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1. INTRODUCTION 

Intersection homology theory is a magnificent new tool for work­
ing with the common singular spaces, and it has engendered pro­
found results in topology, analysis, arithmetic algebraic geometry, 
^-module theory, and representation theory. When the spaces are 
smooth, the theory agrees with ordinary homology theory. How­
ever, when the spaces are singular, then it, unlike the ordinary 
theory, continues to satisfy Poincaré duality and the Künneth for­
mula. Moreover, when the spaces are projective algebraic varieties 
in any characteristic, then it continues to exist, and it satisfies the 
two Lefschetz theorems as well. There is a corresponding L -
deRham-Hodge theory, and when the spaces are complex projec­
tive varieties, then there is a pure Hodge structure. During the 
fifteen years that have elapsed since its discovery, intersection ho­
mology theory has stimulated the frenetic efforts of an unprece­
dented and ever increasing number of mathematicians, including 
many of today's most gifted; they have done some of the most 
important mathematics of the century. 

The book under review does not emphasize the historical devel­
opment of intersection homology theory. The following sections 
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may therefore help to introduce the contents of the book and put 
them in perspective. These sections are summarized from the au­
thor's fuller account.1 

2. DISCOVERY 

Intersection homology theory was discovered in the fall of 1974 
by Mark Goresky and Robert MacPherson. They were looking for 
a theory of characteristic numbers for singular spaces X. Pre­
viously, MacPherson and others had found several characteris­
tic homology classes, but homology classes cannot be multiplied. 
So, with the second homology operations in mind, Goresky and 
MacPherson hoped to find certain "intersectable" classes, whose 
intersection product would be well defined modulo certain "inde­
terminacy" classes. Moreover, they knew how to view cohomology 
groups on spaces with "Whitney" stratifications as the homology 
groups of certain "geometric" cycles, which can be made transverse 
to each other and to each stratum. 

Goresky and MacPherson relaxed the transversality condition 
on the cycles by allowing them to deviate from dimensional trans­
versality to each stratum of codimension k, for each k > 2 (by 
hypothesis there are no strata of codimension 1 ), within a toler­
ance specified by a function p(k), which they called the perversity. 
And they allowed the homologies to deviate in the same way. Thus, 
for each p(k) and each / , they obtained a new group IHf(X), 
and eventually they called it the "intersection homology group." 

The perversity p(k) is required to satisfy the condition p(2) = 
0 ; consequently, the /-cycle lies mostly in the nonsingular part 
of X, where it is orientable. If X is compact, then IHf(X) is 
finitely generated, and there are intersection pairings, 

IHj(X) x IHJ(X) - /<7_„(X). 

The (topological) normalization map X' —• X induces an isomor­
phism, 

IHf(X')^-+IHf(X). 

If X is normal, then IHf(X) ranges from the ordinary cohomol­
ogy group where p(k) = 0 for all k to the ordinary homology 

The development of intersection homology theory, in A Century of Mathematics 
in America. Part II, Amer. Math. Soc, 1989. REMARK: That account is in part 
an interpretation of the retrospections of those interviewed, and not necessarily in 
accord with the retrospections of others. The author is grateful to Clint McCrory, 
Masaki Kashiwara, and Pierre Schapira for taking the trouble of reminding him of 
that fact. 
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groups where p(k) = k - 2 for all k ; if X is also compact, then 
the pairing generalizes the usual cup and cap products. Moreover, 
the theory extends to noncompact X when cycles with compact 
supports are used. 

Goresky and MacPherson realized that just as cohomology 
groups and homology groups are dually paired, so too the intersec­
tion homology groups of complementary dimension (i + j = n) 
and complementary perversity (p(k) + q(k) = k — 2) are du­
ally paired: Poincaré duality holds! Sullivan's 1970 problem was 
solved: If X is compact, has dimension 4/, and has only even codi-
mensional strata, then the middle perversity group IH^(X), where 
m(k): = L îrJ > carries a nondegenerate bilinear form, whose sig­
nature is invariant under cobordisms with even codimensional strata. 
In the summer of 1975, Goresky and MacPherson discovered that 
the growth condition p(k) < p(k + 1) < p{k) + 1 implies that 
the groups IHf(X) are invariant under restratification. During 
the academic year 1975-1976, they settled on working in the pl-
category, and benefited greatly from Clint McCrory's expertise on 
pl-transversality. 

3 . L2-COHOMOLOGY 

During the winter of 1975-1976, Jeff Cheeger found, indepen­
dently of Goresky and MacPherson, a cohomology theory satisfy­
ing Poincaré duality for essentially the same class of spaces X. 
Such a closed oriented pseudomanifold X carries natural piece-
wise flat metrics, and Cheeger formed the L2 -cohomology groups 
of the incomplete Riemannian manifold U obtained by discarding 
all the simplices of codimension 2 or more. Those are the coho­
mology groups HLJU) of the complex of real differential forms 
co on U such that 

ƒ w A * w < o o and / d co A * dco < oo. 
Ju Ju 

Cheeger found that Poincaré duality could be verified directly or 
derived formally, in essentially the same way as in the smooth case, 
from the action of the *-operator on the harmonic forms of the 
associated Hodge theory—in fact, the full Hodge theory holds— 
given a certain condition. The condition was later seen to hold 
whenever X has a stratification by strata of even codimension. 
The theory automatically works also if X is equipped with any 
metric that, on U, is quasi-isomorphic to the previous one; then 
X is said to have 'conical' or 'conelike' singularities. Cheeger 
eventually proved that he found a de Rham-Hodge theory dual to 
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Goresky and MacPherson's combinatorial theory for the middle 
perversity. 

Cheeger's discovery was an extraordinary byproduct of his work 
on his proof of the Ray-Singer conjecture. Cheeger's analytic 
methods in intersection homology theory yielded the first proof of 
the Künneth formula (the combinatorial approach had failed, be­
cause the product of two middle-allowable cycles is seldom middle 
allowable). Cheeger's methods have also yielded the only known 
explicit local formulas for the L-class and a vanishing theorem 
for the intersection homology groups of a pseudomanifold of pos­
itive curvature. Moreover, the general methods themselves have 
also had significant applications to other theories, including in­
dex theory for families of Dirac operators, the theory surrounding 
Witten's global anomaly formula, and diffraction theory. 

In the summer of 1977, Cheeger and MacPherson chatted. How­
ever they considered not the conical metric of a triangulation, but 
the Kàhler metric of a complex projective variety X with nonsin-
gular part U. They conjectured that (1) the L -cohomology group 
HLAU) is always dual to the intersection homology group IHt(X) 
under the integration pairing and (2) the standard consequences of 
Hodge theory—including the Hodge decomposition, the hard Lef-
schetz theorem, and the Hodge index theorem—are valid. Those 
conjectures were published in a 1980 paper of Cheeger's. With 
Goresky's help, Cheeger and MacPherson developed the conjec­
tures further, supported them with examples, and published them 
in 1982 in a joint article, which has inspired many people. 

4 . A FORTUITOUS ENCOUNTER 

At a 1976 Halloween party, MacPherson introduced Deligne to 
intersection homology theory, leading Deligne to write down his 
celebrated formula, 

IHJ(X) = /7"~'(IC-(X)) where n : = dim(X). 

The formula expresses IHf(X) as the hypercohomology group of 
the following complex of sheaves: 

lCp(X) : = T<p(n)Rin* ' ' ' T<p(2)Ri2*CX-X2 

where Xk is the union of all strata of codimension k or more, 
where Cx_x is the complex consisting of the constant sheaf of 
complex numbers concentrated in degree 0, where ik is the in­
clusion of X - Xk into X - Xk+l, and where x<k is the trun­
cation functor that kills the stalk cohomology in degree above k. 
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The complex IC^A") is, however, well defined only in the derived 
category—the category constructed out of the category of com­
plexes up to homotopy equivalence, by requiring a map of com­
plexes to be an isomorphism (to possess an inverse) if and only if 
it induces an isomorphism on the cohomology sheaves. 

In a seminar during the academic year 1977-1978, Goresky and 
MacPherson worked out the first proof of Deligne's formula, but 
it was complicated, and they decided to streamline it. They made 
steady progress during the next year, 1979-1980: They found sev­
eral axiomatic characterizations of IC^(Z), and used them to 

prove Deligne's formula and the topological invariance of IHf(X) 
(its independence of the stratification and the pl-structure), and to 
reprove the Künneth formula for the middle perversity m. They 
also adapted Grothendieck's sheaf theoretic proof of the Lefschetz 
hyperplane theorem for m . (The year before, while working on 
their new stratified Morse theory, they found they could adapt 
Thorn's argument to give the first proof of the Lefschetz theorem.) 

5. THE KAZHDAN-LUSZTIG CONJECTURE 

In 1978 David Kazhdan and George Lusztig found a new con­
struction of Tony Springer's /-adic representation of the Weyl 
group W of a semisimple algebraic group over a finite field. The 
representation module has two natural bases, and they tried to 
identify the transition matrix. Thus they were led to define, by 
an effective combinatorial procedure, some new polynomials P w 

with integer coefficients indexed by the pairs of elements y, w e 
W, and y < w , for any Coxeter group W. 

The two bases reminded Kazhdan and Lusztig of the two nat­
ural bases of the Grothendieck group of the (Bernstein-Gelfand-
Gelfand) category (?tTiy of certain infinite dimensional represen­
tations of a complex semisimple Lie algebra g : the basis formed 
by the Verma modules Mx and that by the simple modules L . 
Putting aside their work on the Springer representation, they fo­
cused on the transition matrix between the Mk and L , and were 
led to formulate the following conjecture: In the Grothendieck 
group, 

y<w 

or equivalently, 

w<y 
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where, as usual, p is half the sum of the positive roots, and I (w) is 
the length of w, the dimension of the Schubert variety Xw . That 
formulation was taken from one of Lusztig's papers; the original 
conjecture appeared in a joint paper, which was received for pub­
lication on March 11, 1979. 

Kazhdan and Lusztig felt that " P w can be regarded as a mea­
sure for the failure of local Poincaré duality" on the Schubert va­
riety Xw in a neighborhood of a point of the Bruhat cell By. 
At MacPherson's suggestion they wrote to Deligne. Deligne re­
sponded from Paris on April 20, 1979 with a famous seven-page 
letter. In it, he observed that the sheaf-theoretic approach works 
equally well for a projective variety X over the algebraic closure 
of a finite field with q: = pe elements, with the étale topology and 
sheaves of (^-vector spaces, / ^ p. The strata must be smooth 
and equidimensional, but it is unnecessary that the normal struc­
ture of X be locally trivial in any particular sense along each 
stratum; it suffices that the stratification be fine enough so that all 
the sheaves involved are locally constant on each stratum. Deligne 
stated that the Lefschetz fixed-point formula is valid for the Frobe-
nius endomorphism (f> : X —• X, which raises the coordinates of 
a point to the q th power. The fixed-points x of <$>q are simply the 
points x G X with coordinates in F^ , and the formula expresses 
their number (counted with appropriate multiplicities when they 
are singular points) as the alternating sum of the traces of </> on 

the IHl(X)\ here, as is conventional, the perversity is omitted 
when it is the middle perversity. 

Deligne wrote that he could not prove the following form of 
"purity": For every fixed-point x and for every i, the eigenvalues 
of <$>q on the stalk at x of the sheaf H'(IC'(X)) are algebraic 
numbers whose complex conjugates all have absolute value at most 
ql' . However, if purity holds, then so will the following two 
theorems, which Kazhdan and Lusztig had asked about: (1) (Weil-
E. Artin-Riemann hypothesis) The eigenvalues of c/>q on IHl{X) 
are algebraic numbers whose complex conjugates are all of absolute 
value qi/2 ; (2) (hard Lefschetz theorem) If [H] e H2(PN) denotes 
the fundamental class of a hyperplane H in the ambient projective 
space, then for all i, intersecting i times yields an isomorphism, 

(flLH]Y : IHd-\X) ^> IHd+i(X) where d : = dim(Z). 

Kazhdan and Lusztig then proved purity directly in the case of 
the Schubert varieties Xw by exploiting the geometry. In fact, they 
proved the following stronger theorem: The sheaf H2j+lIC'(Xw) 
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is zero; on the stalk at a fixed point, H 7IC'(X) ;c, the eigenvalues 
of (j>q are algebraic numbers whose complex conjugates all have ab­
solute value exactly qJ. On the basis of those theorems, Kazhdan 
and Lusztig proved their main theorem: The coefficients of P 
are positive; in fact, 

£dim(H2;IC (XJy)q
j = PyJq), 

j 

where the subscript y indicates the stalk at the base point of By. 

6. ^-MODULES 

By good fortune, the theory needed to establish the Kazhdan-
Lusztig conjecture was actively being developed in the late 1970s. 
In fact, the theory was needed as much for its spirit as for its 
results. It is a sophisticated modern theory of linear partial differ­
ential equations on a smooth complex algebraic variety X. It is 
often called 2-module theory, because it involves sheaves of mod­
ules Jf over the sheaf of (noncommutative) rings of holomorphic 
linear partial differential operators of finite order, 3 : = 2X . 

A major theme in ^-module theory is the modern Riemann-
Hilbert problem, the definitive generalization of David Hilbert's 
twenty-first problem. Hilbert put the original problem as follows: 
Show that there always exists a linear differential equation ofFuch-
sian class with given singular points and monodromic group. He 
added that it is "an important problem, one which very likely 
Riemann himself may have had in mind." In the fall of 1969, 
Deligne generalized the setting from the complex projective line 
to a smooth complex algebraic variety X of arbitrary complex di­
mension d ; the importance of Deligne's contribution cannot be 
overestimated; it inspired and supported all the subsequent ad­
vances. 

Between 1975 and 1980, the modern Riemann-Hilbert problem 
was gradually formulated and solved analytically, but somewhat 
differently by Masaki Kashiwara and by Zoghman Mebkhout; un­
fortunately, there is some controversy over priority. In the fall of 
1980, Alexandre Beilinson and Joseph Bernstein developed a sim­
pler and purely algebraic treatment, which is more than sufficient 
for the proof of the Kazhdan-Lusztig conjecture. 

The problem is to prove this theorem: The "Riemann-Hilbert 
correspondence" 

is an equivalence of derived categories, which commutes with direct 
image, inverse image, exterior tensor product, and duality. The 
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source of the correspondence is the derived category of complexes 
Jt of ^-modules whose cohomology sheaves %f\^) are regular 
holonomic ^-modules; those complexes generalize the differen­
tial equations of Fuchsian class. The essential image is the con­
structible derived category, the derived category of bounded com­
plexes of sheaves of complex vector spaces with constructible coho-
mology sheaves; those complexes generalize the spaces of solutions 
with given monodromy action. 

The Kazhdan-Lusztig conjecture was proved during the summer 
and fall of 1980 independently and in essentially the same way by 
Beilinson and Bernstein in Moscow and by Jean-Luc Brylinski and 
Kashiwara in Paris. There are two main lemmas, which concern 
the flag manifold X : (1) The functor M *-> 2X % M embeds the 
category (ftTiy in the category of regular holonomic 3Jx-modules. 
(2) If d: = dimc(X), these formulas hold, 

deR(®x®M_pw_p) = Cw[l(w)-d] 

deR(% ® L_pw_p) = IC(X2)[l{w) - d\. 

The conjecture follows directly. Indeed, consider the index, 

Xw(M): = Y,(-l)idimcH
i(deR(&x®M))w. 

i 

If ô is the Kronecker function, the first formula and additivity 
yield 

XjMy) = (-lfw)-\y and M = ^(-l)d-l{y)
Xy(M)My. 

y 

Finally, the second formula of (2) yields the conjecture. 

7. PERVERSE SHEAVES 

In mid-September 1980, Beilinson, Bernstein, and Deligne got 
together. They realized that, on any smooth complex algebraic va­
riety X, there is a natural abelian category inside the nonabelian 
constructible derived category. It is just the essential image, under 
the Riemann-Hilbert correspondence, of the category of regular 
holonomic ^-modules J£, viewed as complexes concentrated in 
degree 0. Can this unexpected abelian subcategory be character­
ized topologically? 

That fall and winter, Deligne in Paris and Beilinson and Bern­
stein in Moscow independently proved what they had conjectured 
together; then they combined their work and published it in a joint 
Astérisque monograph. First of all, they proved this theorem: The 
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essential image of the Riemann-Hilbert correspondence consists of 
the bounded complexes S with constructible cohomology sheaves 
H'(S) satisfying the following two dual conditions: 

(i) H'(S) = 0 for i < 0 and codim(Supp(H'(S))) > i for 
i > 0 , 

(iv) H'(SV) = 0 for i < 0 and codim(Supp(H'(Sv))) > i for 
i>0. 

Conditions (i) and (iv), in fact, define a full abelian subcate­
gory also if X is an algebraic variety in arbitrary characteristic 
p with the étale topology. The conditions can be modified us­
ing an arbitrary perversity so that they still yield a full abelian 
subcategory; the original conditions are recovered with the mid­
dle perversity. Moreover, unlike arbitrary complexes in the de­
rived category, those S that satisfy the modified conditions can 
be patched together from local data like sheaves. Because of all 
those marvelous properties, everyone calls these special complexes 
S (or sometimes, their shifts by d: = dimc(X)) perverse sheaves. 
Of course, they are complexes in a derived category, not sheaves. 
And, they are well behaved, not perverse. Nevertheless, the name 
has stuck. 

Beilinson, Bernstein, and Deligne also proved the following two 
theorems: (1) The abelian category of perverse sheaves is Noethe-
rian and Artinian, every object has finite length. (2) Let V be a 
smooth, irreducible subvariety of codimension c of X, and L a 
locally constant sheaf of vector spaces on V. Then (a) there is a 
unique perverse sheaf S whose restriction to V is L[-c] ; (b) if L 
is the constant sheaf Cv, then S is equal to the shifted intersection 
homology complex IC'(V)[-c], where V is the closure of V \ in 
general, S can be constructed from L by the same process of re­
peated pushforth and truncation-, (c) if L is an irreducible locally 
constant sheaf then S is a simple perverse sheaf Conversely, every 
simple perverse sheaf has this form. 

The perverse sheaf S of (2) is denoted IC(F,L)[ -c ] and 
called the DGM extension, or Deligne-Goresky-MacPherson ex­
tension, of L . It is also called the twisted intersection cohomology 
complex with coefficients in L. Thus, the family of intersection 
cohomology complexes was enlarged through twisting and then be­
came merely the family of simple objects in the remarkable new 
abelian category of perverse sheaves. 

8. PURITY AND DECOMPOSITION 

About July 1980, Gabber settled the matter of "purity" that 
Deligne posed in his letter to Kazhdan and Lusztig. In fact, he 
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proved more: Any DGM extension IC(F,L)[ -c ] is "pure of 
weight - c " in the more sophisticated sense of Deligne's second 
great paper on the Weil conjectures. Thus, in particular, there are 
unexpectedly many pure complexes to which to apply Deligne's 
theory. 

The Weil-E. Artin-Riemann hypothesis and the hard Lefschetz 
theorem are, as already noted, two major corollaries of the purity 
theorem. However, the single most important corollary, is doubt­
less, the following "decomposition theorem": Iff: X -+ Y is a 
proper map of varieties, then Rf^IC\X) is a direct sum of shifts 
of DGM extensions IC'(Vi,'Li)[—ei], where et is not necessarily 
the codimension of V.. These three corollaries hold for varieties 
defined over an algebraically closed field; for the Riemann hypoth­
esis, it must be the algebraic closure of a finite field, but for the 
Lefschetz theorem and the decomposition theorem, it may be ar­
bitrary, even the field of complex numbers C ! 

The decomposition theorem was conjectured in the spring of 
1980 by Sergei Gelfand and MacPherson, then proved that fall 
by Gabber and Deligne and independently by Beilinson and Bern­
stein. Over C, an analytic proof of it and of the hard Lefschetz 
theorem, based on a theory of polarizable Hodge modules analo­
gous to the theory of pure perverse sheaves, was given several years 
later by Morihiko Saito. 

Sergei Gelfand and MacPherson showed that the decomposition 
theorem yields Kazhdan and Lusztig's main theorem, stated at 
the very end of §5 above, which relates their polynomials to the 
intersection homology groups of the Schubert varieties. The proof 
involves a lovely interpretation of the Hecke algebra as an algebra 
of correspondences. Moreover, given the decomposition theorem 
over C, the proof involves no reduction to positive characteristic; 
thus, by using polarizable Hodge modules, the Weil conjectures 
(that is, purity) may be eliminated from the proof of the Kazhdan-
Lusztig conjecture. 

9. THE BOOK UNDER REVIEW 

In the preface, Kirwan sets the tone and agenda: 

These notes are based on a course for graduate stu­
dents entitled 'A beginner's guide to intersection 
homology theory' given in Oxford in 1987. The 
course was intended to be accessible to first year 
graduate students and to mathematicians from dif­
ferent areas of mathematics. The aim was to give 
some idea of the power, usefulness and beauty of 
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intersection homology theory while only assuming 
fairly basic mathematical knowledge. To succeed 
at all in this it was necessary to give at most briefly 
sketched proofs of the important theorems and to 
concentrate on explaining the main ideas and def­
initions. The result is that these notes do not con­
stitute in any sense an introductory textbook on 
intersection homology. Rather they are intended 
to be a piece of propaganda on its behalf. The hope 
is that mathematicians of very varied backgrounds 
with interests in singular spaces should find the 
notes readable and should be stimulated to learn 
in greater depth about intersection homology and 
use it in their work. . . . 

The goal I had in mind was to explain enough 
of the theory of intersection homology to be able 
to give a sketch ... of the proof of the Kazhdan-
Lusztig conjecture .. . 

This goal influenced the structure of the second 
half of the course and thus the lecture notes. The 
first half consists of an elementary introduction to 
intersection homology theory . . . . 

Kirwan, who professes in the preface to be "an enthusiast for 
intersection homology .. . although by no means an expert on the 
subject" does an admirable job in carrying out that agenda, partic­
ularly on the more elementary material. The book is so readable 
that one wishes it would go on longer in the same spirit. 

The discussion of /-adic cohomology is flawed, however. The 
material on pp. 98 and 104 might give a false impression about the 
definition of the group Hl(Y, Q7). It is not simply the cohomol­
ogy group of the constant sheaf on the field Q; of /-adic numbers 
in the étale topology; rather, it is the tensored inverse limit of the 
cohomology groups with torsion coefficients, 

H*(Y9 Q,): = (lim H^Y, Z//Z)) ®Q7. 

The distinction is crucial. Also, the material on pp. 106-107 might 
give the impression that the Frobenius map is an isomorphism of 
varieties, whereas it is only an isomorphism of the étale topologies. 

One unfortunate omission is mention of Zucker's celebrated 
1980 conjecture. 
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In sum, the book may be highly recommended (with the caveat 
above) to beginners who wish a bird's-eye view of this broad and 
beautiful, but sometimes deep and sophisticated theory. 
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Unit groups of classical rings, by Gregory Karpilovsky, Clarendon 
Press, Oxford, 370 pp., $98.00. ISBN 0-19-853557-0 

Call a ring unitary if it has an identity element under multi­
plication. If R is a unitary ring, then there are several groups 
and monoids that are naturally associated with R. Among these 
are the additive group (R, +) of R (that is, the group on the set 
R with operation the operation of addition defined on the ring 
R), the multiplicative monoid (i?, •) of R, and the multiplica­
tive group U(R) of units of R. (A unit of R is an element that 
has a multiplicative inverse in R ; for example 1 and - 1 are the 
units of the ring of integers.) Ring theorists have long been inter­
ested in the interplay and relations that exist between the algebraic 
structures R, (R,+), (R, •) and U(R). Clearly R nominally 
determines the other three structures. What about the converse? 
To what extent do one or more of the structures (R, + ) , {R, •) 
and U(R) determine R ? A different kind of question concerns 
realization: for example, given an abelian group G and a group 
H, can G and H be realized as the additive and unit groups, 
respectively, of a unitary ring R, and if so, how many realizations 
are there, to within isomorphism? To illustrate this last question, 
suppose G = Z , the infinite cyclic group. If G is the additive 
group of a unitary ring R, and if g is a generator for G, then 
the multiplication on R is completely determined by the integer 
k, where g = kg; moreover, k = ±1 since R is unitary. Since 
(-g)2 = (-k)(-g), where —g is also a generator for G, it fol­
lows that iî is isomorphic to the ring of integers, so H must be 
cyclic of order two in order for the pair (G, H) to be realizable. 
In a similar vein, Chapter 6 of the book under review determines 
the unitary rings R for which U{R) is cyclic. Natural variants 
on these themes arise if one restricts to rings or groups that satisfy 
a given condition E. For example, early work by Fuchs, Szele 


