^} ideals of R } 

of finitely satisfiable congruences modulo ideals of R has a solu­
tion in R. 

The support of an element r = X^GA kôX e R, denoted supp (r), 
is the set of all y e T+ u {0} for which ky^0. In addition, in our 
special case we have a projection support, denoted p-supp, defined 
by 

p-supp(r) = {a < œ{ | (3y G supp(r)) 

(y has nonzero projection on aL c ®^<w /?Z)}. 

The valuation domain R we will work with is the smallest val­
uation subring of R containing all polynomials (elements of finite 
support) in R. This is the valuation domain which is used in [F-
Sa] together with a construction of a nonstandard uniserial over it 
using 0W to get a counterexample to Kaplansky's conjecture. 

Let E denote the i?-module 

E=Q(R)/R. 

For M ç Ê and r = £ k Xy e R, let trunc (r) denote the 
truncation 

trunc ( r )= Y* kvX
y 

MXv^0 

where we simply ignore the terms in the series for r which annihi­
late M. We observe that trunc (r) is a 'canonical' representation 
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of r modulo the annihilator (0 : M) of M , and trunc (rs) = 
M 

trunc ( trunc (r) trunc (s) ) . 
M \ M M / 

Observations. The following observations will be used in the se­
quel, often without specific reference. 

(1) For any r e R, p-supp (r) is finite. If e e R is a unit, 
then p-supp (e) = p-supp (e _ I ) . 

(2) R and R have the same value group and residue field, so 
any element of R is of the form re where r G R and e 
is a unit (constant term ^ 0) in R. 

(3) Every element x in the i?-module E has annihilator of 
the form rR for some r e R. I f x , y e Ê have the same 
annihilator, then there is a unit e e R with x = ye . 

(4) Q(R)/R embeds in E, and we identify it with its image 
in E. 

(5) Let x e E and e a unit in R. Then xe e xR if and only 
if trunc (e) e R. 

Forcing truncations of units in R to be in R as in (5) is a crucial 
ingredient in both our definition of a nonstandard uniserial V and 
the proof that it is nonstandard. 

Construction. For a < œl, let Ua denote the i?-module 

Ua = X~aR + RcÊ. 
Note that each Ua is cyclic, so by (5), if /? < a and ea, e, are 

units of R, then U»ep ç Uaea if and only if trunc ( y a
_ 1 ) € 

R. 
Let a < ctfj and assume we have a family of uniserials V* c Ê 

and units e « € i? for all /? < a such that 

(a) ft>fi'=*VfiDVf,9 

(b) e^ G £ has p-support C {/?' | /?' < £} . 
(c) Vp = Upefi. 
(d) e n $L R if /? is a limit ordinal. 

If a = 0 set ea = 1, and if a = /?+1, set ea = e«. Now assume 
that a is a limit ordinal. We proceed to define ea retaining these 
properties. 

Let {/u(a, n) \ n e co} be an increasing sequence cofinal in a. 

We obtain a unit r/a e R with (|J/?<a ^ ) % = {Jp<a
 vp by setting 

^0 = efi{ct,0)> 
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and 

This forces t]n+l and rçw to have the same initial series outside 
the annihilator of U^^ , and ^ ( a > w + 1 )*/„+ 1 = ^ ( a ,„+ i ) • These 
initial segments define a unique power series with exponents out­
side the annihilator of the union of the U ,a rt), and r\a is defined 
to be that power series. Then Ujf\a D V, for all ji < a. 

Now look at all the coefficients that appear in any e n for p < a. 
There are at most a countable number of them. Hence the subfield 
La of K which they generate is countable. Let {ta n \ n e co} be 
any countable subset of K such that 

'«,» * A, ({'«,« I " *<" } ) ' 
Set 

e = n -(l + Yt x^'^'V 
a «a I / -j a,n I 

V a=0 / 
We observe using (5) that Uaea D U^e^ for all /? < a, preserv­

ing (a). Properties (b) and (d) are clear. Thus transfinite induction 
gives us a VQ for all a < col. Set 

Lemma. Let URc E, and let (j> : U —• E be a monomorphism. 
Then there exists a unit e of R such that </>(u) = ue for all u e U. 

Proof. Let C7 = (L w«i? with (0 : w«) = r«i?. For any r € 1?, we 
observe that 

{w e f I (0 : u) = ri?} = {r_1e + £ | e a unit of R}. 

Then for all /?, 0(w^) = w ^ for some unit e» e R. If uy = 
uprp y f ° r s o m e rp y € ^ > then 

so fin = ey (mod (0 : w )) and this system of congruences, being 

finitely satisfiable, has a solution e e R. D 

Definitions. Let fi be a cardinal, that is, an initial ordinal. A 
cub (for closed, unbounded subset) ^ in /u is a subset with the 
property that ^ is not bounded and if S? ç ^ and sup (J2*) ^ /x, 
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then sup {$?) e &. A subset of /u is called stationary if it has 
nonempty intersection with every cub. 

The Pressing-Down Lemma. Let ft be a regular cardinal, and S ç 
fi a stationary subset of /u. Let ƒ : S —• /a be a function such 
that f (a) < a for all a £ /u. Then there exists a p e S such that 
f~l{P} is stationary. 

See for example, [K, page 80, 6.15]. 

Theorem. V — \Jyea) Vy is a nonstandard uniserial R-module. 

Proof. Assume V is standard. By the lemma, there exists a unit 
e e R such that V= (u a € û ) i Ua) e. By (5), ra= trunc^ (eae'x) e 
R and so has finite p-support. Let 

aa = max(p-supp(rj), a : S —>œ l9
 a^°a 

where S is the stationary set of limit ordinals of cox. Then oa < a 
for all a G S, so by the Pressing-Down Lemma, there is a P £ œl 

such that 
Ifi = {a<COi\aQ = p} 

is stationary in col. 
For this P, we can find an increasing sequence {yn \ n < co} ç 

In with p < y0. Denote its supremum in co{ by a. As in the 

construction, set riL = e„ and n' , = ev trunc (Vev
 _ 1 ) . 

Then rf = \mLn^Jj(n) is a unit in R with (\Jn<œUy^r\' = 

[\Jn<co Uy i % > anc* e v e r y coefficient of the product (rj')~lria is in 
the field generated by the coefficients of {ey \ y < a} . Also, 

w_1 = k+,e_1) tnm\ K O 
= « ^ i « - | t r u n c ^ ( ( i , ; « - | ) ( « r i ( t | « - 1 ) " ! ) 

by finite inductionp-supp ( trunc \%£~l ) ) is bounded above 
so 

by P for all n < co, so p-supp I trunc x ( rj e ) ] is bounded 

above by p. 
, . ) ( " v , ) ) i s i 
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We now have 

r = trunc ( ee~ ) = trunc ( ee~ ) 

•(""(u^,('v,))Mr,)(i+S'-^",rf)-
The coefficient of x^a,n) in the product of the last two factors 
is the necessarily nonzero sum of ta n plus an element in the field 
generated by the coefficients of the e with y < a and the previous 
ta m . Hence the p-support of the product of the last two factors 
contains {fi(a, n) \ n < co}. Since /? < a = sup ({//(a, n)}), 
there is an n < co with fi < fi(a, n). Since the p-support of the 
truncation is bounded by ft, the p-support of the entire product 
must also contain {ju(a ,k)\k>n}. But this says that p-supp (ra) 
is infinite, so ra cannot belong to R, a contradiction. D 

NOTATION AND STATEMENT OF THE MAIN THEOREM 

The collection of all cyclic submodules of the quotient field 
Q(D) of a valuation domain D forms a totally ordered group 
T called the value group of D. For q e Q(D), the value of q, 
denoted v(q), is the cyclic submodule qD eT. D is precisely 
the set of elements in Q(D) with nonnegative value. Any ideal I 
of D corresponds to a filter on the nonnegative elements T+ U {0} 
of T. Specifically, I = {d e D | v(d) e i'} where ï c T+ 

satisfies a e i', y G T + , and y > a imply y e i'. Any unis-
erial D-module (7 has annihilators of elements of the form ql 
for some ideal I ç D and q e Q{D). U is generated by some 
set {ua \ a e A} where A is a well ordered increasing subset of 
T+ and the annihilator of u is of the form d I with v(d ) = a. 

The module / = DaeA^a~ l jD ^ Ö(-D) a n d the ideal / are basic 
data for U, and we say that U is of type [ / / / ] . 

Let 5 ' = {y e T | y + Ï = ƒ'} andjet f = T/S ' . 5 ' is a convex 
subgroup of T, and the quotient T is a totally ordered abelian 
group. Let A be the image of A in T. S = {d e D \ v{d) € S') 
is a multiplicatively closed subset of D, and U is a nonstandard 
Z>-module of type [//ƒ] if and only if / = JDS and U is also 
a nonstandard D^-module of type [ / / / ] . If A has countable 
cofinality, then U of type [///] must be standard. That is about 
all you can say in general. 



96 BARBARA L. OSOFSKY 

Theorem. Let Y be a totally ordered abelian group, A a well-
ordered increasing subset of T+, I' a filter in T+ u {0}. Set 
S' = {y e r | y + Ï = ƒ '}, S = {d e D \ v(d) eS'},T = T/S', 

and A the image of A in T. Assume A /JOS cofinality the successor 
N+ ö/<z regular cardinal N. 77ien f/zere gxtfte a valuation domain D 
with value group T such that D has a nonstandard uniserial of type 
[J 11], where J = ^2v(d)£Ad"lDs and I = {deD\ v(d) e ƒ '} . 

The differences between the proof in our special case and the 
proof of the general theorem are more technical than conceptual. 
The change from col to the successor of an arbitrary regular cardi­
nal is minor. It involves replacing 'finite' by 'less than the regular 
cardinal' in the definition of R, and acknowledging limit ordinals 
smaller than that cardinal in the construction and proof of the the­
orem. If T is an arbitrary totally ordered abelian group there is 
no concept of p-support, so we have some messy technical details 
that are simply observations in the special case I look at here. Ar­
bitrary I also introduces a smaller quantity of technical details. 
In addition, to work with an arbitrary A ç r , I must consider two 
cases which require slightly different proofs at one point. These 
cases correspond to whether or not a nonstandard uniserial of type 
[J 11] has any standard quotients. 

The minimal number of generators of any uniserial module 
must be a regular cardinal. The problem with uncountable regular 
cardinals K that are not successors of regular cardinals is finding 
some way to insure that the uniserials looked at generated by fewer 
than N elements are standard without simultaneously forcing the 
module V being constructed to be standard. 
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