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IN LIE ALGEBRAS 
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All Lie algebras in the following are finite dimensional real Lie algebras. A 
cone in a finite dimensional real vector space is a closed convex subset stable 
under the scalar multiplication by the set R + of nonnegative real numbers; it 
is, therefore additively closed and may contain vector subspaces. A cone W 
in a Lie algebra g is called invariant if 

(1) e*
dx{W)=W for all z e g . 

We shall describe invariant cones in Lie algebras completely. For simple Lie 
algebras see [KR82, 0181, Pa84, and Vi80]. 

Some observations are simple: If W is an invariant cone in a Lie algebra g, 
then the edge e = W Pi — W and the span W — W are ideals. Therefore, if one 
aims for a theory without restriction on the algebra g it is no serious loss of 
generality to assume that W is generating, that is, satisfies g = W — W. This is 
tantamount to saying that W has inner points. Also, the homomorphic image 
W/t is an invariant cone with zero edge in the algebra g/e. Therefore, nothing 
is lost if we assume that W is pointed, that is, has zero edge. Invariant pointed 
generating cones can for instance be found in sl(2,R), the oscillator algebra 
and compact Lie algebras with nontrivial center (see [HH85b, c, HH86a, or 
HHL87]). 

A subalgebra \) of a Lie algebra g is said to be compactly embedded if the 
analytic group Inn0 f) generated by the set ead *> in Aut g has a compact closure. 
Even for a compactly embedded Cartan algebra I) of a solvable algebra g, the 
analytic group Inn0 f) need not be closed in Aut0 [HH86]. An element x G g 
is called compact if R • x is a compactly embedded subalgebra, and the set 
of all compact elements of g will be denoted compg. It is true, although not 
entirely superficial that a superalgebra is compactly embedded if and only if it 
is contained in compg. 

l . THEOREM (THE UNIQUENESS THEOREM [HH86b]). Let W be an 
invariant pointed generating cone in a Lie algebra g. Then 

(i) 'mtW Ç compg. 
(ii) If H is any compactly embedded Cartan algebra, then 

(a) HD'mtW ^0, and 
(b) int W = (Inn0 g) int„ ftnW). 

In particular, compactly embedded Cartan algebras exist, and if f)i and fo #re 
compactly embedded Cartan algebras and W\ and W<2 are invariant pointed 
generating cones of g such that t)C\Wi = \) D W2, then W\ = VK2. D 
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This result shows that we know W if we know f) fl VK for any compactly 
embedded Cart an algebra f). 

We consider a compactly embedded Cartan algebra f) and denote by Y the 
torus Inn0ï). Then we obtain the linear projection operator P: g —» 9 by 
P{x) = fr g(x) dg with normalized Haar measure on T. Then \) = P($) and 

g decomposes into a direct sum of ^-modules \) 0 f)+ with f)+ = ker P. For 
an invariant cone W and any compactly embedded Cartan algebra \) the meet 
\)C\W and the projection P(W) are related by 

(2) P(W) = f)f\W. 

If C is a pointed cone in a compactly embedded Cartan algebra \) we define 
a cone in g by 

(3) C= f | gP-\G). 
grelnng g 

Then C = {x G g|P((Inn0g)a;) Ç C} and C is an invariant cone in g. Its 
edge is the largest ideal of g contained in f)+. It is not a seriously restrictive 
assumption that H+ should not contain nonzero ideals. Under these circum
stances, unfortunately, C may be zero. However, the following theorem uses 
the device C to reconstruct W from \) D W: 

2. THEOREM (THE RECONSTRUCTIONS THEOREM [HH86b]). Suppose 
that ï) is a compactly embedded Cartan algebra \) such that f)+ contains no 
nonzero ideal of g. If C is a pointed generating cone in 1) then the following 
statements are equivalent: 

(A) There exists an invariant pointed cone W in L such that C = I) fl W. 
(B) C = bnC. 
(C) Each conjugacy class of an element c G C projects into C under P . 
Moreover, if these conditions are satisfied, then W = C. D 

The problem is now to determine which cones C satisfy condition (C) of 
Theorem 1 and in which Lie algebras they can occur. 

3. PROPOSITION [HH86]. Every compactly embedded Cartan subalgebra 
\) ofg is contained in a unique maximal compactly embedded subalgebra t(ty. A 

def 

subalgebra I o/g is maximal compactly embedded if and only if lNN01 = Inn01 
is a maximal compact subgroup of iNNg. D 

Under the circumstances of Proposition 3, the normalizer N(fy of the 
maximal torus T — INNg Ï) in INNg is contained in the compact subgroup 
K(lj) = INN0 t(ï)). Thus N{fy/T is a finite group, called the Weyl group W of 
the pair (g, ï)). The space ï)+ is a T-module for the torus T and thus decomposes 
into isotypic components. The search for an appropriate natural indexing for 
such an isotypic component 0 leads to a real linear form ur. h —• R and a 
complex structure 1^ : f)+ —• ()+ (that is, a vector space automorphism with 
1% — —1) such that the ï)-module structure of D is given by 

[h,x] = u(h) - Iw{x). 
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We define 

g» = {xe fl|(3Iw)J2 = - 1 and (Vfc G Ï}) [ M ] = w(ft) • / x} . 

We let 0 denote the set of all UJ for which gw ^ {0} and call these linear 
forms on h the real roots of the pair (g, fj). We note g° = f). Any choice of a 
closed half space E in the dual f) of f) whose boundary hyperplane meets the 
finite set O only in 0 allows us to represent Q as a union Q = H+ U —Q+ with 
n + = n n ^ . We shall call 0+ a selection of positive roots and find the real 
roots decomposition 

(4) 0=u©i)+ , *>+= £ 0W> 

of g with respect to I). The family of complex structures 1^ on gw then, once 
a selection of positive roots has been made, gives a complex structure I on 
ï)+ with which the bracketing of elements from f) with those from any g? is 
described by 

(5) [h,x] = u){h)-Ix for all x G gw. 

At a later point it is important to have available certain special selections 
of positive roots. 

The complex structure I on g+ allows us to define a quadratic function 

(6) Q : D + - I ) , Q(x) = P([Ix,x]). 

For 0 ^ UJ € Q+ and i € gw we have 

(7) Ç(x) = [ ƒ x,x] = - [x , /a ; ] . 

Keep in mind that Q depends on the selection of a set of positive roots via I. 
Changing such a selection may change Q(x) by a sign. 

4. PROPOSITION [HH86b, HHL87]. If g accommodates an invariant 
pointed generating cone and ï) is a compactly embedded Cartan algebra, then 
Q{x) = 0 and x G gw imply x = 0. D 

This motivates the following definition. 

5. DEFINITION. A Lie algebra g is said £o have cone potential if it has a 
compact embedded Cartan algebra f) and 0 ^ x G gw for any positive real 
rootu; implies Q(x) ^ 0. 
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[nw,n"']j ^ 

The structure of Lie algebras with cone potential is special: 

6. THEOREM. Let g be a Lie algebra with cone potential, f) a compactly 
embedded Cartan algebra, x its radical, n is nilradical, 3 its center. Let Q+ be 
any selection of positive real roots with respect to f). For any \)-submodule v 
of g we write vw = v n g w . Then the following conclusions hold: 

(i) 3 is the center of n and n/3 is abelian. 
(ü) 

TMO}, ifu 
{0}, ifu^u'. 

(iii) t" = nUJ for 0 ^ 6 l ] + . 
(iv) There is a Levi complement s such that 

ï) = 0)nt)e(i)ns), 

and \) fis is a compactly embedded Cartan algebra of s. 
(v) [ï),s] Ç s and i) + 5 = (ï) Dr) ©5 zs a reductive subalgebra. 
(vi) 9 w = t w © 5 w / o r w e n + . D 

However, Lie algebras supporting invariant cones are even more special. 

7. PROPOSITION [HH86b]. Let W be an invariant pointed generating 
cone in g and let \) be a compactly embedded Cartan algebra. Then the cen
ter c of the unique maximal compactly embedded subalgebra l(\j) containing f) 
contains inner points of compg. Moreover, the centralizer of c in g is t(fy). G 

Such phenomena occur in the context of hermitean symmetric spaces inside 
semisimple Lie algebras. This motivates the following notation: 

8. DEFINITION. A Lie algebra g is called quasihermitean if it contains a 
compactly embedded Cartan algebra f) such that the center c of ï(fy satisfies 

(8) c D int (compg) ^ 0 . 

Recalling that 3(2;) = keradx is the centralizer of x in g, one shows that 

(9) c H int(compg) = {x G g\}(x) = *(&)}. 

9. DEFINITION. Let H be the set of real roots of a quaishermitean Lie 
algebra g with respect to a compactly embedded Cartan algebra ï). Then 
u) G H is said to be a compact root if gw Ç £([)). All other roots are noncompact. 
The set of compact roots is denoted f̂ , the complement is Qp. For any 
selection of positive roots H+ we set ü£ = Ü+ n H^ and Q+ = Ü+ fl Qp. 
Finally, we set 

(10) P(D) = 0 0W-

For any choice of an element c G cfiint(compg) there is a selection Q"1" of 
positive roots such that OJ(C) > 0 for all noncompact roots u. 

10. THEOREM. Let g denote a quasihermitean Lie algebra and fix a com
pactly embedded Cartan algebra f). Let x denote the radical. Then the following 
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conclusions hold: 

(i)*(W = ft © 0 0 * ^ 0 + * * • 
(ii) g = «(W ep(W and m , pft)] C pft). 
(iii) Tfte unique largest ideal of g contained in p(f)) contains all ideals i with 

1)01= {0}. 
(iv)tÇf)©p(ï)). 
(v) Lei c G cH int(comp0) and let H+ 6e a selection of positive roots such 

that oj(c) > 0 for all u) G fi+. TTien, tó/i respect to the complex structure 
I\p(tj), the vector spacep(\)) is a complexfc(fj)-module, i.e., [k,Ip] = 7[fc,p]. D 

It is not hard to record some necessary conditions for a pointed generating 
cone G in f) to be of the form Wnf). The first is immediate from the definitions 

(WEYL) WC = G. 

A detailed analysis of the orbits of an element h Ef) under a one-parameter 
group of inner automorphisms e R ' a d x for a root vector x G g" reveals another 
necessary condition. 

For each nonzero real root a; G H we define a function Q^ : f) x g" —• ï) by 
Qw{h, x) = (jj(h)-Q(x) = (jj(h) - [Ix, x] = uj(h) • [/wx, x). While / and Q depend 
on a selection of positive roots, the functions Q^ do not. If C = f) D W for an 
invariant pointed generating cone W, then we find Q^Cxçf) G C for all w G 
np. 

This condition is equivalent to 

(ROOT) (adx)2C C C for all x e L", u G Qp. 

The main result is that the two conditions (WEYL) and (ROOT) are also 
sufficient for C to be of the form (jflff. 

11. THEOREM ( T H E MAIN CHARACTERISATION T H E O R E M ) . Let g 

denote a quasihermitean Lie algebra with cone potential, and let \) be a com
pactly embedded Cartan algebra. Let C be a pointed generating cone in the 
vector space f). Then there exists a unique invariant pointed generating cone 
W in g if and only if conditions (WEYL) and (ROOT) are satisfied. D 
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