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In the past few decades we have seen an upsurge of articles and mono­
graphs dealing with the applications of probabilistic methods in various fields 
of mathematics. The best known of these fields are number theory, graph 
theory, and combinatorics. Probabilistic methods in combinatorics are the 
subjects of several books, such as P. Erdös and J. Spencer [2], V. F. Kolchin, 
B. A. Sevastyanov, and V. P. Chistyakov [11], and V. N. Sachkov [18]. V. F. 
Kolchin's new book is a welcome addition to this list. 

The main topics covered in Kolchin's book are allocation (occupancy) prob­
lems, random permutations, random mappings, branching processes, random 
trees, and random forests. Allocation problems have already been discussed 
in great detail in the book by V. F. Kolchin, B. A. Sevastyanov, and V. P. 
Chistyakov [19], but most of the other topics are published here for the first 
time in monograph form. 

Understanding the book requires only a basic knowledge of the elements 
of combinatorics and probability theory. The main analytic tool used in the 
book is the local limit theorem of B. V. Gnedenko [4], and some of its exten­
sions. According to Gnedenko's theorem if £i, &> • • • > £n> • • • is a sequence of 
independent and identically distributed discrete random variables taking on 
integers only and if E{£n} = « (|o| < oo), Var{£n} = a1 (0 < a < oo), and 
the greatest common divisor of the possible values of £n is 1, then 

(1) lim 
n-+oo 

uniformly in j for \j — na\ < Kyfri, 0 < K < oo. Here <j>{x) is the normal 
density function, i.e., 

(2) 4>{x) = 4=e-* 2 /2 . 
V27T 

In what follows we shall give a brief description of each topic covered in the 
book, mention some highlights of the results obtained, and add some historical 
remarks. 

ALLOCATION (OCCUPANCY) PROBLEMS. Allocation problems have their 
origin in statistical physics (Maxwell-Boltzmann statistics) and date back to 
the nineteenth century. In the 1930s nonparametric statistical tests led to an 
interest in allocation problems. 

The following model is investigated in the book: n balls are distributed in 
m boxes in such a way that all the mn arrangements are equally probable. 
Denote by /ir(ra, n) (r = 0 , 1 , . . . , n) the number of boxes containing exactly 
r balls. 

o^p{^ + ••• + in = j) - <f>r-^y\=Q 
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One of the main results is the following: If n = [ma] where 0 < a < oo, 
then for any r = 0 , 1 , . . . we have 

(3) lim 
+oo 

E— I 1 ~~ 7YIT) \ I 

ary/mP{lir(m,n) =j}-<j)[ jj- = I 

uniformly in j for \j — mpr\ < Ky/m, 0 < K < oo, where (j){x) is the normal 
density function, pr = e~aar/r\ and 

(4) a2
r=pr[l-pr-^(r-a)2]. 

In 1964 B. A. Sevastyanov and V. P. Chistyakov [19] proved that if n = 
[ma], 0 < a < oo, and m —• oo, then for every s = 0 , 1 , . . . the random 
variables //r(ra,n) (0 < r < s) have an asymptotic (s +1)-dimensional normal 
distribution. The above result (3) was found by V. F. Kolchin [8] in 1968 and 
he gave an elegant proof based on the local limit theorem of Gnedenko. 

RANDOM PERMUTATIONS. Among the n! permutations of (1,2, . . . , n ) a 
permutation is chosen at random in such a way that all the n! permutations are 
equally probable. Denote by a(n) the number of cycles in this permutation. 
Then we have 

(5) P{a(n)=j} = S(n,j)/n\ (j = 1,2,... ,n), 

where S(n,j) (1 < j < n) is a Stirling number of the first kind. In 1942 
V. Goncharov [6] proved that 

(6) lim P {a^-±Sn | = = 1 r e _ „ , / a du 

n-oo I Vlogn J V/2W-00 

In 1971 V. F. Kolchin [9] succeeded in proving the corresponding local limit 
theorem, that is, he proved that 

(7) lim 
+ 00 

>/5^p{«(„) = ; ) - * ( L ^ ) ] = o 

uniformly with respect to .ƒ in the interval \j — \ogn\ < if (logn)7//12. This 
result provides an asymptotic formula for S(n,ji'), namely, 

as n —• 00 if \j — logn| < K(\ogn)7/12. 
In 1964 S. W. Golomb [5] observed that if Ln is the expected length of 

the longest cycle in a random permutation of (1,2, . . . , n ) , then the limit 
limn_,oc(Ln/n) = A exists and his computation showed that À = 0.62432965 
In 1966 L. A. Shepp and S. P. Lloyd [20] proved that 

(9) 
/•OO f ÇOO e - y \ 

A = / exp < —x — ƒ dy > dx. 
Jo { Jx V ) 

If we consider a permutation of (1 ,2 , . . . , n) as an element of the symmetry 
group Sn, then we can define the order of a permutation g G Sn as the smallest 
positive integer m for which gm = e, the identity permutation. Let us choose 
a permutation at random among the n! permutations of Sn so that all the 
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n\ permutations are equally probable. If vn denotes the order of the random 
permutation, then 

(10) lim P [ l 0 g I /"- ( ' 0 g 2 n ) / 2 < 4 = •(*)• 
™ I ^(log^/S J 

This result was obtained by P. Erdös and P. Turân [3] in 1967. 
BRANCHING PROCESSES. Let us suppose that in a population initially we 

have i individuals and in each generation each individual reproduces, inde­
pendently of the others, and has probability pj (j = 0 , 1 , . . . ) of giving rise to 
j descendants in the following generation. Denote by rjn the number of indi­
viduals in the nth generation. The sequence {r}n;n > 0} describes a so-called 
branching process. Define r = inf{n: rjn = 0, n > 0}, i.e., r is the time of 
extinction (r = oo if rjn > 0 for all n > 0), and 

(11) P = Vo + m + • • • + r\n + • • • , 

i.e., p is the total number of individuals (total progeny) in the process (possibly 
p = oo). 

Several proofs in the book are based on the following basic theorem: If 
vi 5 ^2 > • • • » vn are independent random variables each having the same distri­
bution P{y\ = j} = pj (j = 0 , 1 , . . . ), then 

(12) P{p = n\rio = i] = (*7n)P{i/i + • • • + vn = n - i} 

for 1 < i < n. In the book this theorem is proved in the context of branching 
processes (p. 104); however, it should be noted that (12) was proved originally 
in the context of queuing theory. (Cf. L. Takâcs [22 and 23 p. 102].) The 
two versions are equivalent because, as D. G. Kendall [7] noted in 1951, the 
number of customers served in a busy period in a single server queue can also 
be interpreted as the total number of individuals in a branching process. 

In making use of (12) V. F. Kolchin [10] proved that if {rjn;n > 0} is 
a branching process for which P{r)o = 1} = 1, g.c.d. {j: pj > 0} = 1, 

E£o W = *> and °2 = E^oO' ~ X)2W < °°> t hen 

oo 

(13) lim P{OT < x^\p = n}= Y (1- k2x2)e~k2x2/2 

n—KX) t-—* 
k——oo 

for x > 0. The same limit distribution appears also in connection with random 
walks and order statistics. (Cf. L. Takâcs [21].) 

RANDOM TREES AND FORESTS. A simple graph is called a forest if it has 
no cycles. A simple connected graph is called a tree if it has no cycles. Thus 
the components of a forest are trees. A rooted tree has one vertex, its root, 
distinguished from the other vertices. The height of a rooted tree is defined 
as the length of the longest path joining the root and another vertex. (The 
length of a path is the number of edges it contains.) 

The number of distinct (labeled) trees with n vertices is nn~2 . This formula 
was found in 1899 by A. Cayley [1]. In 1918 H. Prüfer [16] gave a simple proof 
for Cayley's formula by observing that there is a one-to-one correspondence 
between the set of labeled trees having n vertices and the set of arrangements 
of n —2 balls in n boxes. This observation makes it possible to consider several 
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problems for random trees as problems for random allocation. In addition, 
several problems concerning random trees can also be considered as problems 
in branching processes. (See R. Otter [9].) 

There are n n _ 1 rooted trees with n labeled vertices. Let us choose a tree 
at random assuming that all the n n _ 1 trees are equally probable. Denote by 
rn the height of a random tree. In 1967 A. Rényi and G. Szekeres [17] proved 
that 

oo 

(14) lim P{rn < x^i} = Y (1 - fcVK*2*2/2 

fc=—oo 

for x > 0. The result (13) is an extension of (14). 
The author considers also forests having n vertices and consisting of k trees 

(1 < k < n). There are knn~k~1 such forests. Let us suppose that we choose 
a forest at random and all the possible knn~k~1 forests are equally probable. 
In the book there are several theorems for the asymptotic distributions of the 
maximal tree size and the maximal tree height if n —• oo and k —> oo. Most 
of these results were obtained by Yu. L. Pavlov [13 and 14]. 

RANDOM MAPPINGS. Let us suppose that n balls, numbered 1,2,... ,n, 
are distributed in n boxes, labeled 1,2,..., n, and all the possible nn arrange­
ments are equally probable. We associate a random directed graph with the 
allocation process. Let (1 ,2 , . . . , n) be the vertex set of the graph. Two ver­
tices i and j are joined by a directed edge (i,j) if ball numbered i is in box 
labeled j . If j = i, then there is a loop at vertex i. Each component of the 
graph contains either exactly one cycle or a loop. If we remove the edges in 
each cycle and remove all the loops, we get a forest of distinct trees whose 
roots are the vertices in the cycles and at the loops. 

The author studies the asymptotic distributions of the number of trees, the 
sizes of the trees, and the height of the forest (maximal height of the trees) 
as n —» oo. If rn denotes the height of the forest, then by a result of G. V. 
Proskurin [15] we have 

oo 

(15) Irai P{r„ < zVÏÏ} = J2 (- l)*e- f c 2 x 2 / 2 

k=—oo 

for x > 0. 
Kolchin's book is a comprehensive study of apparently diverse topics in 

combinatorics. In reality the various topics are strongly connected, allocation 
theory being the connecting element. The author's main aim is to unify the 
methods and results of the various topics. He has achieved his goal superbly. 
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Combinatorics of finite sets by Ian Anderson, Clarendon Press, Oxford, 1987, 
xv + 250 pp., $45.00. ISBN 0-19-853367-5 

Combinatorics has come of age. Just as most children pay attention pri­
marily to their own interests, so the mathematical endeavor in the early years 
produces seemingly unrelated results and problem solutions. Puberty can be 
viewed as the beginning of awareness about the rest of the world, and in 
mathematics this brings survey articles that pull results together and place 
them in a common context. Finally, with maturity comes patience, yielding 


