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treated in the book, or wondered to what parts of the book they 
referred, the place where each property is treated is given below. 
I did not intend to create an impression that the properties were 
not in the book. 

Property i) page 399 (This is Helgason's definition of spherical 
functions.) 

ii) page 408, Lemma 3.2 
iii) page 419, Theorem 4.5 (This is a form of the general prin­

ciple valid for non-compact G. As noted in the review, the much 
stronger form valid for compact groups, which serves as motiva­
tion for the general result, is not treated except by example in the 
Introduction.) 

iv) page 402, Proposition 2.4 
v) page 414, Theorem 37 

vi) page 400, Proposition 2.2. 
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The direct and inverse scattering theory for linear ordinary dif­
ferential operators has been the subject of recent renewed interest. 
This stems in part from the so-called inverse scattering method for 
solving certain nonlinear partial differential equations, which uses 
scattering theory to convert these special nonlinear problems into 
linear ones. This technique was discovered by Gardner, Greene, 
Kruskal, and Miura [6], who described how to solve the Korteweg-
de Vries equation (KdV) 

qt = 6qqx - qxxx 

using the scattering theory for the ordinary differential operator 
family 

d2 

L(t) = —j + q{x,t). 
dx 
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Lax [8] observed that one could view the KdV equation as an 
operator equation 

where 

This helped explain some of the structure underlying the discover­
ies of Gardner et al. since from this form one may readily deduce 
that the spectrum of L(t) is the same for all t and that the so-
called scattering data evolve linearly. 

For the operators of the form given by L above, a more or 
less complete theory for the direct and inverse scattering problems 
had been worked out previously, leading to the following inverse 
scattering method for solving the initial value problem for the KdV 
equation [6]: Compute the scattering data for the initial value; let 
it evolve in time using the linear equation; reconstruct the potential 
q(x, t) by inverse scattering. It was later observed by Deift and 
Trubowitz [4] that the earlier scattering theory had a technical gap 
and they developed a fully rigorous version. 

Shortly after the work of Gardner, Greene, Kruskal, and Miura, 
it was observed by several groups that other operators led a formal 
approach for solving other nonlinear PDEs of interest [1, 7, 9, 
10]. In these cases, the corresponding direct and inverse scattering 
theory was not necessarily in place. 

The monograph under review follows the work of Deift and 
Trubowitz [4], Deift, Tomei, Trubowitz [5], Beals [2], and Beals 
and Coif man [3] in developing rigorous results for such direct and 
inverse scattering problems. The class of operators considered in 
this monograph is the generalization of the KdV case to higher-
order operators of the form: 

L = Dn +pn_2(x)Dn-2 + • • • + p0{x), 

where 

» = i£ 
i ax 

and it is assumed that the potentials Pj(x) are smooth and decay 
as |x| —> +oo . 

The theory is quite technical, so we shall content ourselves here 
to give the flavor of the ideas involved. In particular certain differ­
ences between the cases n even and odd as well as the self-adjoint 
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case will be ignored. The main underpinning in all scattering the­
ories of this type is to relate L to the bare operator Dn since by 
the decay assumption L is a small perturbation of Dn for large 
values of \x\. 

The constant coefficient operator Dn has exponentials as eigen-
functions; namely, Dn(elzx) = znelzx. Moreover, if con de­
notes the primitive nth root of unity e ni'n , it is clear that the 
n solutions of Dnu = znu(z ^ 0) are given by el0)nZX with 
fc = 05 1 , 2 , . . . , « — 1 . As z —> 0, these solutions became lin­
early dependent and one must include various z derivatives or 
equivalently worry about the order of vanishing as z —• 0. The 
n solutions for x ^ 0 real are also ordered by magnitudes in the 
open sectors of the complex z -plane where the real parts of the 
exponents are distinct. This leads to a distinguished ordering in 
each sector of the solutions based on their sizes as x -> +oo (or 
—oo ) . 

All of this carries over the the more complicated operator L 
so that one may construct a distinguished solution of Lu = znu 
which is holomorphic in z in open sectors by solving a Volterra 
equation. Using wedge products of solutions, the authors in fact 
construct two distinguished sets of n solutions using Volterra 
equations. As z approaches a point of the bounding ray other 
than 0 from either side, one finds relations between the solution 
families provided certain determinants are nonzero. These rela­
tions (along with added data at zeros of the determinants) com­
prise the scattering data. For "generic" potentials, meaning those 
for which the zeroes of the determinants are all simple, distinct 
from one another, stay away the boundary of the sectors, and be­
have as simply as possible as z —> 0, Beals, Deift, and Tomei give 
a complete characterization of the scattering data. They also prove 
that generic potentials form an open dense subset of the set of all 
Schwartz space potentials. The set of zeroes is called the singular 
set Z . 

In Part II of the monograph, the inverse problem of recovering 
the operator L from the scattering data is considered. The pro­
cedure is roughly as follows: (1) observe that it suffices to find the 
first row of the matrix fundamental solution, since the other rows 
are the ^-derivatives of this row; (2) derive an equation for this 
row for each x eR using the " d method" to show that the suit­
ably extended version of this row vector is uniquely determined by 
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its values along the sector boundaries and at the singular set Z ; 
(3) using a suitable matrix factorization near z = 0, show that the 
equations can be reduced to Fredholm equations of index zero for 
each x ; (4) for self-adjoint operators, deduce a "vanishing lemma" 
which shows that the kernel is trivial, hence the inverse problem is 
always uniquely solvable for each x . In the general case, step (4) 
can fail, but it was shown by Beals [2] that there is a dense open 
set where the inverse problem is solvable for all x . 

In the final part, the question of evolution equations is taken up. 
It is shown that the corresponding Lax equations associated to an 
rcth-order operator L lead to linear evolutions of scattering data. 
These linear equations can have exponentially growing or decaying 
parts as well as pieces which oscillate. This provides a decomposi­
tion of the solution to the nonlinear evolution equation into expo­
nentially stable, exponentially unstable, and "central" parts. Some 
algebraic aspects of the process of adding or removing bound states 
and the link with the theory of first-order matrix systems are also 
considered. 

Direct and Inverse Scattering on the Line is a carefully written, 
clear, and complete monograph. The techniques used to analyze 
the direct and inverse problem are a beautiful blend of ideas from 
complex analysis, algebra, and functional analysis. Rigorous re­
sults in this subject are hard to come by, so this monograph is 
a welcome addition to the research literature. The authors have 
done a good job of laying out their arguments. Unfortunately, the 
publisher has not. The page layout is a bit tight, with many for­
mulas set too close to surrounding text. This makes for a bit of 
eyestrain. 

This book is heartily recommended for the serious students of 
the subject. 
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The two volume work reviewed here continues Professor Lions' 
lengthy list of fundamental contributions to the control theory of 
distributed systems—systems governed by partial differential and 
other infinite-dimensional processes—constituting just part of the 
work of a long and distinguished scientific career. The main sub­
ject matter concerns HUM, the Hubert space Uniqueness Method, 
as a tool for studying Hubert spaces of controllable states for a 
variety of linear partial differential equations, notably the wave 
equation, but the work also includes a contribution to asymptotic 
energy decay theory for the wave equation and some studies of 
the controllability of "perturbed" systems of the same sort, such 
as the wave equation in a "perforated" medium, applying homo-
genization techniques, and problems involving perturbations of the 


