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Traditionally ergodic theory has been the qualitative study of iterates of 
an individual transformation, of a one-parameter flow of transformations 
(such as that obtained from the solutions of an autonomous ordinary dif­
ferential equation), and more generally of a group of transformations of 
some state space. Usually ergodic theory denotes that part of the theory 
obtained by considering a measure on the state space which is invariant 
or quasi-invariant under the group of transformations. However in 1945 
Ulam and von Neumann pointed out the need to consider a more gen­
eral situation when one applies in turn different transformations chosen at 
random from some space of transformations. Considerations along these 
lines have applications in the theory of products of random matrices [2, 
3], random Schrödinger operators [2], stochastic flows on manifolds [6], 
and differentiable dynamical systems. 

Mathematically the set up is as follows. Let M be a space, £% a a -algebra 
of subsets of M and let ST be a collection of measurable transformations 
of M into M. For example, if M is a topological space we could choose y 
to be the space, C(M, M), of all continuous transformations of M into M, 
and if M is a smooth manifold we could take ST to the space, D(M, M) 
of all smooth transformations of M into M. Suppose &~ is equipped with 
a (T-algebra so that the map (f9x) —• f(x) of J^ x M —> M is measurable. 
Let m be a probability measure on ET. We want to study the action on M 
of compositions of elements of £7~ chosen independently with distribution 
m. So consider the direct product space Q = ^N equipped with the 
direct product measure p = mN, where N denotes the natural members. 
The elements of Q are sequences w = (w\, w2, w^,...) of members of ST. 
There is a natural transformation, S: Q, —• £2, of Q called the shift map 
and defined by S((w\9 w2, w^,... )) = (w2, w^,... ). The shift preserves the 
probability p (i.e. p(S~lA) = p(A) for every measurable subset A of Q) and 
p is ergodic for S (i.e. if A is a measurable subset of Q and S~lA = A then 
p(A) = 0 or 1). Consider the skew-product transformation T:Q x M ^ 
flxM defined by T(w,x) = (Sw,w\(x)) where w = (w\,w2,...) E Q, 
and x G M. Iterating gives Tn(w,x) = (Snw,wn o wn-\ o • • • o W\(x)) for 
n > 1, and the second coordinate gives the action of the randomly chosen 
maps on M. 

This induces on M a discrete-time Markov Process with the probability, 
P(x, B), of moving from the point i G M t o a point of the measurable sub­
set B c M in one unit of time given by P(x9 B) - m({f e ^\f(x) e B}). 
For some applications, such as stochastic stability of diffeomorphisms [5], 
it seems more natural to consider certain Markov processes on M rather 
than actions by random maps, so one should consider which Markov 
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processes can arise from random maps as above. If M is a Borel subset of 
a complete separable metric space then every Markov process is induced as 
above from a probability measure m on the family of all measurable maps 
of M into M. However if M is a topological space one has to put restric­
tions on M and the transition probabilities P(x, •) if one wants the Markov 
process to be induced, as above, from a probability on C(M,M). When 
M is a smooth manifold there seem to be no results giving conditions on 
P(x,B) that ensure it is induced from a probability on D(M,M). How­
ever many different probabilities m on !T can induce the same Markov 
process on M and these different probabilities give rise to random actions 
on M with vastly differing dynamical behaviour. By focussing attention 
on random actions one can define concepts such as entropy and Lyapunov 
exponents and so generalise the theory known for iterates of a single trans­
formation. One can get much more detailed dynamical information from a 
random action on M than from a Markov process on M. This is because 
one can compare the orbits on M of different points under the random 
action. The random action on M, determined by m, can be viewed as 
follows. Starting from x e M one chooses w\ e ^ at random and moves 
from x to W\(x), then one chooses u>2 € ff at random and moves to 
W2 0W\(x), etc. If a certain system were modelled by a single transforma­
tion f:M —> M one could obtain a more realistic model by considering 
the random action on M determined by a probability on ST concentrated 
on maps which are perturbations of ƒ. This is because conditions of a 
repeated process differ slightly at each stage, and also because one may not 
know exactly the rules of the evolution of the process. Random actions are 
also models of numerical simulations of real systems because of round off 
approximations. They also arise when diffusion processes are considered 
as solutions of stochastic differential equations. 

Let us return now to the study of T: Q x M —• Q x M, bearing in mind 
that we have fixed a probability measure p = mN on Q. It is natural to 
consider T-invariant probabilities ju on Q. x M (i.e. /Lt(T~lC) = ju(C) for 
every measurable subset C of fix M) which project top (i.e. if %\\ QxM —• 
Q, is the projection onto the first factor then ju o n^x = p) and apply the 
known ergodic theory of measure-preserving transformations to T and 
read off what this means for the action on M. Because we wish to consider 
the behaviour on M of the random action it is best to consider only those 
measures ju on Q x M of the form p x rj where rj is a probability on 
M. Ohno has shown that p x rj is T-invariant iff P*rj = rj where P* 
acts on probabilities on M by (P*v)(B) = ^v(f~xB)dm(f). Therefore 
P*rj = rj means rj(B) = / ^ rj(f~lB)dm(f) VJ9 e 3S, so this does not 
require m-almost all ƒ to preserve r\ but rather that the m-average of 
/ ' s preserves r\. Also p x rj is ergodic for T iff rj is jP*-ergodic in the 
sense that if B € 33 has the property that rj(BAf~lB) = 0 for m-almost 
ƒ € &~ then rj(B) = 0 for 1. When applying theorems of ergodic theory 
to T one can sometimes strengthen the conclusion to obtain a nonrandom 
result by applying the following simple proposition. Let P*rj = r\ and let 
hoT = h (p x //)-a.e. where h: Q, x M —• R is bounded and measurable. 
If rj has a barycentric decomposition as an integral over the P* -invariant 
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and ergodic probabilities (which it always will if M is a Borel subset of a 
complete separable metric space) then h(w,x) depends only on x (p x rj)-
a.e. (i.e. h(w,x) = ƒ h(w,x)dm(w) (p x rç)-a.e.). 

The random version of Kingman's subadditive ergodic theorem is the 
following. Let rj be a probability on M with P*rj = rj and let hn: Q x M —• 
7?, « > 1, be a sequence of measurable functions with max(0, /^) = hf e 
Lx(p x rç) and /ifc+w < hk + hn o Tk (p x rç)-a.e. V>z,fc > 1. If /; can 
be written as a barycentric integral of ergodic P* -invariant probabilities 
then limw_>oo h„/n = h (p x rç)-a.e. where A: M —• R is a function on M 
with /z+ G L 1^) and h(fx) = h(x) for (m x j/)-almost all (/,x). If rj is 
ergodic then h is constant rç a.e. The fact that h is independent of points 
of Q comes from the proposition mentioned above. A random version 
of Birkhoif s ergodic theorem can easily be deduced by taking hn to be 

The measure-theoretic entropy of the random action can be viewed as a 
special case of the relative entropy of skew-product transformations, due 
to Abramov and Rohlin, by considering the shift S: Q —• Q, as a factor 
measure-preserving transformation of T: Q. x M -* Q, x M [1]. Therefore 
if rj is a probability measure on M with P*rj = rj (so that p x rj is T-
invariant) and if Ç is a finite partition of M we can put 

h(m,ri,Z) = lim - ƒ Hn I \l w~l o- . -o iyr^ I dp(w), 

where Hn(£) denotes the usual entropy of the finite partition £ using the 
probability rj and the sumbol V denotes the join of partitions. Then the 
entropy h(m, rj) of the random action, determined by m, on M equipped 
with the probability rj is defined as the supremum of h(m,rj9Ç) over the 
space of all finite partitions of M. Versions of the Kolmogorov-Sinai theo­
rem, of the formula for entropy of powers, and of the Shannon-McMillan-
Brieman theorem can be proved, the latter result requiring the stronger 
hypothesis that m-almost all ƒ preserve r\. 

Consider now the topological version of the situation. Let M be a com­
pact metric space and let m be a probability on the space C(M9M) of all 
continuous transformations of M into M. As before let Q = C(M,M)N, 
p = mN, let S: Q, -• ft be the shift map, and let T: Q. x M -> Q x M be 
defined by T(w,x) = (S(w),W\(x)) where w = (w\9W2,...) G Q. The 
notions of topological entropy and topological pressure can be defined for 
the random action determined by m, and they are special cases of relative 
topological entropy and pressure obtained from viewing S: Q —> Q as a 
factor of T [7, 8]. They can be defined using open covers or separated sets 
or spanning sets. If a is an open cover of M then 

1 (n~l _ A 
h(m,a) = lim —H j \J wx

 1 o • •• owt
 xa\ 

exists for ^-almost all w and is constant /?-a.e. Here the symbol V denotes 
the join of open covers and if fi is an open cover then H(fi) is the natural 
logarithm of the minimal number of members of P needed to cover M. 



116 BOOK REVIEWS 

Then the topological entropy, h(m), of the random action determined by 
m is the supremum of h(m, a) over all open covers of M. One has h(m) > 
sup{h(m, rj)\P*rj = rj} and this may be a strict inequality; of course h(m) 
is the supremum of the relative measure-theoretic entropies over all T-
invariant measures ju on Q x M that project to p on Q (not just ones of 
the form p x rj) [7]. 

Now consider Oseledec's theorem, which has motivated the exciting ad­
vances in smooth ergodic theory in recent years and has led to a deeper 
understanding of the long-term behaviour of the iterates of a single dif-
feomorphism arousing hope that these ideas may explain complicated be­
haviour in real systems (such as turbulence) [4]. Oseledec's theorem can be 
studied in a purely measure-theoretic context but let us consider it only for 
the situation of diffeomorphisms. So now M is a compact manifold and 
m is a probability on the Borel subsets of the space D(M,M) of C1 dif­
feomorphisms of M equipped with the C1-topology. As before Q = MN, 
p = mN,S: Q, -+ Q. denotes the shift and T: Q, x M -+ Q, x M is defined by 
T(w,x) = (Sw,W\(x)), where w = (w\,W2,...) G Q. Each ƒ € D(M,M) 
has a tangent map Tƒ defined on the tangent bundle TM of M and we 
denote by Tx ƒ the restriction of Tf to the tangent space, TXM, to M at 
x e M. Hence Tx ƒ: TXM —• Tf^M is a linear map for each x e M. 

Applying Oseledec's theorem to the measure-preserving transformation 
T:Qx M -^ Qx M gives the following, where the norm sign 11 • 11 comes 
from any Riemannian metric chosen on M. Let rj be a probability on M 
with P*t] = rj and assume Y\ is P*-ergodic. Let ƒƒ \og+ (\\TXf \\)dm(f)drj(x) 
< oo. There is a Borel set Yn c QxM with (pxrj)(Ytj) = 1, an integers > 0 
and constants -oo < a^ < • < a(0) < oo with the following properties. 
For every (w,x) G Yn there are subspaces of TXM, 0 c vffx^ c ••• c 

<!*> = T^> such that v^ « fficA^ÏÏ we have 

lim - log \\(Tw„) o {Twn-X)o ... o (rw,)(t;)|| = a<'>, 

where we define V^\x) to be {0} if i > s + 1. One has TxV^]x) c F ^ x). 
The numbers a(/) are called the Lyapunov characteristic exponents with 
respect to m and rj and m^ = dim K ^ - dim V^x

x) is constant (p x rj)-

a.e. and is called the multiplicity of a^\ The subspaces V^x) depend only 
measurably on (w,x), and they are the only objects, in the conclusion of 
the theorem, that depend on w. Can one obtain a filtration of /̂-almost 
every TXM that is independent of w and retains most of the properties of 
the filtration {V^jX)}1 Kifer has proved that one can. Suppose that we have 
the stronger assumption J/(log+ | | r x / | | + log+ \\Txf~

l \\)dm(f)drj(x) < oo. 
Then there is a Borel subset Mn of M with rj(Mrj) = 1, an integer r > 0, 
constants -oo < /?(r) < /?(r-1) < < /?(0) < oo, and for each x e Mn a 
filtration of TXM by subspaces 0 c W^ c W^r~l) c • • • c wP = TXM 
such that 

VveWJ?\wJiM) lim - log | | ( r ^ ) o . . . o {Tw{){y)\\ = pW 
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for p-almost all w e £2. Here we take W^ = {0} if / > r + 1, and the 
set of w where this convergence holds can depend on x and v. For each 
i the dimension of W^ does not depend o n x e Mn and W^ depends 
measurably on x e Mn. We have Txf{W^) = W^for ( m x //)-almost all 
(f,x). What is the relationship between these two versions of Oseledec's 
theorem? It is clear that r < s and for each j there is an ij with p^> = a^\ 
We have i\ < ii < • • • < ir. Also W^ c V^\) (P x Vi) a-e-> a nd f° r '/-almost 
all x e l , 

{v e TxM\p({w\v e V^-X)\W^}) > 0} = 0. 

Versions of Ruelle's inequality (entropy is bounded above by the sum 
of the positive exponents) and the stable manifold theorem are given in 
Kifer's book. Also these results can be given in the context of stochastic 
flows and this is very important in the study of stochastic differential equa­
tions. Kifer also presents further results about the bundles {W^l)} and the 
largest exponent. 

All the results described above are presented in a very readable form in 
Kifer's book. The style and pace of the book makes the reading enjoyable 
and rewarding. There are the inevitable small slips of notation and wrong 
references to the bibliography, but my only quibble is that there is no index. 
Kifer has managed to overcome the problem of overbearing notation, and 
anyone with a basic knowledge of ergodic theory is equipped to read the 
book. This theory is still in its infancy and one can look forward to more 
exciting developments and applications. 
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