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ABSTRACT. We describe here the set [BG, BG] of homotopy 
classes of self-maps of the classifying space BG , for any com­
pact connected simple Lie group G. In particular, we show 
that two maps ƒ , f : BG —• BG are homotopic if and only 
if they are homotopic after restricting to the maximal torus of 
G ; or equivalently if and only if they induce the same homo-
morphism in rational cohomology. In addition, we identify the 
homotopy types, up to profinite completion, of the components 
of the mapping space map(BG, BG). 

The most central concern of homotopy theory is the classifi­
cation, up to homotopy, of maps between topological spaces. It 
has long been suspected that maps between classifying spaces pro­
vide a particularly favorable special case of this problem, in which 
explicit results can be expected. In this paper we announce a com­
plete classification of the self-maps of the classifying space BG, 
when G is any compact connected simple Lie group. 

When G and T are arbitrary compact Lie groups, then 
[BG, BY] will denote the set of unbased homotopy classes of 
maps from BG to BY. It is natural to ask how closely this 
set is related to the set Hom(G, Y) of homomorphisms from 
6 to T. For any inner automorphism a e Inn(T), Ba is ho­
motopic to the identity on BY. It is thus convenient to write 
Rep(G, T) = Hom(G, Y)/ Inn(T) ; and ask when the map 

B: Rev(G,Y)-+[BG,BY]. B(p) = Bp 

is a bijection. 
When G and Y are both finite (or even discrete), then B is 

easily seen to be bijective. A much deeper result, due to Dwyer and 
Zabrodsky [2], says that B is bijective whenever G is a p-group, 
(and T is compact Lie). This was extended by Notbohm [8] to the 
case where G is a p-toral group: i.e., where G has toral identity 
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component and n0(G) is a /7-group. These theorems depend on 
the generalized Sullivan conjecture, proven by Miller, Carlsson, 
and Lannes using different approaches [16, 17, 18]. 

Our goal here is to apply the theorems of Dwyer-Zabrodsky and 
Notbohm to study the sets [BG, BG] when G is a connected, 
compact, simple Lie group. The first important contribution to 
this was given by Sullivan [11]. For G = SU(n) and k prime 
to n\, he showed that the A:th power map on BT (T ÇG the 
maximal torus) can be extended to an "unstable Adams operation" 
i//k : BSU(n) —• BSU(n). Since the kth power map cannot be 
extended to a homomorphism, B : Rep(G!, G) -> [BG, BG] is 
far from surjective in these cases—but the sets [BG, BG] still 
have very simple descriptions. 

Theorem 1. Let G be a compact connected simple Lie group with 
maximal torus T and Weyl group W. Then, for any pair of maps 
ƒ , ƒ' : BG —• BG, the following are equivalent: 

(1) ƒ and f' are homotopic; 
(2) foBi~f°Bi\BT-+BG{i:T^G)\ 
(3) / /*(ƒ; Q) = # * ( ƒ ' ; Q ) . 

Furthermore, the image of the injective restriction map 

[BG,BG]^[BT,BG] 

consists of all maps Bp for p a composite 

T J^UG^G, 

where {k, \W\) = 1 and a e End(G). 

What is new in this theorem is the equivalence of points (1) and 
(2): note the analogy with the situation for group representations. 
The equivalence of (2) and (3) follows easily from [8]. 

The image in [BT, BG] ^ Rep(7\ G) of the restriction map 
was already known. As mentioned earlier, the existence of maps 
i//k : BG -+ BG (for k prime to \W\) which extend the fcth 
power map on BT was shown by Sullivan when G = SU(n)—and 
his result was extended to arbitrary simple G by Wilkerson [12]. 
Conversely, Hubbuck [3, 4] showed that for every ƒ : BG -> BG, 
H*(f, Q) = H*(Baoi//k ; Q) for some a and k ; and Ishiguro [5] 
showed (using [2]) that either k = 0 or (k, \W\) = 1. Hubbuck's 
result also follows as a consequence of Notbohm's theorem. 

Various examples constructed by the authors show that Theo­
rem 1 does not generalize to the case of [BG, BF] for arbitrary 
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(or even connected) G and T. For example, there are homomor-
phisms p, p' : 517(3) -> 50(8) such that Bp and Bp induce 
the same homomorphism in rational cohomology, but are not ho-
motopic. Also, the Borel construction can be applied to the tangent 
bundle of any G-action on a contractible oriented «-manifold to 
give a vector bundle over B G—and hence a map from BG to 
BSO(n). Thus, the many examples of exotic G-actions on R" 
can be used to construct exotic elements in [BG, BSO(n)]. 

Now let G 2 T be as in Theorem 1. A map ƒ : BG —• BG 
will be said to have "type k " if the following diagram commutes 
in rational cohomology (or equivalently [8] up to homotopy): 

BT - ^ BT 
(i:T^G) 

iBl iBl (yk(t) = tk) 

BG —£—+ BG 
More generally, for any outer automorphism a e Out (G?), ƒ will 
be said to have type (a, k) if Ba~~l o ƒ has type k . 

Note that for simple G, End(G)/Inn(G) = {0}UOut(G)— 
since any endomorphism of G is either trivial or an automor­
phism. Theorem 1 can now be reformulated as follows: 

Theorem l ' . For any compact connected simple Lie group G with 
Weyl group W, the correspondence ƒ <-+ type( ƒ) defines a bijection 

[BG, BG] +^-+ {0}]J[Out(G) x {k > 0 : (fc, \W\) = 1}]. 

Consider the important special case G = SU(n). Note that 
Out(5C/(2)) = 1, and that Out(SU(n)) = {1, K} for n > 3 
(where K denotes complex conjugation). Since BK is an unsta­
ble Adams operation of type - 1 , Theorem l' implies that every 
self-map of BSU(n) is of type k for some k—and that any two 
maps of type k are homotopic. 

The first case of Theorem l'—when G = SU(2)—was proven 
by Mislin [7]. Later, Dwyer and Mislin [1] gave a complete de­
scription of the homotopy type of the space of pointed self-maps 
of BSU{2) (see also Theorem 2 below). 

In the proof of Theorem 1 outlined below, we use not only 
the theorems of Dwyer, Zabrodsky, and Notbohm about the sets 
[BP, BT] for p-toral P, but also their computation of the p-
adic homotopy type of the individual connected components of 
map(5P, BT). In order to do this, Dwyer and Zabrodsky in­
troduced the following construction. For any G and T, and any 
p : G —• T, let Cr(p) denote the centralizer of Im(/>) in T. Then 
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multiplication in F defines a homomorphism (incl, p) : Cr(p) x 
G —• T, which induces a map 

ep: BCr(p)-+msv(BG,Br)Bp. 

Here, map(BG, BT)B denotes the component containing Bp. 
As usual, the case where G and T are both finite is easy: e is 

then a weak homotopy equivalence for each p. What is relevant 
for our results is that when G is /?-toral, then e induces an 
isomorphism of mod p cohomology for each p (see [2 and 8]). 

Now assume again that G is connected and simple. When p 
is the trivial or identity endomorphism of G, then e takes the 
form 

e0: BG^ map(5G, BG)0 and ex : BZ(G) -+ map(5G, BG){, 

where Z((7) is the center of G. For every k, a , map(5G, 5G) a ^ 
will denote the space of maps of type (a, k). For arbitrary a E 
Out(G) and (k, | W|) = 1, we let ea k denote the following com­
posite: 

BZ(G) —^-> map(5G,5G)! 

Baoi// o— 

map(5C?,5G)a fc 

for some map y/ of type k . Our description of the profinite 
homotopy type of map(J?(7, BG) is completed by the following 
theorem. 

Theorem 2. For any connected simple G, the maps e0, and ea k 

for each a and k, induce isomorphisms of homology with any 
finite coefficients. 

We now outline the proof of Theorems 1 and 2. With the 
help of Sullivan's arithmetic square [11] for BG, the study of 
map(5G, BG) can be reduced to that of the mapping spaces 
map(BG, BGp) for all primes p: where (-)p denotes the /7-adic 
completion. 

The key step is to approximate BG at each prime p, as a 
homotopy colimit of BP's for certain p-toral subgroups P ç G. 
This can in fact be done for any compact Lie group G, extending 
results in [6]. The indexing category for these limits is the full 
subcategory 31 [G) of the category of G-spaces, whose objects 
are the orbits G/P for which 

(i) P ç G is p-toral and 

Kn,k 
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(ii) N(P)/P is finite and contains no nontrivial normal 
/7-subgroups. 

This is a category with finitely many isomorphism classes of ob­
jects and finite morphism sets. Let J? : 3?p{G) —• G-spaces be 
the inclusion functor, and let EG xG S be its composite with the 
Borel construction. Note that (EG xGJr)(G/H) = EG xG G/H 
is homotopy equivalent to BH. 

Theorem 3. For any compact Lie group G and any prime p, 
hocolim^ tG\{?f) is Z/p-acyclicf and hence 

hocolim^G xGJr) ~p EGxG*~BG. 

The main step when proving Theorem 3 is to construct a fi­
nite dimensional Z/p-acyclic G-complex X, all of whose orbit 
types are in & (G). This is done using the approach in [9] and 

[10]. Since the fixed point set (hocolim^ (G)(Jr)) /> is contractible 
for any G/P in 31 {G), there is a G-equivariant Z/p-homology 
equivalence X —• hocolim^, tG\(*y). Thus, hocolim^, tG\(^) is 

Z/p-acyclic since X is. 
Recall that the main problem is to show that (2) implies (1) 

in Theorem 1; i.e., that any two maps ƒ', f : BG —• BG which 
are homotopic on BT are homotopic on BG. For that, it suf­
fices to show that they are homotopic inside BGp for each prime 
p. Using the theorems of Hubbuck [3, 4] and Notbohm [7], we 
first show that if ƒ and f are homotopic on BT, then they are 
homotopic on BP for each prime p and each /7-toral subgroup 
P Ç G . 

At this point, higher derived functors of inverse limits over 
3i {G) begin to play a role. By a result of Wojtkowiak [14], if 

lim ' (7T.(map(£G xQ <J, BGp)f ) = 0 

for all i, j > 0, then the inverse limit 

lim (map(£G xG <J, BGp)f) 

is also connected, and hence f is homotopic to ƒ . Also, in this 
case, 

7r^(map(5G, BGp)f) ^ lim (n+(mzp(EG xGJr,BGp)f)). 
G/peaAG) 
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Note that 

Um/(7rJ(map(£G xGJr
 9BGp)f)) 

{ n ( 
n^(map(BP,BGp)f]BP)^^^ 

= W (7tj(m2ip(BP,BGp)flBp)) 
G/Pe^p(G) 

and similarly for the other limits. 
The remaining step is now to show that these higher limits all 

vanish. The inverse systems are made explicit by the isomorphism 

7rJmap(5P, BGp)f) = n^{BCG{p)p) 

of [2J and [8]: for p : P -» G such that Bp ~ ƒ | BP. In 
particular, if (a, k) is the type of ƒ (and f ), we get that 

nm(BCG(P))p i f f c>0 , 
XBG)p iffc = 0. 

For components of type (a, k) with k ^ 0, Theorem 1 and 2 
now follow from the following lemma: 

Lemma A. If G is simple and p is any prime, then 
i (ni{BZ(G))p ifi = 0, 

Urn' (nj{BCG(P))P)*{ / ))P J ' 

The proof of Lemma 4 uses a reinterpretation of derived func­
tors over 31 (G). For any (contravariant) functor F : 31 {G) —• 
Groups, l im^ (F) = //P*(hocrtim^ (C)(^ r); F ) . Here, 

HG{-\ F) denotes equivanantcellularcohomology (see [13]). This 
last group is closely related to HG(X; F), where X is the finite 
dimensional acyclic G complex described after Theorem 3. The 
lemma is then proven by computing these cohomology groups for 
the given functors on 31 (G), using among other things the proof 
of the Conner conjecture in [10]. 

For ƒ of type 0, Theorems 1 and 2 are special cases of the 
following theorem. 

Theorem 5. Let G and T be any two compact Lie groups, and let 
T be a maximal torus in G. 

(i) A map f : BG —• BT is null homotopic if and only if 
ƒ | BN(T) is null homotopic. 

(ii) If G is connected, then ƒ is null homotopic if and only if 
ƒ | BT ~ * ; or equivalently if and only if / /*(ƒ; Q) = 0. 

(iii) e0 : BT -+ map(5G, BT)0 induces an isomorphism of co­
homology with arbitrary finite coefficients. 
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Theorem 5 follows from the vanishing—for any G and p—of 
higher limits of constant p-local functors over âS {G). It is closely 
related to a theorem of Zabrodsky [15]. 
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