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THE ERROR TERM IN NEVANLINNA THEORY. II 

SERGE LANG 

Nevanlinna theory [Ne] was created to give a quantitative mea­
sure of the value distribution for meromorphic functions, for in­
stance to measure the extent to which they approximate a finite 
number of points. We view a meromorphic function as a holo-
morphic map ƒ : C —• P1 into the projective line. The theory 
has various higher dimensional analogues, of which we shall later 
consider maps ƒ : Cn —• X where X is a projective complex 
manifold of dimension n . 

We first deal with the classical case of Nevanlinna with n = 1. 
Let a G P 1 . By a Weil function associated with a we mean a 
continuous function 

having the property that in some open neighborhood of a there 
exists a continuous function a such that if z is a local coordinate 
at a ,then 

Afl(z) = - l o g | z - a | + a(z). 

The difference between two Weil functions is a continuous (and 
therefore bounded) function on P 1 . A Weil function roughly 
measures the distance from a. As usual, for real x > 0 define 
log+(x) = max(logx, 0). Let z be the standard coordinate on C. 
Nevanlinna takes the functions 

Àa(z) = log+ l / |z - a\ if a ^ oo, 

Xa(z) = log+ |z| if a = oo. 

One defines the corresponding mean proximity function 

One usually writes mf {a, r) instead of mf (Xa, r) since a definite 
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Weil function has been chosen once for all. As a function of r, 
m^(a, r) is defined up to 0(1), independently of the choice of 
Weil function. 

For R > 1 we define the normalized zero counting function by 

Nf(0, R)= J2 (°rd./)log|f I + (ord0/)log*, 
a*Otf{a)=0 

where D(i?) is the disc of radius R, and orda denotes the order 
of the zero of ƒ at a. We define NÂoo, R) = N{/Â0, R) and 
NÂa9 R) = Nra(09 R). Thus NÂO, R) measures the number 
of zeros of ƒ in the disc of radius R, suitably weighted. 

One defines the height function associated to ƒ by 

Tf9a(r) = mf(a9r) + Nf(a,r). 

Using Jensen's formula, it is easy to prove that Tj. a is indepen­
dent of a modulo 0(1) . We write Tf instead of Tf ^ . We 
choose Xa to make Tf a an increasing function of r, and to have 
certain smoothness properties, by letting for instance 

/L(z) = - x l o g U^—! =- for a, z ^ 00. 
2 * ( i + |z|2)(l + |a|2) 

Write f = f{/f0 where fx, f0 are entire without common zero. 
Let 

W(f0,fl) = f0fl-f0f{ 
be the Wronskian. We define the ramification counting function 

Basic conditions. Let a{, . . . , aq be distinct points 

of P 1 . Suppose for simplicity that /(O) ^ O, 00, 
aj for all j , and / ( 0 ) ^ 0 . 

Under the basic conditions, Nevanlinna's classical theorem [Ne] is 
that asymptotically for r —• 00, we have 

(* - 2)7}(r) - 2 iV/^. , r) + ^ , R a m ( r ) = 0(logr + logTf(r)) 

except for r lying in a set of finite Lebesgue measure. Nevanlinna 
also gives explicit constants in the error term on the right. 

Osgood [Os 1, Os 2] noticed a similarity between the 2 occurring 
in Nevanlinna's theorem above on the left-hand side, and the 2 
occurring in Roth's theorem [Ro]. However, Vojta [Vo 1] gave 
a much deeper analysis by pointing out that the whole theory of 
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heights in algebraic number theory and diophantine geometry is 
analogous to Nevanlinna theory. Following this analogy, I looked 
into the error term of Nevanlinna's theorem [La 5], as follows. 

Let a be a real, irrational number. In [La 2] and [La 3] I defined 
a type for a to be a positive increasing function y/ such that 

- log a — -2\ogq <logi//(q) 

for all but a finite number of fractions p/q in lowest form, q > 0. 
The height h(p/q) is defined to be logmax(|p|, \q\). If p/q is 
close to a, then log q has the same order of magnitude as the 
height, so logq is essentially the height in the above inequality. 
A theorem of Khintchine states that almost all numbers have type 
y/ if 

^ 1 

q=\ 
QW(Q) 

< 00. 

A basic question is whether Khintchine's principle applies to alge­
braic numbers, although possibly some additional restrictions on 
the function i// might be needed. Roth's theorem can be formu­
lated as saying that an algebraic number has type < qe for every 
e > 0, and in the sixties I conjectured in line with Khintchine's 
principle that this could be improved to having type < (log#)1+e. 
Cf. [La 1, La 3, 4] especially.1 Thus for instance, we would have 
the improvement of Roth's inequality 

a > 
C(a,g) 

<72(log<?)1+£ 

which could be written 

- log a 21og# < (1 +e)loglog# 

for all but a finite number of fractions p/q . However, except for 
quadratic numbers, which all have bounded type (trivial exercise), 
there is no example of an algebraic number about which one knows 
that it is or is not of type (log#) for some number k > 1. 
It becomes a problem to determine the type for each algebraic 
number and for the classical numbers. For instance, it follows 
from Adams' work [Ad 1], [Ad 2] that e has type 

, N Clogtf 

Unknown to me until much later, similar conjectures were made by Bryuno 
[Br] and Richtmayer, Devaney and Metropolis [RDM], see [L-T 1] and [L-T 2]. 
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with a suitable constant C, which is much better than the "prob­
ability" type, and goes beyond Khintchine's principle: the sum 
52l/qy/(q) is divergent. 

In light of Vojta's analysis, it occurred to me to transpose my 
conjecture about the error term in Roth's theorem to the context 
of Nevanlinna theory. 

It becomes a problem to determine the "type" of the classical 
meromorphic functions, i.e. the best possible error term in the 
inequality which describes the value distribution of the function. 
It is classical, and easy, for example, that ez has bounded type, 
i.e. that the error term in Nevanlinna's theorem is 0(1). But I 
do not even know an example of a function which does not have 
bounded type! There are two problems here: 

• To determine for "almost all" functions (in a suitable sense) 
whether the type follows the pattern of Khintchine's convergence 
principle. 

• To determine the specific type for each concrete classical 
function, using the specific special properties of each such function 

p, e, r , c, J, etc. 
In [La 5] I conjectured a best possible error term, but was not 

able to prove it exactly. For instance, instead of 1 + e I got only 
3/2 + e . Using a method from Ahlfors' paper [Ah], P. M. Wong 
[Wo] obtained the error term with 1 + e. I pointed out to him 
that his method would also prove the desired result with an arbi­
trary type function y/ satisfying only the Khintchine convergence 
principle. Thus the result precisely stated is as follows. 

Let y/ be a positive (weakly) increasing function such that 
f°° 1 

I ^mdu = h^ 
is finite. For any positive increasing function F of class C such 
that r i-+ rF'(r) is positive increasing, and for r, c > 0 we define 
the error function 

S(f, c, y/, r) = logF(r) + log v(F(r)) + log y/(crF(r)y/(F(r))). 

We let rx(F) be the smallest number > 1 such that F(r{) > 1, 
and we let bx{F) be the smallest number > 1 such that 

bxrF\r) >e for r > 1. 

Theorem 1. Under the basic conditions, there are constants b = 
b(f', ax, . . . , a) and Bq (depending on q) such that for all r > 
rx(Tf) outside a set of measure < 2b0(i//) and all b{ > bx(Tf) we 
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have 

(q-2)Tf{r)-Y,Nf{ap r) + Nf^Jr) < \s{BqT
2

r b{, y9 r) + b. 

We can take Bq = \2q2 + #3log4, and b can also be determined 
explicitly. 

The Tf already occurs in Ahlfors, but in a form with unspeci­
fied constants. Since the dominant term in the error term S is 
essentially a log, the error term amounts to \ log TJ = log Tf in 
first order approximation. Wong obtained the correct factor j by 
Ahlfors' method, rather than through the singular volume form 
used previously by other authors. 

I shall now describe the result in the higher, equidimensional 
case, first investigated by Carlson-Griffiths [C-G]. Let 

ƒ : Cn^X 

be a holomorphic map into a compact complex manifold of di­
mension n. We assume that ƒ is nondegenerate, in the sense 
that the derivative of ƒ at some point is nonsingular. Let z = 
(Zj, . . . , zn) be the complex coordinates on Cn , and let ||z|| be 
the euclidean norm. We define the differential forms on C" : 

(o(z) = ddclog\\z\\ and o(z) - dclog||z|| Acon~ . 

Here dc - (d - ~d)/4ni and d is the usual exterior derivative. 
Note that a{z) in dimension n = 1 is dd/dn. 

Let D be a divisor on X, so D is locally a hypersurface. We 
suppose that D is effective, so D can be represented by one holo­
morphic function (p locally, up to an invertible holomorphic func­
tion, and D is defined by (p = 0. By a Weil function associated 
with D we mean a function 

kD : X - support of D —• R 

such that if D is represented by cp on an open set U, there exists 
a continuous function a on U such that 

AD(P) = - log |p(P) | + c*(P) for PeU - D. 

We define the mean proximity function 

JS(r) 

where S(r) is the sphere of radius r in Cn . Thus the mean 
proximity function measures the average approximation of D by 
the values of ƒ on the spheres. In order to get smoothness, one 
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must select smooth Weil functions XD in their class mod 0(1). 
This is done as follows. 

We let LD be a holomorphic line bundle over X having a 
meromorphic section s whose divisor (s) is precisely D. Since 
X is compact, such a section is well defined up to a constant factor. 
We let p be a hermitian metric on LD . Then we select 

kD = -\og\s\p. 

We define the counting function 

JO l J(f*D)DB(r) 

where B(r) is the ball of radius r, and we define the height func­
tion 

Tf,D = mf,D + Nf,D-

Strictly speaking, we should write Tf , to indicate that T de­
pends on the metric p\ but a change of p changes the height 
function only by a bounded function. With these differential geo­
metric definitions, Tf D is an increasing function. In fact, if we 
define the first Chern form outside the support of (s) by the for­
mula 

cl{p) = -ddclog\s\2
p 

then 

J 'H JO l JB(r) 

Let Q be a volume form on X (i.e. a positive (n, n)-form). 
Then 

/*Q = |A|2/z<D, 

where O is the Euclidean volume form on C", h is C°° real 
> 0, and A is a holomorphic function on C" , which defines the 
ramification divisor of ƒ . Let Z denote the ramification divisor. 
We define 

JO l JznD{r) 

We say that a divisor D has simple normal crossings if D = ]£ Z). 
is a formal sum of nonsingular irreducible divisors, and locally at 
each point of X there exist complex coordinates z{, . . . , zn such 
that in a neighborhood of this point, D is defined by 

z{ •.. zk = 0 with k <n. 

When « = 1, then the property of Z> having simple normal cross­
ings is equivalent to the property that D consists of distinct points, 
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taken with multiplicity 1. The maximal value of k which can oc­
cur will be called the complexity of D. 

Finally, in higher dimension n , we suppose that r H-+ F(r) and 
r »-• r n~xF\r) are positive increasing functions of r , and we 
define the error function 

S(F9 c, V, r) = logF(r)+log^(F(r))+log^(cr2 'z"1F(r)^(F(r))). 

We let b{(F) be the smallest number > 1 such that 

bxr
2n~xF\r)>e f o r a l l r > l . 

The definition of r{(F) is the same as for n = 1. Then the 
analogue of Theorem 1 in higher dimension runs as follows. 

Theorem 2. Suppose that ƒ (0) ^ D and 0 ^ Ramy. Let D have 
simple normal crossings, of complexity k. Let K be a canonical 
divisor on X. Let Tf=TfE where E is a hyperplane section in 
some projective imbedding of X. Then 
Tf,K(r) + TftD(r) - NfD{r) + tf/>Ram(r) 

for all r > r{(Tf) outside a set of measure < 2b0(y/)f and some 
constants B = B(D, E) and B' = B'(D, E) which can be given 
explicitly. 

The general shape of the theorem stems from Carlson-Griffiths [C-
G]. I raised the question of a best possible error term in [La 5] 
but I was not able to prove the conjectured result at that time. 
By using Ahlfors' method, Wong [Wo] obtained not only the TJ 
as in Ahlfors, but also the "correct" factor n/2. The final im­
provement with 1 + k/n instead of 2 follows from a technical 
change in Wong's proof at the appropriate moment, and will be 
given in detail in a forthcoming Springer Lecture Note. I also 
improved Wong's formulation by using the arbitrary Khintchine 
type function y/ in the final estimate and by not making any re­
striction on the divisor other than simple normal crossings. Wong, 
following some previous authors, assumes unnecessarily that the 
irreducible components all lie in the same linear system. Other­
wise, the general pattern of the proof is due to Wong. It makes 
use of some ideas of Carlson-Griffiths concerning curvature, but 
somewhat more efficiently, in a way which should have significance 
elsewhere in complex differential geometry. 

I would conjecture that the exponent 1 + k/n is best possible. 
Thus the error term should be determined by local considerations 
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on the divisor, in terms of the complexity of its singularities. The 
conjecture can then be transposed to a strengthening of Schmidt's 
theorem [Sch]. The exponent 1 + k/n also applies when there is 
no divisor D, so k = 0, in which case Tf occurs with exponent 
1 on the right-hand side. Thus the exponent \+kjn interpolates 
very neatly between the two extreme cases D = 0 and D defined 
locally by zx -• zn = 0. 

The same error term can be given in the theorem on the log­
arithmic derivative, originally stated with a weak error term by 
Nevanlinna in dimension 1, and proved using a differential geo­
metric method, [Ne], p. 259. A higher dimensional version was 
formulated and proved by Griffiths [Gr] , p. 70, still with a weak 
error term. The version I now have runs as follows. 

Theorem 3. Let ƒ : Cn —• X be holomorphic nondegenerate. Let 
*¥ be a meromorphic n-form with no zeros on X, and such that 
its polar divisor D has simple normal crossings. Let 

ƒ*¥ = Lf(z) dz{ A • • • A dzn. 

Define 

VAT) = / log+ \Lf\o. 
JS(r) 

Let K be a canonical divisor and assume -K is ample. Then for 
some constants B, B' we have 

vf{r)<^S{BTykl\bx,y,r) + B' 

for all r > rx outside a set of measure < 2b0(y/). 

Note that in dimension 1, taking X = P1 and *F = dz/z, then 
D = (0) + (oo), and Lf is the logarithmic derivative 

Lf = f'/f, 

so Nevanlinna's classical set up is a special case. The proof follows 
the pattern of Nevanlinna-Griffiths, but using the Ahlfors tech­
nique as revived by Wong. 

Finally, the same type of error term can be obtained for holo­
morphic maps 

ƒ : C^X or ƒ : D(R)-> X. 

I shall formulate here one version stemming from Griffiths-King 
[G-K] and Vojta [Vo 1] Theorem 5.7.2. 
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Let Y be a complex manifold, and let ƒ : D(i?) -> Y be a 
nonconstant holomorphic map. If a; is a (1 , l)-form on Y then 
we define the height 

J JQ l J Dit) 
CO. 

D ( 0 ' 

We write as usual 

f*co = 7yO, where O = -z— dz A dz. 

Then 

y / =|A| 2 A 

where /* is C°° . If o> is positive, then h > 0. The function A 
is holomorphic and defines the ramification divisor Ram *, which 
in this case is a discrete set of zeros with multiplicities. We define 
Rie f*co = ddc log h . 

Theorem 4. Let Y be a complex manifold (not necessarily 
compact). Let œ be a positive (1 , l)-form on Y and let ƒ : 
D(i?) —• Y be a holomorphic map. Suppose there is a constant B 
such that 

Bf*œ <Ricf*co. 

Assume 0 £ Raniy. Let bx =bx(Tr œ). Then for r < R we have 

*Tf.Jr) + *ƒ.*»(') * is(*>,„, *,, *, 0 - iiogy/o) 
for r > r{(Tj. w) outside a set of measure < 2b0(i//). 

Note that the theorem is formulated for a noncompact mani­
fold, and that the map ƒ is defined on a disc. Under the hypoth­
esis of the theorem, there is no nonconstant holomorphic map of 
C into Y. The theorem gives an implicit bound for the radius of 
a disc on which a holomorphic map is defined. 
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