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THE SELBERG ZETA FUNCTION 
AND SCATTERING POLES FOR 

KLEIMAN GROUPS 

PETER A. PERRY 

In this note we present a polynomial bound on the distribution 
of poles of the scattering operator for the Laplacian on certain 
hyperbolic manifolds Mn of infinite volume. The motivation is 
to understand more fully the geometry of the poles of the scat­
tering operator. The proof uses the relationship between poles of 
the scattering operator and zeros of the Selberg zeta function for 
geodesic flow on Mn . 

Recall that the classical Selberg zeta function Z(s) [30] is a 
meromorphic function which describes the lengths /(y) of closed 
geodesies y on a compact surface S : 

oo 

(1) Z(s) = n J ] {1 - «p(-(* + m)/{y))} 
y m=l 

where the product over y runs over primitive closed geodesies. 
Crude estimates on the distribution of lengths show that Z(s) is 
analytic for JR(s) > 1 ; an application of Selberg's trace formula 
shows that Z(s) extends to a meromorphic function on C with 
trivial zeros at the integers 1 , 0 , - 1 , . . . together with spectral 
zeros at the numbers sk where sk(l-sk) is an eigenvalue of the 
Laplacian on S [11, 20, 30]. 

Here we will be concerned with the Selberg zeta functions, in­
troduced by Patterson [25], for certain noncompact hyperbolic 
manifolds Mn of infinite hyperbolic volume. These zeta func­
tions are defined by an infinite product similar to (1) (identical 
when n = 2 ); they share important features with the classical zeta 
function. In particular, their analytic structure is closely tied to 
the spectrum of the Laplacian on Mn . However, the Laplacian 
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on Mn has at most finitely many discrete eigenvalues and abso­
lutely continuous spectrum of infinite multiplicity [13, 14, 15]; 
thus the dominant contribution to the spectrum is described by 
the scattering operator S(s) associated to the absolutely continu­
ous spectrum. S(s) is an operator-valued meromorphic function 
that relates the asymptotic behavior of incoming and outgoing gen­
eralized eigenfunctions of the Laplacian (see [1, 16, 17, 18, 19, 26, 
28]). The poles of S(s) play a role similar to the role played by 
eigenvalues of the Laplacian for a compact surface; the zeta func­
tion has spectral zeros at poles of the scattering operator together 
with an infinite sequence of trivial zeros or poles which appear to 
carry topological information [25, 27, 29]. 

In contrast to the eigenvalues of the Laplacian, the poles of 
the scattering operator are eigenvalues of a nonselfadjoint eigen­
value problem, so that very little is known about their nature and 
distribution. Recent studies of the scattering operator for acousti­
cal scattering have derived polynomial bounds on the distribution 
function 

N(r) = #{k e C: \k\ < r and k is a pole 
of the scattering operator} 

(see Melrose [21, 22]), Zworski [33, 34, 35] derives exact leading 
asymptotics for N(r) in the case of Schrödinger scattering by a 
compactly supported potential. 

Here we prove a polynomial bound for the distribution of poles 
of the scattering operator S(s). We know of no previous result 
of this type for the Laplacian on a hyperbolic manifold. Using 
this bound, one should be able to prove a trace formula involving 
the poles of the scattering operator and obtain finer information 
on the distribution of poles (cf. [21, 22, 3] for trace formulas in 
acoustical scattering and [10, 12] for their application to analysis 
of poles of the scattering operator in certain acoustical problems). 

To state our result more precisely, we first recall some notions 
of hyperbolic geometry. Model hyperbolic space Hn as the unit 
ball Bn c Rn with the Poincaré metric 

ds2 = 4\dx\2/(l-\x\2y , 

where \dx\2 is the Euclidean metric on Rn . Then Sn~l c Rn is 
the boundary at infinity for Hn, and the isometries of Hn are 
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Möbius transformations leaving Bn invariant. A discrete group T 
of isometries of Hn is called geometrically finite if it admits a fun­
damental domain bounded by finitely many geodesic hyperplanes. 
The limit set Ar is the set of accumulation points in Sn~~l of T-
orbits of points in Hn ; it is a closed, T-invariant set. The convex 
hull of the limit set, CH(Ar), is the smallest hyperbolically convex 
subset of Hn whose boundary (viewed as a subset of Rn ) contains 
A r . CH(Ar) is T-invariant; the quotient FN = CH(Ar)/r is 
called the Fenchel-Nielsen region. Closed geodesies on Mn lift 
to geodesies in H" with both endpoints in the limit set; such 
geodesies are contained in CH(Ar), so that closed geodesies of 
Mn lie in FN. A geometrically finite discrete group T is called 
convex co-compact if FN is a compact subset of H r t/r. 

We consider quotients Mn = Hn/F where 

T is geometrically finite, convex co-compact, 
( * ) n 

and torsion-free, and vol (H /T) = oo. 

The no-torsion condition guarantees that Mn is a Riemannian 
manifold. The convex co-compactness implies that Mn has no 
cusps. Since FN is compact, the closed geodesies of Mn lie in a 
compact set. Since closed geodesies are dense in the nonwander-
ing set by Anosov's closing lemma [2], the nonwandering set for 
geodesic flow on the unit tangent bundle of Mn is also compact. 

The nontrivial geometry of Mn, as well as its nontrivial dy­
namics, is concentrated in FN. Let FNX be the set of points 
at distance < 1 from FN. Then FNX is a C1 submanifold 
with boundary and Mn - FNX is the union of finitely many con­
nected components diffeomorphic to cylinders (0, 1) x Nt where 
the Nj are compact manifolds. The geometric boundary of M is 
dQOMn = (J • N( and can also be realized as U r/T where Q r = 
Sn~l - Ar is the domain of discontinuity of T acting in Sn~l. 

The Laplacian on Mn has at most finitely many eigenvalues in 
[0, (n - l)2/4) (owing to the infinite volume of Mn [13]), and 
purely absolutely continuous spectrum on [(n - l)2/4, oo) [14]. 
The associated scattering operator S(s) is a meromorphic pseu-
dodifferential operator-valued function acting on line bundles over 
dOQMn (see Agmon [1], Froese, Hislop, and Perry [7], Mandouva-
los [16, 17, 18, 19], and Perry [26, 27, 28] for further discussion). 
The relation between the scattering operator S(s) and the zeta 
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function Z(s) is 
Theorem 0.1 ([25, 27]). Let Mn satisfy (*). Then for X{s) = 
(n - l)/2, s^(n-l)/2, the identity 

holds. 

Here the prime denotes differentiation with respect to s, and 
Tr denotes a suitably renormalized trace (see [27]). In [27] it is 
shown that the right-hand side has a meromorphic continuation to 
C and that each of the nontrivial poles of the scattering operator 
is a pole of the right-hand side with positive integral residue equal 
to the dimension of the zero eigenspace of a Fredholm operator 
that determines the poles of S(s). 

On the other hand, the dynamical methods of Ruelle [31] and 
Fried [8] show that 

Theorem 0.2. Let Mn satisfy (*). Then the zeta function Z(s) 
for Mn is the quotient of entire functions of order < n. 

Although [8] and [31] analyze zeta functions for geodesic flow 
on compact manifolds rather than noncompact manifolds, their 
results remain true for Axiom A flows on noncompact manifolds 
with analytic stable and unstable foliations and a compact non-
wandering set. It is relatively easy to check that these assumptions 
are satisfied for geodesic flow on the unit tangent bundle of the 
manifolds Mn considered here. 

Together with a trivial estimate on the distribution of zeros of 
entire functions of order n, Theorems 0.1 and 0.2 imply: 

Theorem 0.3. Let N(r) be the counting function (2) for poles of 
S(s), i.e., 

N(r) = #{s e C: \s\ < r and s is a pole ofS(s)}. 

Then for any e > 0 there is a C€ > 0 such that 

N(r)<C€(l+r)n+e. 
This result is almost optimal, as the following examples due to 

Charles Epstein [6] show. Let rn_{ be a discrete group of isome-
tries of Hn~l so chosen that Mn~l = Hn"l/rn_l is a compact 
Riemannian manifold. There is a natural embedding of Isom(Hw"l ) 
in Isom(H") such that, if Tn is the image of rw - 1 under this em­
bedding, Hn/Tn is isometric to RxMn~l with hyperbolic metric 



THE SELBERG ZETA FUNCTION AND SCATTERING POLES 331 

ds1 = dx1 + cosh2(r)dœ2, where dco2 is the hyperbolic metric 
on Mn~l. The zeta function Z r (s) is given in terms of the zeta 
function Z r (s) by the formula 

oo 

(3) ZT{s)=Y[ZT (s + m). 
m=0 

Z r (s) has spectral zeros due to eigenvalues of the Laplacian on 

Mn~x and topological zeros or poles depending on the dimension 
and topology of Mn~l (see [5, 9, 11, 30]). The spectral zeros of 
Z r (s) are those sk on the line 5R(j) - (n - 2)/2 for which 

Sfc(/i - 2 - 5fc) is an eigenvalue of the Laplacian on Mn~l. Let 
sk = (n - 2)/2 + itk . The ^ obey the estimate (Weyl's law for 
Mn~x [4]) 

N(tk:\tk\<r)~rn-\ 

Since the product (3) has zeros sk m = -m+sk for m a nonnega-
tive integer, it follows that the counting function for these spectral 
zeros of the product (3) obeys N(r) ~ rn . It can be shown by ex­
plicit calculation, using the explicit form of the metric to separate 
variables, that all of these zeros occur as poles of the scattering 
operator for Mn . 

Details of the proof and the examples described above will ap­
pear in [29]. 
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