CLASSIFICATION OF INVARIANT CONES IN LIE ALGEBRAS

JOACHIM HILGERT AND KARL H. HOFMANN

All *Lie algebras* in the following are finite dimensional real Lie algebras. A *cone* in a finite dimensional real vector space is a closed convex subset stable under the scalar multiplication by the set \mathbf{R}^+ of nonnegative real numbers; it is, therefore additively closed and may contain vector subspaces. A cone W in a Lie algebra \mathbf{g} is called *invariant* if

(1)
$$e^{\operatorname{ad} x}(W) = W \text{ for all } x \in \mathfrak{g}.$$

We shall describe invariant cones in Lie algebras completely. For simple Lie algebras see [KR82, Ol81, Pa84, and Vi80].

Some observations are simple: If W is an invariant cone in a Lie algebra \mathfrak{g} , then the edge $\mathfrak{e} = W \cap -W$ and the span W - W are ideals. Therefore, if one aims for a theory without restriction on the algebra \mathfrak{g} it is no serious loss of generality to assume that W is generating, that is, satisfies $\mathfrak{g} = W - W$. This is tantamount to saying that W has inner points. Also, the homomorphic image W/\mathfrak{e} is an invariant cone with zero edge in the algebra $\mathfrak{g}/\mathfrak{e}$. Therefore, nothing is lost if we assume that W is pointed, that is, has zero edge. Invariant pointed generating cones can for instance be found in $\mathfrak{sl}(2, \mathbb{R})$, the oscillator algebra and compact Lie algebras with nontrivial center (see [HH85b, c, HH86a, or HHL87]).

A subalgebra \mathfrak{h} of a Lie algebra \mathfrak{g} is said to be *compactly embedded* if the analytic group $\operatorname{Inn}_{\mathfrak{g}} \mathfrak{h}$ generated by the set $e^{\operatorname{ad} \mathfrak{h}}$ in Aut \mathfrak{g} has a compact closure. Even for a compactly embedded Cartan algebra \mathfrak{h} of a solvable algebra \mathfrak{g} , the analytic group $\operatorname{Inn}_{\mathfrak{g}} \mathfrak{h}$ need not be closed in $\operatorname{Aut}_{\mathfrak{g}}$ [HH86]. An element $x \in \mathfrak{g}$ is called *compact* if $\mathbf{R} \cdot x$ is a compactly embedded subalgebra, and the set of all compact elements of \mathfrak{g} will be denoted comp \mathfrak{g} . It is true, although not entirely superficial that a superalgebra is compactly embedded if and only if it is contained in comp \mathfrak{g} .

1. THEOREM (THE UNIQUENESS THEOREM [HH86b]). Let W be an invariant pointed generating cone in a Lie algebra \mathfrak{g} . Then

- (i) int $W \subseteq \operatorname{comp} \mathfrak{g}$.
- (ii) If H is any compactly embedded Cartan algebra, then
 - (a) $H \cap \operatorname{int} W \neq \emptyset$, and

(b) int $W = (\operatorname{Inn}_{\mathfrak{g}} \mathfrak{g}) \operatorname{int}_{\mathfrak{h}}(\mathfrak{h} \cap W).$

In particular, compactly embedded Cartan algebras exist, and if \mathfrak{h}_1 and \mathfrak{h}_2 are compactly embedded Cartan algebras and W_1 and W_2 are invariant pointed generating cones of \mathfrak{g} such that $\mathfrak{h} \cap W_1 = \mathfrak{h} \cap W_2$, then $W_1 = W_2$. \Box

©1988 American Mathematical Society 0273-0979/88 \$1.00 + \$.25 per page

Received by the editors December 16, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 22E60, 22E15.

This result shows that we know W if we know $\mathfrak{h} \cap W$ for any compactly embedded Cartan algebra \mathfrak{h} .

We consider a compactly embedded Cartan algebra \mathfrak{h} and denote by Γ the torus $\overline{\operatorname{Inn}_{\mathfrak{g}}}\mathfrak{h}$. Then we obtain the linear projection operator $P: \mathfrak{g} \to \mathfrak{g}$ by $P(x) = \int_{\Gamma} g(x) dg$ with normalized Haar measure on Γ . Then $\mathfrak{h} = P(\mathfrak{g})$ and \mathfrak{g} decomposes into a direct sum of \mathfrak{h} -modules $\mathfrak{h} \oplus \mathfrak{h}^+$ with $\mathfrak{h}^+ \stackrel{\text{def}}{=} \ker P$. For an invariant cone W and any compactly embedded Cartan algebra \mathfrak{h} the meet $\mathfrak{h} \cap W$ and the projection P(W) are related by

$$(2) P(W) = \mathfrak{h} \cap W.$$

If C is a pointed cone in a compactly embedded Cartan algebra \mathfrak{h} we define a cone in \mathfrak{g} by

(3)
$$\tilde{C} = \bigcap_{g \in \operatorname{Inn}_{\mathfrak{g}}} gP^{-1}(C).$$

Then $\tilde{C} = \{x \in \mathfrak{g} | P((\operatorname{Inn}_{\mathfrak{g}} \mathfrak{g})x) \subseteq C\}$ and \tilde{C} is an invariant cone in \mathfrak{g} . Its edge is the largest ideal of \mathfrak{g} contained in \mathfrak{h}^+ . It is not a seriously restrictive assumption that H^+ should not contain nonzero ideals. Under these circumstances, unfortunately, \tilde{C} may be zero. However, the following theorem uses the device \tilde{C} to reconstruct W from $\mathfrak{h} \cap W$:

2. THEOREM (THE RECONSTRUCTIONS THEOREM [**HH86b**]). Suppose that \mathfrak{h} is a compactly embedded Cartan algebra \mathfrak{h} such that \mathfrak{h}^+ contains no nonzero ideal of \mathfrak{g} . If C is a pointed generating cone in \mathfrak{h} then the following statements are equivalent:

(A) There exists an invariant pointed cone W in L such that $C = \mathfrak{h} \cap W$.

(B) $C = \mathfrak{h} \cap \tilde{C}$.

(C) Each conjugacy class of an element $c \in C$ projects into C under P. Moreover, if these conditions are satisfied, then $W = \tilde{C}$. \Box

The problem is now to determine which cones C satisfy condition (C) of Theorem 1 and in which Lie algebras they can occur.

3. PROPOSITION [**HH86**]. Every compactly embedded Cartan subalgebra \mathfrak{k} of \mathfrak{g} is contained in a unique maximal compactly embedded subalgebra $\mathfrak{k}(\mathfrak{h})$. A subalgebra \mathfrak{k} of \mathfrak{g} is maximal compactly embedded if and only if $\operatorname{INN}_{\mathfrak{g}} \mathfrak{k} \stackrel{\text{def}}{=} \overline{\operatorname{Inn}_{\mathfrak{g}} \mathfrak{k}}$ is a maximal compact subgroup of INN \mathfrak{g} . \Box

Under the circumstances of Proposition 3, the normalizer $N(\mathfrak{h})$ of the maximal torus $\Gamma = INN_{\mathfrak{g}}\mathfrak{h}$ in $INN\mathfrak{g}$ is contained in the compact subgroup $K(\mathfrak{h}) = INN_{\mathfrak{g}}\mathfrak{k}(\mathfrak{h})$. Thus $N(\mathfrak{h})/\Gamma$ is a finite group, called the Weyl group \mathscr{W} of the pair $(\mathfrak{g}, \mathfrak{h})$. The space \mathfrak{h}^+ is a Γ -module for the torus Γ and thus decomposes into isotypic components. The search for an appropriate natural indexing for such an isotypic component \mathfrak{v} leads to a real linear form $\omega \colon \mathbf{h} \to \mathbf{R}$ and a complex structure $I_{\omega} \colon \mathfrak{h}^+ \to \mathfrak{h}^+$ (that is, a vector space automorphism with $I_{\omega}^2 = -1$) such that the \mathfrak{h} -module structure of \mathfrak{v} is given by

$$[h, x] = \omega(h) \cdot I_{\omega}(x).$$

We define

$$\mathfrak{g}^{\omega} = \{x \in \mathfrak{g} | (\exists I_{\omega})I_{\omega}^2 = -1 \text{ and } (\forall h \in \mathfrak{h}) \ [h, x] = \omega(h) \cdot Ix \}.$$

We let Ω denote the set of all ω for which $\mathfrak{g}^{\omega} \neq \{0\}$ and call these linear forms on **h** the real roots of the pair $(\mathfrak{g}, \mathfrak{h})$. We note $\mathfrak{g}^0 = \mathfrak{h}$. Any choice of a closed half space E in the dual $\hat{\mathfrak{h}}$ of \mathfrak{h} whose boundary hyperplane meets the finite set Ω only in 0 allows us to represent Ω as a union $\Omega = \Omega^+ \cup -\Omega^+$ with $\Omega^+ = \Omega \cap E$. We shall call Ω^+ a selection of positive roots and find the real roots decomposition

(4)
$$\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{h}^+, \qquad \mathfrak{h}^+ = \sum_{0 \neq \omega \in \Omega^+} \mathfrak{g}^{\omega},$$

of \mathfrak{g} with respect to \mathfrak{h} . The family of complex structures I_{ω} on \mathfrak{g}^{ω} then, once a selection of positive roots has been made, gives a complex structure I on \mathfrak{h}^+ with which the bracketing of elements from \mathfrak{h} with those from any \mathfrak{g}^{ω} is described by

(5)
$$[h, x] = \omega(h) \cdot Ix$$
 for all $x \in \mathfrak{g}^{\omega}$.

At a later point it is important to have available certain special selections of positive roots.

The complex structure I on \mathfrak{g}^+ allows us to define a quadratic function

(6)
$$Q: \mathfrak{h}^+ \to \mathfrak{h}, \quad Q(x) = P([Ix, x]).$$

For $0 \neq \omega \in \Omega^+$ and $x \in \mathfrak{g}^{\omega}$ we have

(7)
$$Q(x) = [Ix, x] = -[x, Ix].$$

Keep in mind that Q depends on the selection of a set of positive roots via I. Changing such a selection may change Q(x) by a sign.

4. PROPOSITION [HH86b, HHL87]. If g accommodates an invariant pointed generating cone and \mathfrak{h} is a compactly embedded Cartan algebra, then Q(x) = 0 and $x \in \mathfrak{g}^{\omega}$ imply x = 0. \Box

This motivates the following definition.

5. DEFINITION. A Lie algebra \mathfrak{g} is said to have cone potential if it has a compact embedded Cartan algebra \mathfrak{h} and $0 \neq x \in \mathfrak{g}^{\omega}$ for any positive real root ω implies $Q(x) \neq 0$.

The structure of Lie algebras with cone potential is special:

6. THEOREM. Let \mathfrak{g} be a Lie algebra with cone potential, \mathfrak{h} a compactly embedded Cartan algebra, \mathfrak{r} its radical, \mathfrak{n} is nilradical, \mathfrak{z} its center. Let Ω^+ be any selection of positive real roots with respect to \mathfrak{h} . For any \mathfrak{h} -submodule \mathfrak{v} of \mathfrak{g} we write $\mathfrak{v}^{\omega} = \mathfrak{v} \cap \mathfrak{g}^{\omega}$. Then the following conclusions hold:

(i) \mathfrak{z} is the center of \mathfrak{n} and $\mathfrak{n}/\mathfrak{z}$ is abelian.

(ii)

$$[\mathfrak{n}^{\omega},\mathfrak{n}^{\omega'}] \begin{cases} \neq \{0\}, & \text{if } \omega = \omega'; \\ = \{0\}, & \text{if } \omega \neq \omega'. \end{cases}$$

(iii) $\mathfrak{r}^{\omega} = \mathfrak{n}^{\omega}$ for $0 \neq \omega \in \Omega^+$.

(iv) There is a Levi complement \mathfrak{s} such that

$$\mathfrak{h} = (\mathfrak{h} \cap \mathfrak{r}) \oplus (\mathfrak{h} \cap \mathfrak{s}),$$

and $\mathfrak{h} \cap \mathfrak{s}$ is a compactly embedded Cartan algebra of \mathfrak{s} .

(v) $[\mathfrak{h},\mathfrak{s}] \subseteq \mathfrak{s}$ and $\mathfrak{h} + \mathfrak{s} = (\mathfrak{h} \cap \mathfrak{r}) \oplus \mathfrak{s}$ is a reductive subalgebra.

(vi) $\mathfrak{g}^{\omega} = \mathfrak{r}^{\omega} \oplus \mathfrak{s}^{\omega}$ for $\omega \in \Omega^+$. \Box

However, Lie algebras supporting invariant cones are even more special.

7. PROPOSITION [HH86b]. Let W be an invariant pointed generating cone in g and let \mathfrak{h} be a compactly embedded Cartan algebra. Then the center c of the unique maximal compactly embedded subalgebra $\mathfrak{k}(\mathfrak{h})$ containing \mathfrak{h} contains inner points of comp g. Moreover, the centralizer of c in g is $\mathfrak{k}(\mathfrak{h})$. \Box

Such phenomena occur in the context of hermitean symmetric spaces inside semisimple Lie algebras. This motivates the following notation:

8. DEFINITION. A Lie algebra \mathfrak{g} is called *quasihermitean* if it contains a compactly embedded Cartan algebra \mathfrak{h} such that the center \mathfrak{c} of $\mathfrak{k}(\mathfrak{h})$ satisfies

(8)
$$\mathfrak{c} \cap \operatorname{int}(\operatorname{comp} \mathfrak{g}) \neq \emptyset$$
.

Recalling that $\mathfrak{z}(x) = \ker \operatorname{ad} x$ is the centralizer of x in \mathfrak{g} , one shows that

(9)
$$c \cap int(comp \mathfrak{g}) = \{x \in \mathfrak{g} | \mathfrak{z}(x) = \mathfrak{k}(\mathfrak{h}) \}.$$

9. DEFINITION. Let Ω be the set of real roots of a quaishermitean Lie algebra \mathfrak{g} with respect to a compactly embedded Cartan algebra \mathfrak{h} . Then $\omega \in \Omega$ is said to be a *compact root* if $\mathfrak{g}^{\omega} \subseteq \mathfrak{k}(\mathfrak{h})$. All other roots are *noncompact*. The set of compact roots is denoted Ω_k , the complement is Ω_p . For any selection of positive roots Ω^+ we set $\Omega_k^+ = \Omega^+ \cap \Omega_k$ and $\Omega_p^+ = \Omega^+ \cap \Omega_p$. Finally, we set

(10)
$$\mathfrak{p}(\mathfrak{h}) = \bigoplus_{\omega \in \Omega_p^+} \mathfrak{g}^{\omega}.$$

For any choice of an element $c \in c \cap int(comp \mathfrak{g})$ there is a selection Ω^+ of positive roots such that $\omega(c) > 0$ for all noncompact roots ω .

10. THEOREM. Let \mathfrak{g} denote a quasihermitean Lie algebra and fix a compactly embedded Cartan algebra \mathfrak{h} . Let \mathfrak{r} denote the radical. Then the following

conclusions hold:

(i) $\mathfrak{k}(\mathfrak{h}) = \mathfrak{h} \oplus \bigoplus_{0 \neq \omega \in \Omega_k^+} \mathfrak{g}^{\omega}$.

(ii) $\mathfrak{g} = \mathfrak{k}(\mathfrak{h}) \oplus \mathfrak{p}(\mathfrak{h})$ and $[\mathfrak{k}(\mathfrak{h}), \mathfrak{p}(\mathfrak{h})] \subseteq \mathfrak{p}(\mathfrak{h})$.

(iii) The unique largest ideal of \mathfrak{g} contained in $\mathfrak{p}(\mathfrak{h})$ contains all ideals \mathfrak{i} with $\mathfrak{h} \cap \mathfrak{i} = \{0\}.$

(iv) $\mathfrak{r} \subseteq \mathfrak{h} \oplus \mathfrak{p}(\mathfrak{h})$.

(v) Let $c \in \mathfrak{c} \cap \operatorname{int}(\operatorname{comp} \mathfrak{g})$ and let Ω^+ be a selection of positive roots such that $\omega(c) > 0$ for all $\omega \in \Omega_p^+$. Then, with respect to the complex structure $I|\mathfrak{p}(\mathfrak{h})$, the vector space $\mathfrak{p}(\mathfrak{h})$ is a complex $k(\mathfrak{h})$ -module, i.e., [k, Ip] = I[k, p].

It is not hard to record some necessary conditions for a pointed generating cone C in \mathfrak{h} to be of the form $W \cap \mathfrak{h}$. The first is immediate from the definitions

(WEYL)
$$\mathscr{W}C = C.$$

A detailed analysis of the orbits of an element $h \in \mathfrak{h}$ under a one-parameter group of inner automorphisms $e^{\mathbf{R} \cdot \mathrm{ad} x}$ for a root vector $x \in \mathfrak{g}^{\omega}$ reveals another necessary condition.

For each nonzero real root $\omega \in \Omega$ we define a function $Q_{\omega} \colon \mathfrak{h} \times \mathfrak{g}^{\omega} \to \mathfrak{h}$ by $Q_{\omega}(h,x) = \omega(h) \cdot Q(x) = \omega(h) \cdot [Ix,x] = \omega(h) \cdot [I_{\omega}x,x]$. While I and Q depend on a selection of positive roots, the functions Q_{ω} do not. If $C = \mathfrak{h} \cap W$ for an invariant pointed generating cone W, then we find $Q_{\omega}(C \times \mathfrak{g}^{\omega}) \in C$ for all $\omega \in$ Ω_{p} .

This condition is equivalent to

 $(\operatorname{ad} x)^2 C \subseteq C$ for all $x \in L^{\omega}, \ \omega \in \Omega_p$. (ROOT)

The main result is that the two conditions (WEYL) and (ROOT) are also sufficient for C to be of the form $\mathfrak{h} \cap W$.

THEOREM (THE MAIN CHARACTERISATION THEOREM). Let g 11. denote a quasihermitean Lie algebra with cone potential, and let \mathfrak{h} be a compactly embedded Cartan algebra. Let C be a pointed generating cone in the vector space \mathfrak{h} . Then there exists a unique invariant pointed generating cone W in \mathfrak{g} if and only if conditions (WEYL) and (ROOT) are satisfied.

References

[HH85a] J. Hilgert and K. H. Hofmann, Lorentzian cones in real Lie algebras, Monatsh. Math. 100 (1985), 183-210.

[HH85b] ____, Old and new on Sl(2), Manuscripta Math. 54 (1985), 17-52.

[HH85c] _____, Lie semialgebras are real phenomena, Math. Ann. 270 (1985), 97–103. [HH86a] _____, On the automorphism group of cones and wedges, Geom. Dedicata 21 (1986), 205-217.

[HH86b] __ __, Compactly embedded Cartan algebras and invariant cones in Lie algebras, THD preprint (1986), Adv. in Math. (to appear).

[HHL87] J. Hilgert, K. H. Hofmann and J. D. Lawson, Lie groups, convex cones, and semigroups, Oxford Univ. Press (to appear).

[KR82] S. Kumaresan and A. Ranjan, On invariant convex cones in simple Lie algebras, Proc. Indian Acad. Sci. Math. 91 (1982), 167-182.

[O181] G. I. Ol'shanskii, Invariant cones in Lie algebras, Lie semigroups and the holomorphic discrete series, Funct. Anal. Appl. 15 (1981), 275-285.

[Pa84] S. Paneitz, Determination of invariant convex cones in simple Lie algebras, Ark. Mat. 21 (1984), 217-228.

[V180] E. B. Vinberg, Invariant cones and orderings in Lie groups, Funct. Anal. Appl. 14 (1980), 1–13.

FACHBEREICH MATHEMATIK, TECHNISCHE HOCHSCHULE DARMSTADT, SCHLOSS-GARTENSTR. 7, D-6100 DARMSTADT, FEDERAL REPUBLIC OF GERMANY

Electronic address: XMATDA4L @DDATHD21.bitnet