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ELLIPTIC CURVES AND REAL ALGEBRAIC 
MORPHISMS INTO THE 2-SPHERE 

J. BOCHNAK AND W. KUCHARZ 

Given affine nonsingular real algebraic varieties X and Y, let 
31 {X, Y) denote the set of regular mappings, that is, real algebraic 
morphisms, form X into Y. (By affine real algebraic variety we 
mean, up to isomorphism, an algebraic subset of R" equipped 
with the sheaf of R-valued regular functions [1, Definition 3.2.9]. 
Recall that projective real algebraic varieties are actually affine 
[1, Theorem 3.4.4].) We consider 31 (X, Y) as a subset of the 
space C°°(X, Y) of C°° mappings from X into Y endowed 
with C°° topology. We also assume that X is compact. The 
classical theorem of Stone-Weierstrass implies that 31\X, Y) is 
dense in C°°(X, Y) if Y = Rk . Here we try to extend this result 
to Y = S , the unit sphere in R . This problem is already difficult 
(cf. [1,3, 4]) and leads, as we show below, to interesting relations 
between real regular mappings and arithmetical properties of real 
algebraic varieties. 

Given ƒ in C°°(X, Y), consider the following two conditions: 

(i) ƒ belongs to the closure of 31 {X, Y) in C°°(X, Y), 
(ii) ƒ is homotopic to a regular mapping. 

In general, neither (i) nor (ii) is satisfied, even for Y = Sk , the 
unit sphere in R +1 (cf. [1, 3, 4]). Clearly (i) implies (ii), while 
the converse is not always true. It is remarkable that (ii) does 
imply (i) for Y = Sk with k = 1, 2, or 4 [1, Theorem 13.3.4] 
(for further results on (i) and (ii) the reader may consult [1, 2, 3, 
4, 6, 7]). 

Since (i) and (ii) are equivalent for Y = S , it follows that for 
each affine nonsingular real algebraic surface X, which is com
pact, connected, and oriented, there exists a uniquely determined 
nonnegative integer b(X) such that the closure of &(X, S ) in 
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C°°(X,S2) is equal to 

{ƒ G C°°{X, S2)\ deg(ƒ) is a multiple of b(X)}. 

The above statement holds since the topological degree deg: n2(X) 
-^ Z is an isomorphism from the second cohomotopy group n2(X) 
of X onto Z and, by [1, Proposition 13.4.2], the set n\{X) = 

{[ƒ] G n2(X)\f G ̂ ( X , S2)} is a subgroup of TT2(X) . The in
variant b(X) can attain, as X varies, any nonnegative integer 
value (this answers a question raised in [1, Remark 13.4.3]). More 
precisely, we have the following. 

Theorem 1. Let M be a C°° compact connected oriented surface 
and let b be a nonnegative integer. Then there exists an affine 
nonsingular real algebraic surface X, diffeomorphic to M, such 
that b(X) = b. 

One of the essential steps in the proof of Theorem 1 is the study 
of 31 (C x D, S2), where C and D are nonsingular real cubic 
curves in RP2 . This study, influenced by arithmetical properties 
of elliptic curves, deserves special attention. 

Given a G R* = R\{0}, let ra = (1/2)(1 + ay/^ï) if a > 0, 
and %a = a>/-T if a < 0 and set 

Da = {[*: y: z] G RP2\y2z = 4x3 - g2(ra)xz2 - £ 3 ( r j z 3 } , 

where, as usual, the gj(ta) are the numbers (in this case real) 
defined by 

fe(0 =60 E w"4 > * ( 0 = 1 4 0 E w"6 > 
w€A^ o>€Al 

Aa = Z + Zr a is a lattice in C, A^ = Aa\{0} (cf. [5]). Each 
Da is then a nonsingular real cubic curve in RP , connected if 
a > 0, and having 2 connected components if a < 0. More
over, Z>a and Dn are not biregularly isomorphic for a ^ /?, and 

every nonsingular real cubic curve in RP2 is isomorphic (through 
a linear isomorphism of RP2) to some Da . It follows that R* can 
be regarded as a moduli space for nonsingular real cubic curves in 
RP2. 

Proposition 2. Let C and D be nonsingular real cubic curves in 
RP2. Then CxD can be oriented in such a way that for each ƒ in 
31 (C x D, S2), the topological degree deg(/|^4) of the restriction 
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of ƒ to a connected component A of C x D does not depend on 
the choice of A. Moreover, the set 

Deg^(C ,D) = {rneZ\rn = &eg(f\A), ƒ G 31 (C x D, S2)} 

is a subgroup of Z . 

One can show that if C x D is replaced by a compact ori
ented affine nonsingular irreducible surface X , then, in general 
| deg( f\A)\ depends on the choice of the connected component A 
of X for ƒ in 31{X,S2). 

Since (i) and (ii) are equivalent for Y = S2 , it follows that the 
unique nonnegative integer b(C, D) satisfying Deg^(C,Z>) = 
b(C,D)Z (obviously, b(C, D) = b(C x D) if both C and D 
are connected) fully determines the closure of 31 (C x D, S ) in 
C°°(C x D , S 2 ) : a C ° ° mapping f.CxD^S2 belongs to the 
closure of 31 (C xD,S2) in C°°(C xD,S2) if and only if for 
every connected component A of C x D, one has deg(ƒ|^4) = 
ô(C, D)p for some integer /? independent of A. In particular, 
31 {C xD,S2) is dense in C°°(CxD, S2) if and only if C x D 
is connected and è(C, D) = 1. Also, ^ ( C x f l , S 2 ) consists of 
the null homotopic regular mappings if and only if b(C, D) = 0. 

It turns out that the invariant b(Da, D») can be explicitly 
computed as a function of ( a J J e R ^ x R * , which clarifies then 
completely the structure of the closure of 31 (C x D, S2) in 
C°°(C xD, S2) for the product of arbitrary nonsingular real cubic 
curves C and D in RP 2 . 

Theorem 3. Let a and P be in R*. Then b(Da, Dfi) = 0 /ƒ aw/ 
only if the product a fi is in R\Q. 

In particular, b(Da, D J ^ 0 if and only if a2 e Q (that is, if 
the complexification Z>aC c CP of Da is an elliptic curve with 
complex multiplication). 

Let us now consider the case where afi is in Q. Let Z+ denote 
the set of strictly positive integers. Given integers p and q, let 
(p, q) denote their greatest common divisor. 

Theorem 4. Let a, p e R*, a > 0, £ > 0 {that is, Da and D^ 
are connected real cubic curves) and afi e Q. 

I. Assume a £ Q a«6? fef a/? = 4p/#, vvAere p, q e 
Z + , 0?, 0) = 1, q = 2kr, k>0, r e Z + , r = 1 (mod 2). 
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Then 

b(Da9Df)={ 
2q if k = 1, 

9/2 ifk = 2, 

q if k>3. 

II. Assume a € Q and let a = (pl/rl)Vd, P = (p2/r2)Vd, 
where pj9 rjf d e Z+, (pj9 r,.) = 1, p. = 2lJmj9 r. = 
2Sjnjt lj > 0, Sj > 0, mjf nj e Z + , m.«. = 1 (mod 2) 
for j = 1,2, and d is square free. Define 

g =
 rir2 

(p{p2d, r{r2)' 

Then 

b{Da,Dfi)=\ 

Ç iflx = l2 = s{ = s2 = 0 and d = 3 (mod 4), 

4£ /ƒ/j = /2 = s{ = s2 = 0 and d = 2 (mod 4), 

or l{ = l2> 0, or sx= s2> 0, 

2Ç in all other cases. 

For the lack of space we do not give here formulas for b(Da, Dp) 
with a e R*, /? < 0. Instead we record some interesting corollar
ies to Proposition 2 and Theorems 3 and 4. 

Corollary 5. Let C and D be nonsingular real cubic curves in 
RP . Then the following conditions are equivalent'. 

(a) 3?(CxD,S2) is dense in C°°{C xD,S2); 
(b) (C,D) is a pair ofcubics biregularly isomorphic to (Da, D » ), 

where a = (pl/r1)y/d, ft = (p2/r2)Vd, with pjf r., d G Z + , 
j = 1 , 2 3 Ö ? square free, d = 3 (mod 4), PxP2rxr2 = 1 (mod 2), 
and pxp2d divisible by rxr2. D 

Corollary 6. G/ve« a nonnegative integer b, there exists a 
connected nonsingular real cubic curve C in RP such that 
b{C,C) = b. 

Proof. For b = 0, it suffices to take C = Da, where a > 0, 
a2 $ Q (cf. Theorem 3). For b > 0, one can take C = Da with 
a = y/(4 + 3b)/b (cf. Theorem 4). D 

Corollary 7. TTzere extó, up to isomorphism, precisely 18 unordered 
pairs {C, D} of nonsingular real cubic curves in RP2, defined over 
Q, such that &{C xD,S2) is dense in C°°{C xD,S2). More 
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precisely, these unordered pairs are {Ak, Ak}, {Ak, A*k} for k = 
1, ... , 8, {A{, A5} and {A*x, A5}, where (in affine coordinates) 

Ax:y = x - 1 , ^ ^ ^ = x +1 

^ : j ; = Ax - akx -ak, A*k : y = Ax - akx + ak 

for k = 2, ... , 8, wWz ak = 27jk/(jk - 1728) aw/ 

k 

-4 
2 

(3 -5 ) 3 

3 

215 

4 

(25 • 3)3 

5 

21 5 • 3 • 53 

6 

( 2 6 - 3 - 5 ) 3 

k 

-Jk 

7 

(25 - 3 - 5- l l ) 3 

8 

( 2 6 - 3 - 5 - 2 3 - 2 9 ) 3 

Sketch of proof. Applying [5, p. 233], one can describe explicitly 
the set T of all elements a in R* such that Da is isomorphic 
to a real cubic in RP , defined over Q, and the complexification 
DaC c CP2 of Da has complex multiplication (that is, a2 e Q). 
The set T has 26 elements and one checks, using Corollary 5, 
that b(Da, Dfi) = l for precisely 18 unordered pairs {a, /?} with 
a j G T , a > 0 , j 8 > 0 . Thus the first part of Corollary 7 
follows. Moreover, in the process described above, one obtains 
explicit equations for the real cubics in RP2, defined over Q, 
which correspond to the Da with a in T. This implies the second 
part of Corollary 7. D 

Sketch of proofs of Proposition 2 and Theorems 3 and A. Fix a, /? 
in R*. Let Ea, Ep c CP2 be the complexification of Da, Z^ , 
respectively. We shall identify, as usual, Hom(i?a, En) with 

ƒƒ(a, p) = {A = a + brp e C\a, b e Z 
and Ara = c + rfr« for some c, d e Z}. 

Denote by #a
2

lg(£a x E^Z) the subgroup of # 2 (£ a x ^ , Z) 
which consists of the cohomology classes [[A]] of all divisors A on 
EaxEp . Since 2?a and E» are complex elliptic curves, the group 
H2

lg(Ea xEp,Z) is generated by [[{0} x En]] and all elements of 
the form [[graph A]] for A in H (a, ft). Moreover, choosing an 
orientation on Da (resp. D») so that if Da (resp. D«) has two 
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connected components, then their homology classes in Hx (EQ, Z) 
(resp. Hx(Ep, Z)) are equal, one obtains 

( * ) ?A(H^(Ea x Ep , Z)) = {b G Z\X = a + bxf e H(a, fi) 

for some a eZ} 

where yi is an arbitrary connected component of Dax Dp , j ^ : 

A —• EaxEn is the inclusion mapping, and /f (A,Z) is identified 
with Z . This can be seen identifying Ea and £„ with C/Aa and 
C/A. , respectively. 

Let f:DaxDp-^S be a C°° mapping and let v be a gen
erator of i / 2 (S 2 , Z) . It follows from [3] that ƒ belongs to the 
closure of ^(Da x Dp, S2) in C°°(Z)a x D^, S2) if and only if 
f{v) is in 

^c -a ig (^ x D , , Z ) = /*(//a
2

lg(^ x ^ , Z)), 
where i: Dax Dp -+ Eax Ep is the inclusion mapping. This, to
gether with (*), implies Proposition 2. In particular, b(Da, Dp) 
is well defined. It also follows that b(Da, Dp) is equal to the non-
negative integer b(a, ft) which generates the group in (*). The 
computation of b(a9 fi) is purely arithmetical and yields Theo
rems 3 and 4. D 

A special case of Theorem 1, with M of topological genus 1, is 
contained in Corollary 6. This is a starting point for the proof of 
the general case, which requires several constructions of the type 
used in [3, 4]. 

We also have several results concerning £%{XX x X2, S2) for 
real algebraic curves X{ and X2 other than cubic curves. For 
example, let Fn be the Fermât curve in RP given by the equation 
xn +yn = zn . Then one can show that 3i{Fn x Fn, S2) is dense in 
C°°(Fn x Fn , S

2) for n odd, n > 3 , and that M{Fk x Fk, S2), 
with k even, k > 4 , contains mappings which are not null homo-
topic. Previously, it was only known that every regular mapping 
from F2 x F2 into S is null homotopic [2, 7]. 
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