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Introduction. In the 1940s, S. Bochner devised an analytic technique to 
obtain vanishing theorems for some topological or geometric invariants (e.g. 
Betti numbers, the dimension of the vector space of Killing vector-fields) on 
a closed (i.e. compact without boundary) Riemannian manifold, under some 
curvature assumption. 

As a matter of fact, the word technique might be misleading. On the 
one hand it is not so easy to explain the technical details of the proofs in 
which S. Bochner's ideas are used and this is not our purpose here; on the 
other hand, the ideas are quite simple. Indeed, the basic idea is to show 
that some object (a harmonic form in the case of Betti numbers, a Killing 
vector-field,... ) satisfies an elliptic inequality, provided that some curvature 
assumption is satisfied. The proofs then reduce to applying the maximum 
principle or to integrating over the manifold. 
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The purpose of the present paper is two-fold: 
(1) we want to describe some recent extensions of the Bochner technique; 

indeed, the original vanishing theorems have recently been generalized (in a 
rather general framework) to estimating theorems (see §B for a typical state
ment and §E for the main results); 

(2) we also want to describe some technical tools involving analysis on a 
Riemannian manifold and isoperimetric inequalities: they might indeed be 
useful in other contexts. 

In order to limit the necessary prerequisites we limit ourselves to the realm 
of Riemannian geometry (the reader not familiar with the basic concepts of 
Riemannian geometry is referred to §§A and C). A more detailed presentation 
of the Bochner technique in differential geometry (in particular as applied to 
Kâhler manifolds and to harmonic maps) is given in [Wu]; we refer to [Sil, 
2 and Sh-So] for vanishing theorems in complex geometry. 

The oldest vanishing (and estimating) theorem goes back to C. F. Gauss 
and O. Bonnet for compact oriented Riemannian surfaces without boundary. 
For such a surface, 

ƒ K(m) da(m) = 2TTX(M) 
JM 

where K is the Gaussian curvature (the product of the principal curvatures; 
see also §A), da is the natural element of area on M and x(M) is the Euler 
characteristic (a topological invariant which is equal to two minus twice the 
number of holes). 

VANISHING THEOREM. If K > 0 and K ^ 0 then x(M) > o, i.e. M is 
homeomorphic to S2. 

ESTIMATING THEOREM, if K > -k and Area(M) < V (k,V positive 
constants) then \x{M)\ < max{l,fcV/(27r)}: there are only finitely many 
surfaces admitting a Riemannian metric satisfying the preceding inequalities. 

By the Gauss-Bonnet theorem the Euler characteristic can be viewed as 
a topological obstruction to the existence of certain Riemannian metrics on 
surfaces (the sphere whose Euler characteristic is 2 does not carry a metric 
with nonpositive Gaussian curvature; the torus whose Euler characteristic is 
0 does not carry a metric with positive Gaussian curvature). 

The Gauss-Bonnet theorem has been generalized to higher dimensions, 
involving certain notions of curvature and characteristic classes [Ko-No]. 

The above estimating theorem has been generalized to higher dimensions 
by A. Weinstein (1967) and J. Cheeger (1970). Given a positive integer n 
and positive constants, V, D, there are up to homeomorphism finitely many 
compact n-dimensional smooth manifolds without boundary admitting a Rie
mannian metric g such that \ag\ < 1 (the sectional curvature of (M,g)\ see 
§A), Volume(M, g) > V and Diameter(M, g) < D. One can actually count the 
number of homeomorphism types (S. Peters 1984). In particular, any topolog
ical invariant on an n-dimensional Riemannian manifold satisfying the preced
ing inequalities is bounded; the topological types involved are not known and 
the finiteness theorem does not provide bounds on the topological invariants 
either. It is therefore natural to look for explicit bounds. 
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Introducing a Hausdorff distance between Riemannian manifolds (compact 
without boundary; this distance generalizes the Hausdorff distance between 
compact subsets of a given metric space), M. Gromov (1980) proved that the 
set of n-dimensional Riemannian manifolds which satisfy the assumptions of 
the Cheeger-Weinstein finiteness theorem is compact. Under weaker assump
tions (a lower bound on the Ricci curvature—a mean value of sectional curva
tures; see §A—and an upper bound on the diameter) M. Gromov also proved 
a precompactness theorem for the Hausdorff distance between Riemannian 
manifolds. It is again natural to try to bound the topological or geometric 
invariants under geometric assumptions (i.e. on curvature, diameter, volume, 
dimension...). 

The estimating theorems which are described in §E give a partial answer to 
this problem^ in particular they give bounds on the Betti numbers depending 
on n (dimension), 1 (an upper bound on \ag\ by scaling) and D (an upper 
bound on the diameter). 

For more details on the topics of finiteness theorems and compactness the
orems we refer to [Pa and Sa]. 

Organization of the paper. Basic notions from Riemannian geometry 
are given in §§A and C. We then start from two examples of vanishing the
orems (both due to S. Bochner): Theorems I and II in §B; we explain their 
geometric meaning, relate them to natural problems and we state a first in
stance of an estimating theorem: §B, Theorem III. The proof of Theorem II 
is sketched in §D. 

In §E we describe a general setting and a general vanishing theorem of 
Bochner type (Theorem IV). Natural questions are asked which lead us to our 
general estimating theorems (Theorems V and VI). Proofs are sketched in §F. 
Behind the ideas of the proofs there are also some techniques which might 
be useful elsewhere. These techniques and the detailed proofs of Theorems V 
and VI (§E) are described in several appendices which are quite independent 
from the main text. 

§§G and H give respectively a historical sketch and possible extensions of 
the methods we describe in this paper. 

In §1 we sketch a comparison between analytic techniques and geometric 
techniques in the part of Riemannian geometry dealing with curvature and 
topology. 

In an attempt to make this text usable by nonspecialists, including graduate 
students, we have provided §§A and C (topics from Riemannian geometry) 
and we have tried to give complete proofs (Appendices) or references. 

ACKNOWLEDGEMENT. This paper grew out of lectures given in Brazil 
in August 1985. I would like to thank the colleagues, both in Brazil and in 
France, who helped me turn a rough set of notes into a paper; special thanks 
are due to G. Besson and J. P. Bourguignon. 

I gratefully acknowledge the financial support of Brazil's CNPg (at IMPA) 
and France's CNRS during the preparation of this paper. 

A. Basic Riemannian geometry. In this section we recall some basic 
concepts in Riemannian geometry. We need them to state the vanishing and 
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estimating theorems we will deal with in this paper. Further concepts will be 
introduced when we sketch the proofs (§C). Possible references are [B-G-M, 
Che-Eb, Sa]. 

Let (M, g) be a Riemannian manifold, i.e. a manifold1 M with a Rieman-
nian metric g: a collection of inner products; gx is an inner product in the 
tangent space TXM, depending smoothly on the point x. 

A nice example of a Riemannian manifold is that of a submanifold M in 
Euclidean space with Riemannian metric gx in Tx M induced by the Euclidean 
inner product. 

The Riemannian distance between two points x and y in M is defined to be 
the infimum of the length (w.r.t. g) of the curves from x to y. The diameter 
D(g) of (M, g) is the diameter of M for the Riemannian distance. 

The geodesies are the curves which satisfy the Euler-Lagrange equation of 
this minimization problem: they satisfy a second order nonlinear differential 
equation on M. In particular, given any point x in M and any unit vector u 
in TXM, there is one and only one geodesic cx,u parametrized w.r.t. arc-length 
such that cX}U(0) = x and cXiU(0) = u (such a geodesic is defined for all values 
of t when M is closed). We define the exponential map exp^ from TXM to M 
by expx(tu) = cXyU{i), for any nonnegative t and any unit tangent vector u in 
TXM. The exponential map is a local diffeomorphism from a neighborhood of 
0 in TXM onto a neighborhood of x in M (w.r.t. the Riemannian distance): 
indeed, its derivative at 0 is the identity map. 

An isometry between two Riemannian manifolds (M, g) and (AT, h) is a map 
which induces linear isometries between the tangent spaces w.r.t. the inner 
products g and h respectively. The various notions of curvature measure how 
the exponential maps differ from being isometries (at least locally). Let P be 
a 2-plane in TXM. Given a small enough r, consider the image under expx of 
the circle of radius r and with center 0 in the plane P. This is a closed curve 
in M whose length we denote by L(r). When r goes to zero, we have Puiseux' 
formula 

L(r) = 27rr(l - ^ , F ) r 2 + 0(r3)) . 

The number o~(x,P) is called the sectional curvature of the 2-plane P a t x. 
If (M, g) is an immersed surface in R3 , with induced metric in each tangent 
space, the sectional curvature of the tangent plane coincides with the Gaussian 
curvature of the surface (i.e. the product of the principal curvatures). 

It is clear that the sectional curvatures of the Euclidean space R n are 
constant equal to 0. The sectional curvatures of the sphere Sn of radius one 
in R n + 1 , with induced metric, are constant equal to +1 (indeed the curve 
considered above is always an ordinary circle with radius sinr). Here is an 
example of a Riemannian manifold with sectional curvatures —1. Let (Hn,gH) 
be the ball of radius 2 in R n , with the metric gH(U, V) = (l- \x\2/4)~2{U, V) 
at the point x, where (U,V) is the Euclidean inner product of the tangent 
vectors U and V and |x| is the Euclidean norm of x. It is not difficult to check 

1 Throughout this text we will use the word "manifold" as a short cut for "closed, 
connected, smooth n-dimensional manifold", except in very few instances in which the 
context will be clear. Closed means compact without boundary. 
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that the geodesies issued from 0 are carried by the Euclidean lines through 0 
and that the sectional curvatures at 0 are constant equal to —1. As a matter 
of fact, (Hn,gH) has constant sectional curvatures equal to - 1 because the 
homographies form a transitive group of isometries. 

A Riemannian manifold is also equipped with a natural Riemannian mea
sure vg whose expression in a local coordinate system {xi} is det (^) 1 / 2 dx, 
where dx is the Lebesgue measure and where g^ = g(d/dxi,d/dxj). The 
volume of (M, g) is denoted by V(g) (= fM dvg). 

In order to be able to state our vanishing theorems, we need another notion 
of curvature which we now define. We can write the pull-back exp* vg of the 
Riemannian measure vg by expx in polar coordinates in TXM: exp* vg = 
0x(t, u) dt du, where t > 0, u is a unit vector and du is the canonical measure 
on the unit sphere. When t goes to zero, we have the formula 

ex(t,u) = tn-1(i-yx(u)t2 + o(t3)). 
The number px(u) is a quadratic form on TXM which defines a symmet
ric bilinear form called the Ricci curvature, Ricg, of M at the point x. If 
{u, e2 , . . . , en} is an orthonormal basis in TXM and if Pi is the 2-plane spanned 
by u and e ,̂ we also have the formula 

n 

Ricg(u,u) = y^a(x,Pj). 

Further concepts from Riemannian geometry will be introduced in §C. 
Let us for the moment proceed with examples of vanishing and estimating 

theorems. 

B. Examples of vanishing and estimating theorems. 

THEOREM I [Bo, Bo-Ya]. Let (M,g) be a Riemannian manifold. 
(i) If the Ricci curvature of M is nonpositive, then the dimension of the 

vector space of Killing vector-fields is less than or equal to the dimension of 
M. 

(ii) If the Ricci curvature of M is nonpositive and negative definite at some 
point, then there are no nontrivial Killing vector-fields. 

Recall that a Killing vector-field on a Riemannian manifold is a vector-field 
which generates a one-parameter group of isometries. 

THEOREM II [Bo, Bo-Ya]. Let {M,g) be a Riemannian manifold. 
(i) If the Ricci curvature of M is nonnegative then the first Betti number 

of M is less than or equal to the dimension of M. 
(ii) If the Ricci curvature of M is nonnegative and positive definite at some 

point then the first Betti number is equal to zero. 

Recall that the first Betti number is equal to the dimension of the quotient 
vector space of closed differential 1-forms modulo exact 1-forms; this is a 
topological invariant (which is twice the genus in dimension two, i.e. twice the 
number of holes). 

CONSEQUENCES. (I) Under the assumption of Theorem I(i) we see that the 
(compact) Lie group Isom(M, g) of isometries of (M, g) has dimension r not 
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greater than the dimension of M (one can also prove that the universal cover 
of M splits orthogonally as M' x R r where M' is simply-connected). Under 
the assumption of Theorem I(ii) we see that the isometry group of (M, g) is 
finite. This means that nonpositive Ricci curvature is an obstruction to the 
existence of "many" isometries (i.e. internal symmetries of the metric). 

(II) From Theorem II, we deduce that the first Betti number is a topological 
obstruction to the existence of metrics with positive or nonnegative Ricci 
curvature. For example, the n-torus (whose first Betti number is equal to n) 
does not carry a Riemannian metric with positive Ricci curvature. One can 
also view Theorem II as saying that a closed manifold which admits a metric 
of nonnegative Ricci curvature has a simple topological type in some sense 
(namely, its first Betti number is not greater than the dimension). 

These observations are simple instances of partial answers to the following 
general problems (compare with the motivations given in the Introduction). 

PROBLEM (a). Find obstructions (e.g. topological) for the existence of 
special metrics on a given manifold M (e.g. metrics one of whose curvatures 
satisfies a sign condition). 

PROBLEM (b). Find restrictions on the global behaviour (e.g. bound some 
topological invariant) of a manifold which carries a metric satisfying some 
condition (e.g. a metric whose sectional curvatures are bounded, together 
with some scaling assumption). 

Much work has been devoted to these problems in recent years. Some of the 
methods which have been used involve ideas related to the original Bochner 
technique as illustrated by Theorems I and II above; other methods involve 
more geometric tools together with analysis: we refer to the chart in §1. In the 
spirit of Theorem II, one can prove the following estimating theorem which 
gives a partial answer to Problem (b). 

THEOREM. III. Given an n-dimensional Riemannian manifold (M, g), let 
fmin{g) denote the infimum of the Ricci curvature Ric^ on the unit tangent 
bundle. 

(i) There exists a positive number e(n) such that riain(g)D2(g) > —e{n) 
implies b\{M) < n (&i(M) is the 1st Betti number, D(g) the diameter of 
M,g)). 

(ii) For any fceR+, there exists a number A(n, k) such that rmin(g)D2(g) > 
—k2 implies that &i(M) < A(n,k). 

COMMENTS, (a) Part (i) of Theorem III is a kind of semicontinuity prop
erty of the estimate in Theorem II (i). 

(b) Given a Riemannian manifold (M, g), one can always make dilations 
by multiplying the metric by some positive number; these dilations change 
the curvature but obviously do not change the topology of M. In Theorem 
III, we use the diameter D(g) to scale the metric (the quantity rm-m(g)D2(g) 
is invariant under dilations). It is not possible in general to scale the metric 
with the volume V(g) of (M, g); see [Bé-Ga] (except in dimension 2 as the 
Gauss-Bonnet theorem shows). 
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Theorem III is a special instance of the vanishing theorems which will be 
stated in §E. Before we proceed with the proof of Theorem II (§D), we need 
more concepts from Riemannian geometry. 

C. More Riemannian geometry. Given a Riemannian manifold (M, g) 
an important concept is that of the natural covariant derivative (or Levi-
Civita connection) : to the vector-fields X, Y we associate another vector-field 
DxY, the covariant derivative of Y w.r.t. X. We will not give the formal 
definition (see for example [B-G-M]) but let us mention the following fact. 
Let (M, g) be an immersed submanifold of R N , with induced metric. Let X 
and Y be tangent vector-fields on M. We can write Y = (2/1,..., y^) in the 
canonical basis of R ^ and differentiate each component yi in the direction of 
X. This gives a new vector-field Yx along M: Yx = (X • j / i , . . . , X • y^). The 
covariant derivative DxY of Y w.r.t. X is the part of Yx tangential to M, 
i.e. the orthogonal projection (in KN) of Yx onto the tangent space of M at 
each point. 

One can extend D to a covariant derivative of tensor-fields w.r.t. vector-
fields. For differential l-forms this is done as follows. The covariant derivative 
Da of the 1-form a is defined by (Dxot){Y) = X • (a(Y)) - a(DxY) for any 
vector-fields X and Y (i.e. the extension is such that the Leibnitz rule for the 
derivative of a product is true). 

The Riemannian metric g defines a natural identification between TM and 
T*M. We use this pairing to put an inner product on tensors, for example on 
/\p T*M. This gives us a natural L2 -structure on smooth tensor fields, differ
ential p-forms, . . . (using the Riemannian measure vg). We define the codiffer-
ential 6 to be the formal adjoint of the exterior derivative d on C°°(/\* T*M) 
w.r.t. these L2-structures. The Hodge-de Rham Laplacian on p-forms is de
fined to be AH = do6 + 6od. The Riemannian Laplacian A is the Hodge-de 
Rham Laplacian on 0-forms (i.e. on functions). Similarly, one can define the 
formal adjoint D* of £>, say on l-formsjD : C°°(T*M) -+ C°° (T* M ® T* M^ 
and the rough (or Bochner) Laplacian A = D*D. The operators A# and A 
are nonnegative elliptic second order linear differential operators. They turn 
out to have the same principal symbol and they only differ by zeroth order 
term. In the special case of differential l-forms, one has 

(*) AHa = ~Ka + Ric(a# , •) 

where ofî is the vector-field dual to the 1-form a. Such a formula is now 
called a Weitzenböck formula. This formula comes from the fact that covariant 
derivatives of order at least three do not commute in general on a Riemannian 
manifold: indeed, the curvature is precisely the obstruction to commuting 
derivatives [Bé, II.52]. For a proof of (*) see [Bo-Ya, Wu or Bé, §VI.12]. 

D. Proof of Theorem II. By the Hodge-de Rham theorem [Ee], one can 
parametrize the equivalence classes of closed l-forms modulo exact l-forms by 
harmonic l-forms (A#Û: = 0): the first Betti number is equal to the dimension 
of the kernel of the Hodge-de Rham Laplacian AH acting on l-forms. Let a 
be a harmonic 1-form. The Weitzenböck formula (*) in the preceding section 
implies that (Aa, a) = — Ric(a# ,a#) . 
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Integrating over the manifold M and using the definition of A, we conclude 
that 

ƒ \Da\2vg = - Ric(a#,a#)vg. 
JM JM 

The assumption Ric > 0 implies that Da = 0: we say that the 1-form a is 
parallel. Given any curve c(t) in M, one can construct a coframe uj\ , . . . , un 

along c(t) such that D^Wi = 0, 1 < i < n (first order differential equations 
along the curve). In such a parallel co-frame the components of the parallel 
form a are constant: this implies that we have at most n parameters for a, 
i.e. there are at most n linearly independent parallel 1-forms. We therefore 
conclude that the 1st Betti number b\ (M) satisfies b\ (M) < n when Ric > 0. 
If furthermore Ric(xo) > 0 for some xo G M we have a(xo) = 0 which implies 
(because a is parallel) that a = 0 and hence &i (M) = 0. 

Another proof of Theorem II uses the equality (Aa,a) = - R i c ( a # , a # ) , 
the second Kato inequality (§E, (K2)) and the maximum principle (see [Wu]). 

E. Bochner's theorem in a more general setting. In this section, we 
introduce the general setting in which we will state the estimating theorems. 

Recall that (M, g) is an n-dimensional smooth closed connected Rieman-
nian manifold with Riemannian measure vg. 

We now consider a Riemannian bundle E over M, i.e. a fiber bundle E 
equipped with a scalar product (•, -)x in each fiber, depending C°° on x. We 
assume furthermore that E is equipped with a compatible connection D (i.e. 
X • (s,£) = (Dxs,t) + (s,Dxt), for all vector-field X on M and C°° sections 
s,t of E). The scalar products and the connections (of E, as well as of M) 
naturally extend to tensor products, and the extensions will be denoted by 
the same symbols: compare with §C above or see [B-G-M]. 

We define the L2-norm of a C°° section s of E by 

N l 2 = ƒ (S,s)XVg= / \s\lVg, 
JM JM 

and we introduce the associated Hilbert space L2(E). One can define simi
larly the spaces LP(E). For example, for a C°° function ƒ, one has ||d/||2 = 
f M W\xvgi w n e r e I ' \x is the norm in T*M given by the dual Riemannian 
metric g* on T*M; \\df\\2 is also the L2-norm of the gradient of ƒ. 

We assume that E is equipped with a "natural" Laplacian A : A is a 2nd 
order elliptic linear differential operator on Coc(E) which is symmetric with 
respect to the L2(l£)-inner product: ((As,*)) = fM(As,t)xvg = ((s, At)), for 
all C°°-sections s and t. 

Using the L2-structures, one can also define the rough (or Bochner) Lapla
cian on C°°(E) by A = D*D, where D* is the formal-adjoint of the differ
ential operator D: C°°(E) -> C°°(T*M <g> E). 

Our final (and main) assumption is that A satisfies the following Weitzen-
böck formula: 

(W) As = As + 319, for all s G C°°(E), 

file:///s/lVg
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where M is a symmetric endomorphism of E: for all x in M, M'x : Ex —• 
Ex is a symmetric endomorphism (this symmetry property follows from the 
symmetry of A and A). 

Weitzenböck formulas play a very important role in geometry. We refer to 
[Bou, Ee-Le, La and Wu] for more details on this subject. 

EXAMPLES, (i) E = T*M; A = A#, the Hodge-de Rham Laplacian on 
1-forms; 

(ii) E = /\PT*M; A = A#, the Hodge-de Rham Laplacian on p-forms, 31 
is expressed in terms of the curvature operator: see [Wu or Ga-Me]; 

(iii) E = M x R ; A = A - A , where A is the usual Laplacian on functions 
(A = -d2/dx2 on R). 

For other examples and comments see §§H and I. 
Since A is elliptic and M is compact, the dimension 6(E) of the kernel of 

A, 6(E) = dimKer A, is finite. The proof of the following vanishing theorem 
is a verbatim reproduction of that of Theorem II. 

THEOREM IV. Let E be a Riemannian vector bundle of rank I over the 
closed Riemannian manifold (M, #). If the symmetric endomorphism 31 
(formula (W)) satisfies 

(i) 31 > 0, then 6(E) < I; 
(ii) 31 > 0, and there exists an xo in M such that 31 (x$) > 0, then 

8(E) = 0. 

We now ask the following questions: 
QUESTIONS. (Ql) Can one slightly release the assumption 31 > 0 in 

Theorem IV, and still obtain (possibly with some scaling assumption) 6(E) < 
/? 

(Q2) Can one give general upper bounds on 6(E) in terms of 31 (without 
the positivity assumption), and the geometry of (M, g)? 

REMARK. The fact that some scaling is needed has already been explained 
in §B (Comments following Theorem III). 

NOTATIONS. For a closed Riemannian manifold (M, g), we let 
D(g) = Diameter of (M, g); 
V(g) = Volume of (M,g); 
Ric^ = Ricci curvature of (M, g); 
rg(x) = mf{RiCg(u,u): u G TXM, \u\x = 1}; 
rmm{g) = inf{rg(z): xeM}. 
Similarly, for the endomorphism 31, we let 
3l(x)= mî{(3ls,s)x: s € Ex, M* = 1}; 
^ m i n = mî{3Z(x) :xeM}. 
The following estimating theorems extend the original results of S. Bochner 

(§B, Theorems I and II) and give partial answers to the above questions 
(compare with §B, Theorem III). 

THEOREM V. Let (Mn,g) be a closed Riemannian manifold such that 
rmin(g)D2(g) > (n — l)ea2, where a € R+ and where € G {-1,0,1}. Let E 
be a Riemannian vector bundle over M as described above. Then there exists 
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a positive number A(n,e,a) such that 

(#min£>2(<?))- < A{n,e,a) =• 6(E) < I 

(x- is the negative part of x G R: X- = sup(0, —x)). 

THEOREM VI. Let E —• (Mn,g) be as in Theorem V. Then, there exists 
a function $n,e,a • R+ —* R+> suc^ that 

0(E) <$n,eA(^minD2(g))-). 

It should be pointed out that both the constant A(n,e,a) and the function 
$n,e,a are quite explicit and easily evaluated numerically. 

Let us now give an idea on how to prove Theorems V and VI. As in the 
proof of S. Bochner's Theorem II, we use the Weitzenböck formula (W) to 
concentrate our attention on the rough Laplacian A. The following lemma 
enables us to reduce problems on sections of E to problems on functions on 
M. 

LEMMA (FIRST RATO INEQUALITY). Lets be a smooth section ofE. The 
(distributional) differential d\s\ of the pointwise norm \s\ of s is in L2(T*M) 
and satisfies the (distributional) inequality 

(Kl) |d|«| | < \Ds\. 

PROOF. The first assertion is classical (see e.g. [Bé, VI.31]). For the second 
one, we write (X any vector-field on M) 2\s\(X • |s|) = X • \s\2 = 2(Dxs,s), 
and we apply the Cauchy-Schwarz inequality. D 

REMARKS, (i) The lemma goes back at least to T. Kato [Re-Si, Volume 
II, Chapter X]); 

(ii) in the lemma, |d|s| | is the norm of the 1-forrn d\s\] \Ds\ is the norm of 
the section Ds of T*M <g> E. 

For any smooth section s of J57, we can write A(|s|2) = 2|s|A(|s|) — 2|d|s| |2, 
and, on the other hand, A(|s|2) = 2(As,s) - 2|Ds|2 (indeed the Laplacian 
can be written as — XX=i(^ i °Dei — Doe ei)

 m a ny local orthonormal frame 

From these equalities and the first Kato inequality we deduce the following 

LEMMA (SECOND KATO INEQUALITY). With the preceding notations we 
have 

(K2) { F°r any S e C0O(S)' |S |A( |S | ) - <5s'S)' 
\ in the sense of distributions. 

F. Proofs of the estimating theorems (sketch of). In this section we 
sketch three methods for proving Theorems V and VI; full details are given 
in the Appendices. We use the notation of the preceding section and denote 
by <%*(A) the vector-space of harmonic sections of E (As = 0). 

FIRST METHOD. A simple geometric lemma (see [Li, p. 460 or Appendix 
II]) shows that 

(L) 6(E) = àimjr(À)<lsup{\\s\\2
00V(g)/\\sf2:se^(À), s # 0}. 

Recall that / = rank(i£). 
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By standard elliptic theory (de Giorgi-Nash-Moser iteration scheme) and 
using the second Kato inequality A(|s|) < (— ̂ m in)H> we deduce that the 
ratio ||s||^0F(ô')/||s||2 (for any s G <^(A)) is bounded from above in terms of 
^ m i n and the Sobolev constant of the embedding W1^{M,g) -* L2n^n~2^ 
(M, Vg) (in the case in which n > 3), where W1,2(M, g) is the set of L2 

functions whose first derivatives are in L2. The geometric assumption rm{n(g) 
D2(g) > (n — l)ea2 allows us to estimate the Sobolev constant. We finally 
conclude that the ratio Hsll^^töO/lklIi is bounded from above by a function 
$1(n,e,a;â?minD

2{g)). 
Another method for estimating the ratio ||s||£o^(0)/llsll2 is to symmetrize 

the elliptic inequality A(|s|) < (—^min)|s| on M and to compare it with the 
elliptic equation A*/ = —&minf on a model space M*. This model space is 
constructed from geometric assumptions on M ; in the case of the geometric 
assumption rmin(g)D2(g) > (n — l)£o;2, the model space M* is a sphere. 

Both the estimate of the Sobolev constant and the symmetrization proce
dure depend on isoperimetric properties of M (estimates on the isoperimetric 
constants or on the isoperimetric profile). 

The implementation of our first method for proving Theorems V and VI 
(and related results) is fully described in the Appendices: 

Sobolev Constants 
Appendix VI 

J. Moser's method 
Appendix V 

Isoperimetric Profile 
Appendix I 

Symmetrization 
Appendix VII 

1s t method 
P. Li's 

Appendix II 

SECOND METHOD. By the Weitzenböck formula (W) and the first Kato 
inequality (Kl), any harmonic section s G ^ ( A ) satisfies the inequality 

ƒ \d\s\\2vg< f 
JM JM 

\DS\2vg < {-m^ 
JM 

\s\2vn 

This inequality does not seem to say much because the first (i.e. least) 
eigenvalue of the Laplacian A acting on C°°{M) is zero. In §D, we saw 
that any parallel section s (Ds = 0) has constant norm and that parallel 
sections form a vector-space of dimension at most / (= raxik(E)). D. Meyer's 
lemma ([Me2] and Appendix III) gives a partial converse to this property. 
Roughly speaking the lemma says that given a vector-space of sections of 
E, of dimension at least / + 1, there is at least one section whose norm is 
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"far from being constant". In the case at hand we have the following: if 
d i m ^ ( A ) = 6(E) > I + 1 then there is a function / 0 on M (related to the 
norm of a section) such that 

f \dfo\2vg < ( - ^ m i n ) a , n f ftvg and f fovg = 0, 
JM JM JM 

where C\,n is a universal positive constant. From this inequality we con
clude that (-^min)Ci,n > ^ ( M , g), the second eigenvalue of A on C°°(M). 
Theorem V now follows from a lower bound à la Cheeger for À2(M, g); such a 
lower bound can be expressed in terms of n, £, a and D2(g) from the geometric 
assumption rm[n(g)D2(g) > (n — l)ea2. 

Our second method is described in Appendix III. It also depends on Ap
pendices I and VI: 

Isoperimetric Profile 
Appendix I 

THIRD METHOD. The second Kato inequality (K2) and the maximum 
principle for parabolic equations imply that one can bound from above the 
partition function Tr(exp(-£Â)) by Zexp(-k^min) rrr(exp(-£A)) (see [H-S-
Ü], / = rank(£)). 

On the other hand, the geometric assumption rm[n(g)D2(g) > (n — \)ea2 

implies that one can bound Tr(exp(—tA)) from above by the partition function 
Tr(exp(—tA*)) on a model space M* (in the case at hand a sphere): this is 
achieved by symmetrization. 

Our third method is described in the Appendices as follows: 
The Diagram on the following page summarizes the relationship of the 

three methods. 
It is quite clear from the chart that the isoperimetric profile plays a central 

role. In fact, one could state Theorems V and VI in terms of the isoperimetric 
profile and &minD2(9) (the diameter appears as a scaling factor). The geo
metric assumption rmm(g)D2(g) > (n — \)ea2 implies a good control on the 
isoperimetric profile (see Appendix I). Any improvement on the estimates on 
the isoperimetric constants or on the isoperimetric profile will lead to better 
estimating theorems. 

G. From vanishing to estimating theorems: an account. The first 
steps towards answering Questions (Ql) and (Q2) in §E (using analytic meth
ods) were given by P. Li ([Li], 1979), in the case of Betti numbers. The main 
ingredients in P. Li's paper are inequality (L) (Appendix II), Kato's inequality 
(Kl) (§E), J. Moser's iteration method (Appendix V) and Sobolev inequal
ities. The main difficulty in applying J. Moser's method is to control the 
constants in the Sobolev inequalities, in terms of (a minimal set of) geometric 
data on (M, g). In [Li], P. Li makes use of an isoperimetric inequality due 
to Ch. Croke ([Cr], using dimension, volume, diameter and Ricci curvature 
of(M, g)). P. Li's paper was later improved by S. Gallot ([Gal-2], 1980-1981) 

Sobolev Constants and A2 

Appendix VI 

Second Method 
(D. Meyer's) 
Appendix III 
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Isoperimetric Profile 
Appendix T 

Symmetrizaticm of 
parabolic equation 

Appendix VII 

Third Proof 
(Heat eq.) 

Appendix IV 

Let us summarize : 

Isoperimetric Profile 
Appendix I 

Symmetrizaticm 
Appendix VII 

Sobolev and À2 
Appendix VI 

Elliptic Theory 
J. Moser's 
Appendix V 

1 s t proof 
P. Li's 

Appendix II 

2n d proof 
D. Meyer's 
Appendix III 

3 r d p roof 
Heat Eq. 

Appendix IV 

DIAGRAM 

in two directions: the results are stated in a more general context; S. Gallot 
establishes new isoperimetric inequalities giving a qualitatively sharp control 
on the Sobolev constants. His final results depend on (dimension, diameter 
and Ricci curvature of (M, g)). 

Since 1981, new analytic and isoperimetric methods have been developed. 
In [Bé-Ga], we initiated the heat equation method described in §F and Ap
pendices IV and VII. This was then improved in [Bé-Be-Gal and Bé, Chap
ter VI]. At the same time, following the lines of [Bé-Ga], the method of sym-
metrization of elliptic inequalities was applied in [Garni] and more recently 
in [Gam2]: §F and Appendices II and VII. 

Quite recently, D. Meyer ([Me2], 1984) developed another method to an
swer Question (Ql), and possibly Question (Q2) ([Me3], 1986): see §F and 
Appendix III. 

H. Possible extensions of the methods. In this paper, we only deal 
with closed Riemannian manifolds. Exactly the same methods would apply for 
compact Riemannian manifolds with boundary, provided Dirichlet conditions 
are assumed on the boundary (see [Bé-Ga, Bé-Be-Gal]). For generalizations 
to the compact case (with boundary and Dirichlet or Neumann conditions on 
the boundary), we refer to [Co and Me2-3]. 

In §E, we gave examples in which one can apply the methods of this paper. 
Other examples include the following geometric or topological invariants: the 
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dimension of the space of Killing or conformai vector-fields [Wu]; the A-
genus, the dimension of the moduli space of an Einstein metric [Gal-3, Bé-
Ga]; pinching and Betti numbers [Garni, Hu]; minimal immersion into the 
sphere [El]; harmonic maps [Ad-Su, Ur]; pinching theorems [Gal, Garni, 
Bé-Be-Gal]) , . . . . 

For the complex case, we refer to the reviews [Sil,2, Sh-So, Wu] and to 
[De]. 

In some cases, one can extend the methods to noncompact manifolds [Wu, 
Do]. 

Finally, we mention [Bé-Be] and the survey [Ro], where the estimates 
involve integral norms of the function 3i\x) instead of the L°° norm &min 

(see also Note added in proofs at the end of the paper). 

I. Final comments. Theorems V and VI (§E) show that curvature es
timates plus scaling imply global restrictions on the manifold M. One can 
also view these theorems as obstructions to the existence of special metrics 
on the manifold M: this is a very important problem in geometry (see also 
the motivations given in the Introduction). 

The methods which have been used in order to study this type of problem 
involve both geometric techniques and analytic techniques. 

On the purely geometric side, one finds the classical comparison theorems 
(Bishop-Gromov, Rauch, Toponogov) and an extensive use of geodesies. 

More recently, proofs have used minimal surfaces as a tool for proving 
geometric theorems (as a 2-dimensional generalization of geodesies, with much 
more analysis involved). 

In many problems, a natural Weitzenböck formula plays a central role, and 
we in fact deal with an extension of the Bochner Technique; see §H. 

In the diagram which appears on the next page, we list some geometric 
results on the structure of a Riemannian manifold, under a certain curvature 
assumption (1st column). Column 2 lists results obtained by a geometric 
method (which may involve analysis, as in the case in which minimal sur
faces are used); column 3 lists results obtained by the Bochner technique. 
The comparison of columns 2 and 3 is quite instructive (compare with [Ka, 
Yaul,2]). 

The assumption rm'm(g)D2(g) > (n-l)ea2 in §E, Theorems V, VI and Ap
pendix I is quite natural in view of M. Gromov's precompactness theorem (see 
[Sa or Bé, Chapter VI]). For counter-examples showing that (n, £, a, D(g)) is 
a minimal set of geometric assumptions in order to insure the validity of the 
theorems, we refer to [Bé, Be-Ga, Gal-3]. 

As we already pointed out before, Theorems V and VI are quite effective 
in the sense that they actually permit explicit computations of the bounds. 
Numerical experiments [Bé-Ga, Garni] seem to show that 

(i) (Symmetrization -f P. Li's inequality (L)) gives sharper results than the 
other methods when \&minD2(g)\ is small; follow D. Meyer's method and the 
heat equation method; 

(ii) Heat equation methods give sharper results than the other methods 
when \<9?minD2(g)\ is large; 
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Curvature \JMethod 
Assumption \ ^ 

Positive curvature 
operator 

curvature op. > —a2 

Sect. curv. pinching 

Sect. curv. > - a 2 

|Sect. curv.| < k 

Sect. curv. > 0 

Ricci curv. > —a2 

Ricci curv. > 0 

Ricci curv. > 0 

Seal. curv. > 0 

Geometric (does not 
exclude using analysis) 

Sphere theorem: 
J. D. Moore [Mo]; 
M. Micallef-J. D. Moore 
[Mi-Mo] 

Sphere theorems: 
[Che-Eb] and [Sa] 

Bounds on Betti numbers: 
M. Gromov [Gr l ] 2 

Almost flat manifold theorem: 
M. Gromov [Bu-Ka]2 ; 
compactness theorem: 
M. Gromov [Gr3]3 

Soul theorem: J. Cheeger, 
D. Gromoll, W. Meyer 
[Che-Eb] 

Bound on 1st Betti number: 
M. Gromov [Gr2]2 ; 
precompactness theorem: 
M. Gromov [Gr3]2 ; 
isoperimetric estimator: 
Appendix I in this survey2 

Structure theorems: 
J. Cheeger-D. Gromoll, 
J. Milnor [Che-Eb]; 
M. Gromov [Gr3]; 
R. Schoen and 
S. T. Yau [Sc-Yau] 

7Ti finite: S. Myers [Che-Eb] 

Structure theorems and 
positive energy: R. Schoen 
and S. T. Yau [Ka] 

Bochner analytic 

Vanishing theorems for 
Betti numbers: 
D. Meyer [Mel]; 
S. G allot and D. Meyer 
[Ga-Me] | 

Bounds on Betti numbers: 
P. Li [Li] and this survey2 

Bounds on Betti numbers: 
P. Li [Li] and this survey2 

Bound on 1st Betti number: 
P. Li [Li] and this survey2 

"Vanishing" theorem for 
1st Betti number: 
S. Bochner [Wu] 

Vanishing theorem for 
1st Betti number: 
S. Bochner [Wu] 

Vanishing theorem for 
A-genus: A. Lichnerowicz 
[Lz]; Structure theorems 
and positive energy 
M. Gromov and B. Lawson 
[Gr-La]; E. Witten [Ka] 

2 D(g) bounded from above; 
3 D(g) bounded from above, V(g) bounded from below. 

file:///JMethod
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(iii) (J. Moser + Sobolev + P. Li) does not give the best numerical results, 
but sometimes works when the other methods fail [Garni]. 

Appendix I: The isoperimetric profile. Let (M, g) be a closed Rie-
mannian manifold. An isoperimetric inequality on (M, g) is an estimate from 
below of the ((n — l)-dimensional) volume of the boundary dQ of a smooth 
open submanifold H, in terms of the (n-dimensional) volume of H. Since Q 
and M\U have the same boundary, we need consider relative volumes. We 
define the isoperimetric profile ("function" in [Bé]) h(M,g;s) of (M, g) as: 

fc(M, g; s) = inf {vol(d(l)/V {g) : O c M 
smooth open submanifold such that vol(H) = sV(g)}. 

for s G [0,1] (V(g) is the volume of (M, g)). 
An isoperimetric estimator on (M, g) is a function H : [0,1] —> R+ such 

that ft(Af, 0; s) > # ( s ) for all s G [0,1]. 
Classically, one defines the following isoperimetric constants on (M, g) : 

I{M,g) = inf{vol(an)/min[vol(n),vol(M\Q)] (n-1) /n: Q C M}, 

hc{M,g) = inf{vol(an)/min[vol(n),vol(M\n)]: H C M}, 

where the infimum is taken over all smooth open submanifolds of (M, g). The 
constant 7(M, g) is called the isoperimetric constant of (M, #), and hc{M, g) is 
known as J. Cheeger's isoperimetric constant. Clearly, one has the inequalities 

(a) 7(M, gWg)1'» = inf{fc(M, </; a)^»-»'» : . G [0,1/2]}; 

(b) M M , 0 ) = inf{MM,0;5)/s: 5 G [0,1/2]}. 

By (a), one has the isoperimetric estimator H/(s), 

JT/(fl) = / (M, ^)V(^)1/n min[«, 1 - s ] ( n" 1 ) / n . 

This estimator is used in [Bé-Ga and Garni] with a "double-disk" as model 
space. 

By (b), one has the isoperimetric estimator Hc{s), 

Hc(s) = hc(M, g) min[s, 1 - s]. 

This estimator is used in [Bé, Chapter IV] to give a proof à la Faber-Krahn 
of J. Cheeger's lower bound on the first nonzero eigenvalue of (M, g). 

The proofs given in Appendices VI and VII (Theorems VI.3 and VII.2) 
rely on the assumption that (M, g) has an isoperimetric estimator of the form 
HR(S) — h(Sn(R), can; s) for some positive number R, where (Sn(iï),can) 
is the canonical sphere of radius R in R n + 1 (in fact, we could use other 
isoperimetric estimators, as explained in [Bé, Chapter IV]). Such an estimator 
(i.e. such an R) is provided by the following theorem [Bé-Be-Gal]. 

2.THEOREM. Let (Mng) be a closedC°° Riemannian manifold, such that 
rmin{g)D2{g) > (n ~ 1)£Û:2 where a G R+ and e G {-1,0,1}. Then, for all 
«€[0,1] , 

h{M,g;s) >h(Sn{R),caxi\s) = R-1h(Sn(l),<i!m-,s), 



THE BOCHNER TECHNIQUE REVISITED 387 

where 

R = R(n,6iQ 

a(n,e,a) = < 

c,D(g)) = D(g)/a(n,e,a), 

aui^Ur cos"-1 tdt) 

{l + nun)
l/n-l 

, aC(a) 

- l / n 

if s = l, 

if 6 = 0, 

if e = -l 

*wn = I sinn 1t dt, 
Jo 

> C(a) is the unique positive root of the equation 

; + xshi)71'1 dt = un. : ƒ (cht 
Jo 

REMARK. The assumptions in Theorem 2 are those of the pre-compactness 
theorem of M. Gromov (see [Sa or Bé, Chapter VI]). For some properties of 
h(M, g\ s) we refer to [Ba-Pa]. 

A slight generalization of the notion of Schwarz symmetrization (see e.g. 
[Ba or Bé, Chapter IV]), and Theorem 2 will enable us to compare functions 
on M to radial functions on Sn. This symmetrization preserves the Z/p-norms 
of the functions, and decreases energies or more generally the Lp-norms of the 
gradients (up to normalizing constants). These two simple (and classical) facts 
are the key for estimating Sobolev constants on (M, g) in terms of Sobolev 
constants on Sn (Appendix VI), and for comparison of elliptic or parabolic 
inequalities (Appendix VII). 

The underlying philosophy is that results such as Theorems V and VI (§E) 
should be stated as: one can bound ô(E) in terms of &minD2 (g) and a good 
isoperimetric estimator for (M, g). 

Appendix II: Using P. Li's lemma. The following general lemma has 
been used by P. Li [Li, Lemma 11, p. 460] in the context of differential forms. 

1. LEMMA. For a smooth section s of the fiber bundle E over the Rie-
mannian manifold (M,g), let 

NU = sup{|»U '-x€M}, \\s\\l = / \s\l dvg{x), 
JM 

L(s)=Y0l(M,g)\\s\\lo/\\s\\l 

Given a finite dimensional subspace F ofC°°(E), we have 

(L) dim F < Zsup{L(s): s G F\{0}}, 

where I is the rank of E. 

Proof. In this proof, orthonormal means orthonormal with respect to the 
L2(i?)-real inner product given by 

(s , t )»->/ (s{x),t{x))xdvg(x). 
JM 
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Let N = dim F and let {ei, • • • , e^} be an orthonormal basis of F. Define a 
function ƒ on M by 

/(z) = f > ( s ) | 3 . 

The function ƒ does not depend on the choice of an orthonormal basis of F: 
indeed, ƒ (x) is the trace of the kernel of the orthogonal projection onto F, 
evaluated at the point (x, x). 

Let xo be a point at which ƒ achieves its maximum. We can then write 

(*) N= f f(x)dvg(x)<V(g)f(x0). 
J M 

Consider the linear map S : F —+ EXo, defined by S s = s(xo). We can write 
F as the following orthogonal sum: F = Ker S © (KerS)1-. 

Take an orthonormal basis {/i, . . . , / ;v} of F, adapted to this decom
position of F , i.e. {/ i , . . . , /m} is an orthonormal basis of (Ker-S)-1 and 
{/m+iî • • •, /N} is an orthonormal basis of Ker S. Clearly, we have the in
equality m < rank(#) < / = dimEXo. Using the invariance of ƒ referred to 
above, we can write 

m 

/(so) = £ l/^°)|2 ^ lsM\\4l: s « F> \\»h = !}• 
i=l 

The lemma follows immediately from this inequality and (*). D 
In section (a) (resp. (b)), we use P. Li's lemma together with Sobolev 

inequalities (resp. symmetrization of elliptic inequalities) to answer Questions 
(Ql) and (Q2) of §E. 

(a) P. Li's lemma and Sobolev inequalities. For 1 < g, let p satisfy 
1 < P < nq/(n — q) and p < oo. Define the Sobolev constant £(n; p, q) of the 
canonical unit sphere Sn by 

(a) E(n;p, q) = sup j | | ƒ | | p / | | # | | , : ƒ G W^(Sn), ƒ * 0, J ƒ = 0 

(see [Aul, 2]). 
For n > 3, define the constant on by 

(b) an = S(n; 2n/(n - 2), 2) vol(5n)1 / n . 

For n — 2 and 1 < v < oo, define the constant a 2^ by 

(c) a2iV = E(2; 2i/, 2) v o l ^ ) ^ - 1 ) / 2 " . 

For n > 2 and v > 1, define the function 5 : R+ —» R+ by 
oo 

(d) £(n,i/;x) = JJ(XI/*(2I/» - 1)~1/2 + 1)2"~\ 
*=0 

(e) If the closed Riemannian manifold (Mn,g) satisfies rmin(^)i^2(öf) > 
(n — l)e:a2 then, by Appendix I, Theorem 2, there exists a positive number 
R = D(g)/a(n, £, a) such that ft(M, #; s) > h(Sn(R), can; s) for any s € [0,1]. 
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By Appendix VI, Theorem 3, we then conclude that the following Sobolev 
inequalities hold: 

( For n > 3, 

V/ e W^iM), | |/ | |an/(„-2) < V(g)-^[Rc-n\\dfh + | | / | | 2 ] ; 

For n — 2 and any v > 1, 

{ Vf € W^(M), \\f\\3v < V{g)-W2v[R<,iAdfh + WfH 
3. THEOREM. With the above notations and under the assumption 

rmm(g)D2(g) > (n - l)ea2, 

let E(X) denote the space of eigensections of A associated with the eigenvalue 
A. Then, 

dimE{\) < lB(n,u;D(g)(X-âêm-m)1/2a/a(n,e,a)) 

where 
f J /E [1 ,OO[ and <r = <72,î  for n = 2; 
\ if = n/(n — 2) and a = <rn, for n > 3. 

REMARK. In particular, Theorem 3 gives an upper bound for 6(E) = 
dimi£(A), as stated in §E, Theorem VI. 

PROOF OF THEOREM 3. Multiplying the Weitzenböck formula (W) by 
s, we can write (see §E) 

(As, s) = (As, s) + {&8, s) = \ A((s, s)) + \Ds\2 + (Ms, s). 

Using the second Kato inequality (K2) of §E, we obtain the following dis
tributional inequality: 

(4) A(H)<(A-^m i n)H, 
for any s G E(X). 

Taking ƒ = \s\ and a = (A — ^ m i n )+ , we can apply Appendix V, Theorem 
3 (J. Moser's iterative method) with 6 = 1 and 7 = RanV(g)~1^n (for n > 3) 
or 7 = JRt72,^Vr(^)_^~1^2iy (for n = 2). The result follows from inequality 
(L) and Theorem V.3. D 

5. COROLLARY. In the preceding context, there exists a number 6(n,£, a), 
such that (D2(g)&mm)- < 6(n,e,a) implies 6(E) < I. 

PROOF. Use the fact that limx_>o+ B(n, v\ x) = 1, and observe that 6(E) < 
J + l = • « ( £ ) < J. D 

6. THEOREM. Let NE(X) be the counting function for the eigenvalues of 
the rough Laplacian A acting on C°°(E), i.e. 

NE(X) = #{j:X3<X}, 

where Xi < Â2 < • • • / +00 are the eigenvalues of A. Then, NE(X) < 
Bfa^RX1/2^, with 

( a = an, v = n/(n — 2), if n > 3; 

\ o = 02,^, ^ ^ [1, oo[, «ƒ n = 2. 
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PROOF. Let IP be the direct sum of the eigenspaces of A, corresponding 
to eigenvalues less than or equal to A. One cannot apply directly the proof 
we gave for Theorem 3, because inequality (4) does not hold for any s G ? . 
_ F o r k > 2, let Sk = sup{||s||fc/||s||2: s G ^ \{0}} . By P. Li's lemma 
NEW = dime' < S^0V(g). It therefore suffices to bound SQQ. Let {si} be 
an orthonormal basis of IP, given by eigensections of A, Asi = Â ^ . For 
any s G IP, we write s = ^2i=1 a* s», where N = NE(X) = dim^7, and hence 
As = X)üi XiQiSi- The map [0, X]N 3 (//i, . . . ,fxN) h-> || YliLi P%ai8i\\k being 
convex, its supremum is achieved on one of the vertices of the cube [0, X]N, 
so that we can write 

||A*|U < A /]a*8i 
iei 

where ƒ is a subset of {1,2 , . . . , N}. By definition of Sfc,we have 

|As|U < XSk 

iei 

< XSk\\s\\2. 

As in the proof of Theorem 3, we have the distributional inequality 

A(kl) < |Â8|. 

Multiplying this inequality by | s | 2 f c - 1 , integrating and applying Holder's in
equality, we obtain 

| | r f |S | f c | |2
2<A;2(2fc-l)-1 | |^-1 | |Â5 | |2 f c , 

i.e. 

<\s\%<k{2k-l)-^\^S*k\\s\t 
Assuming that (M, g) satisfies the Sobolev inequality (1), we obtain 

Safcn/(»-3) ^ (R*1/2°nk(2k - 1 ) - V 2 + l)^kV(g)-^nk S2k, 

for n > 3, and 

S2k» < {RXl,2o2,vk{2k - l ) - 1 / 2 + \)llkV{g)-lv-W>vS*k, 

for n = 2 and any v >\. 
Taking k = {n/(n — 2))% i G N when n > 3, or k = i/*, i G N when n = 2 

(see Appendix V), we obtain an upper bound for Soc It then suffices to apply 
inequality (L) as we already mentioned above. D 

REMARK. From Theorem 6 and Appendices I and V, one can deduce that 
the eigenvalues Xi of A (this includes the usual Laplacian A on functions) can 
be bounded from below as follows: 

KD2{g)>C(n,rmU9)D2{g))i2/n, 

for some constant C, for i large enough, and for n > 3. For n = 2, one also 
obtains an estimate, but it is not optimal, we find z^ - 1 ) / " instead of i. 
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(b) P. Li's lemma and symmetrization of elliptic inequalities. The 
proofs of Theorems 3 and 6 rely on inequality (Z,), i.e. on an estimate of 
^(oOlklloo/lkll! f° r C°° sections which satisfy a (distributional) inequality of 
the form A|s| < a|s|, for some real number a. In section (a), we applied 
J. Moser's iteration scheme (Appendix V) and the estimates on the Sobolev 
constants given in Appendix VI. One can directly study the elliptic inequality 
A|s| < a|s|, by using a symmetrization method. This is done in Appendix 
VII, where the following theorem is proved. 

7. THEOREM. If the C°° section s of E satisfies the distributional in
equality A\s\ < a\s\, a € R+, and if (M,g) satisfies rmm{g)D2(g) > 
(n — l)ea2, we have 

\\*\\loV{g)/\\s\\l <vol(S") [ v o l ^ - 1 ) r V ? ( r ) s i n » - 1 rdrl 
I Jo J 

where b = aD2(g)/a2(n, £, a) {see Appendix I), where <pb is the regular solution 
of the differential equation 

y"(r) + (n - l)cotgr y'(r) + by(r) = 0 on [0,7r[ 

which satisfies <Pb{0) = 1, and where r*, is the first positive zero of (pb. 

This theorem provides another proof of Theorem 3, using P. Li's lemma. 
It is easy to see that the right-hand side of the inequality in Theorem 7 
goes to 1 when b goes to zero, so that Theorem 7 also implies Corollary 5. 
Numerical experiments [Garni] show that Theorem 7 gives sharper results 
than Theorem 3 and Corollary 5 (the same isoperimetric inequalities were 
used to derive both Theorem 7 and Theorem 3). 

Appendix III: Application of Daniel Meyer's lemma. In [Me2], 
Daniel Meyer introduced the following lemma which is somehow the dual 
version of P. Li's inequality (L). 

LEMMA. Let F be a finite dimensional subspace of the space L2(E) of 
L2 -sections of the Riemannian fiber bundle E over the closed Riemannian 
manifold (M, g). Assume that the dimension N of F is larger than the rank I 
of E. Then there exists a section s in F such that 

(M) \\s\\i<C{N,l)V{9)l/2\\sh, 

where the function C(N, I) is given by 

C{N, I) = {N/1)^2T{{1 + l)/2)r(7V/2)/r(//2)r((7V + l)/2) 

(r(z) is the usual gamma function). In particular, C(N,N) = 1 and the 
function N i-» C(NJ) is a (strictly) decreasing function of N. 

The proof of this lemma is quite intricate, we refer to [Me2]. 
COMMENTS. In the proof of S. Bochner's theorem (§D), we used the fact 

that the vector space of parallel sections (Ds = 0) of E has dimension less 
than or equal to the rank / of E. From the equality d\s\2 — 2(Ds,s), we 
deduce that the point -wise norm \s\x of a parallel section is constant on M. 
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P. Li's inequality (L) (Appendix II) shows that if F is a finite dimensional 
subspace of C°°(E), whose elements have constant norms, then dim F is less 
than or equal to /. In fact, the same is true if any element s in F has "almost 
constant" norm in the sense that Hsll̂ oV^ôOlIsH^2 < (/ + 1)//. This is exactly 
how we used (L) in Appendix II. On the other hand, Daniel Meyer's lemma 
shows that if dim F is bigger than /, then there exists a section s in F whose 
norm is "far from being constant", in the sense that the function \s\ is not too 
close to its mean value over M: indeed, for the section s given by the lemma 
we have 

|2 

-V(g)-1 f \8\vt 
JM 

>[C(Ar , / ) - i - i ] y (^ ) - i | | s | | î . 
12 

We now show how one can answer Question (Ql) of §E by making use of 
D. Meyer's lemma. 

Let us assume that F = {s € C°°(E): As = 0} has dimension at least 
/ + 1 . Multiplying the Weitzenböck formula (W) by s and integrating over M, 
gives 

0 = ƒ (\Ds\2 + (<%s,s))vg> [ (\Ds\2+^min\s\2)vg. 
JM J M 

Applying Kato's inequality (Kl) gives: 

(1) ƒ \d\s\\2vg < f \Ds\\ < ( - ^ m i n ) ƒ \s\\. 
JM JM JM 

For s as given by the above lemma, let ƒ = |s| and h = ƒ — V(g)~1 fM fvg. 
For ƒ, we can write (N — dim F > / + 1): 

2 

and hence 

( / fvg) <C2(N,l)V(g) f f \ 

f h\>(l-C2(l + l,l)) [ f \ . 
JM JM 
f M JM 

Since df = dh, we can use (1) and conclude that 

f IdhfvgKi-^^l-C^l + lJ))-1 [ h \ . 
JM JM 

Recalling that JM hvg = 0, and using the variational characterization of the 
first nonzero eigenvalue À2(M, g) of (M, #), we obtain 

(2) A 2 ( M , ^ ) < ( - ^ m i n ) ( l - C 2 ( / + l , / ) ) - 1 . 

Under the assumption that (M, g) satisifes 

fmm{g)D2(g) > (n — l)£a2 (see Theorem 2 in Appendix I) 

we have the following lower bound for A2(M, g) (Appendix VI, Corollary 8): 
A2(M, g) > na2(n,e1a)/D2{g), and hence finally 

na2{n,e,a2){l - C2(l + 1,1)) < -<9?minD
2{g). 
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We have proved the 

3. PROPOSITION. Assume that the closed Riemannian manifold (Mn,g) 
satisfies rm[n(g)D2(g) > (n— l)eo:2. Then there exists a number b(n, e, a) such 
that the inequality ~^m'mD2(g) < b(n,e,a) implies that 6(E) < I [6(E) = 
dim{s eC°°(E): As = 0}). 

The basic point for Proposition 3 is inequality (2) which shows that any 
lower bound for A2(M, g) (e.g. J. Cheeger's lower bound) will give a version 
of Proposition 3. Theorem 2 of Appendix I gives a very effective method for 
actually computing 6(n, e, a). 

D. Meyer's lemma, as stated above, does not give an immediate answer 
to Question (Q2) of §E. However, D. Meyer has informed me that one can 
improve the lemma in order to apply it to answer Question (Q2) (see [Me3]). 
It should also be pointed out that D. Meyer's lemma applies in a very general 
context, e.g. if M has a boundary (see [Me2] for applications in this direction). 

Appendix IV: Using the heat equation. In this appendix, we ap
ply Kato's inequality for the heat kernel of the rough Laplacian (Theorem 
7 below), and the isoperimetric inequality for the heat kernel on functions 
(Theorem 8) to answer the Questions (Ql), (Q2) raised in §E. 

Recall from §E that we are given a Laplacian A acting on the C°° sections 
of E\ A satisfies the Weitzenböck formula (W): A = A - h ^ , where A is the 
rough Laplacian associated with the quadratic form fM \Ds\2vg. We denote 
by {A;}i>i (resp. {\i}i>i) the nondecreasing sequence of the eigenvalues of 
A (resp. A) counted with multiplicities. 

Integrating the Weitzenböck formula (W), we obtain 

(1) f (As,s)vg= f (\Ds\2 + (^s,s))vg> [ (\Ds\2+^min\s\2)v9. 
JM JM JM 

The variational characterization of the eigenvalues and (1) give 

(2) Xi >Â*+^min , for all i > 1. 

It is clear that inf{/M \Ds\2vg: fM \s\2vg = 1} = Ai > 0; furthermore, if 
Ai = 0, then the associated eigenspace consists of parallel sections (Ds = 0), 
and hence has dimension at most /: 

(3) If Ai = 0, multiplicity (Ai) < / 

(compare with §D). 
We can now use (2) and (3) to give a simple proof of S. Bochner's theorem 

(§B, Theorem II). 
Define the partition functions 

/ OO 

Z(t) = ^ e x p ( - A ^ ) = Trace exp(-^A); 

(4) t 1 

Z(t) = ]Pexp(-A;£) = Trace exp(-tA). 
v i=i 
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By (3), we have that 

(5) lim ~Z(t) < I 
t—*oo 

In order to prove S. Bochner's theorem, write 

6(E) = dim{s G C°°{E) : As = 0} 

= mult, of 0 as eigenvalue of A (possibly 0) 

< Z(t), for any t > 0. 

Using (2), we can also write 

6(E) < exp(-^m i n*)£(*), for any t > 0. 

If ^min > 0, (5) gives 6(E) < \imt-,ooexp(-^mmt)Z(t) < I. U &m]n > 0, 
we obtain similarly 6(E) < 0. 

Notice that if ^ m i n > 0 and 31 (x§) > 0 at some point XQ in M, (1) implies 
that Ai > Ai > 0, and hence we conclude as above that 6(E) = 0. 

As was first pointed out by M. Gromov (private communication), the in
equality 6(E) < Z(t) suggests that one should be able to bound 6(E) by using 
heat equation techniques. This is indeed true, as was shown in [Bé-Ga] (see 
also [Bé, Chapter VI]). For this purpose, one needs two ingredients: Kato's 
inequality (Theorem 7 below) which bounds Z(t) from above by / times the 
partition function Z(t) of (M, g) and Theorem 8, which bounds Z(t) from 
above under certain geometric assumptions. 

Denote by {A^(M, g)}i>i the nondecreasing sequence of the eigenvalues of 
(M, g) for the Laplacian acting on functions. Define the partition function 
Z(M,g;t) by 

oo 

(6) Z{M,g;t) = £ exp (-A,-(M, <;)*). 
i = i 

For the following theorem, we refer to [H-S-U] or [Bé, Chapter VI and Ap
pendix A]. 

7. THEOREM. Let Z(t) be the partition function for the rough Laplacian 
acting on C°° sections of a Riemannian vector bundle E of rank I over the 
closed Riemannian manifold (M, g) (formulas (4) and (6) supra). Then, 

Z(t)<lZ(M,g;t). 

Note that Theorem 7 is best possible, because equality holds for E = 
M x R 1 , the trivial bundle. 

From Theorem 7 and Appendix VII, Theorem 7, we finally deduce the 

8. THEOREM. Let E be a Riemannian vector bundle of rank I over a 
closed Riemannian manifold (Mn,g) which satisfies rmin(g)D2(g) > 
(n — l)ea2 (see Appendix!). For the Laplacian A = A+<^ acting on C°°(E), 
one has the inequalities 

Z(t) < lexp(-3?mint)Z(Sn,can; fa2(n,£, a)/D2(g)), 
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where a(n,£,a) is defined in Appendix I, Theorem 2. In particular 

(9) 6(E) = dimKer A < / inf F(t), 

where F(t) = exp(-^minD
2(g)t)Z(Sn,caxi;ta2(n,e,a)). 

CONSEQUENCES, (i) Take t = 1 in (9): this gives an upper bound on 6(E), 
involving n, e, a and ^mmD2(g); 

(ii) Take e = — 1, ot = 1 (by scaling) and minimize the RHS of (9) to get a 
number rj such that — &m{nD

2(g) < r\ implies 6(E) < /; 
(iii) Take E = M x R, A = A and get an upper bound for N(X) = 

# 0 ' : \j(M,g) < A}, namely 

N(X) < eZ(Sn,vm;a2(n,e,a)/\D2(g)y, 

(iv) Take E = T*M, A = Hodge-de Rham Laplacian on 1-forms and get 
bounds on b\(M) in terms of n,e, a; 

(v) Take Ü? = /\p T*M, A = Hodge-de Rham Laplacian on p-forms and get 
bounds on bv(M) in terms of n, £, a and KD2(g) where K is an upper bound 
for the absolute value of the sectional curvature of (M, g)', see [Bé-Ga]; 

(vi) Take lim^oo \og(Z(t) — 1), and get another proof of Appendix VI, 
Corollary 8. This improves the classical Lichnerowicz-Obata theorem [B-G-
M, Bé-Me]; 

(vii) Using the fact that Z(Sn,can;£) < Ant~
n/2 + Bn, for some positive 

constants An, Bn, one can deduce from Theorem 8 and (iii) lower bounds on 
the eigenvalues of A, of the form 

XiD2(g) > C(n, £, a)i2/n, for n > 2 and i > 2 

(compare with the last remark in Appendix II, part (a); for references on such 
bounds, see [Ch, Chapter III, XII; Bé-Ber, Chapter 11; Bé, Chapter V]. 

Appendix V: J. Moser's iteration scheme. Let (M, g) be an n-dimen-
sional closed C°° Riemannian manifold. 

Assume that (M, g) satisfies the following Sobolev inequality (recall that 
V(g)=vol(M,g)): 

(1) For any ƒ G W^2(M), || ƒ||2i, < 7||4f ||a + 6V(g)-^-1V2»\\fh, 

for some positive constants 7 and 6, where v is any number in [1,00 [ if n = 2 
and v — n/(n — 2) when n > 3 (in that case, n = 2v/(v — 1)). Notice that 
Holder's inequality implies that 6 > 1. Define B = Bnj : R+ —• R+ by 

00 

(2) Bn,6(x) = YlixSpv* - l)~1'2 + 6)2»-\ 

for n > 2 and 6 G R+. 

3. THEOREM. Let ƒ G Wl>2(M) be a nonnegative continuous function 
such that Af < af in the sense of distributions, for some real number a. 
Then, if a < 0, ƒ must vanish identically. Ifa>0, and if (M, g) satisfies the 
Sobolev inequality (1) then 

\\f\\lV(g)/\\f\\l < Bn,s(lV{g)^-Wal'\ 
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where v G [1, oo[ if n = 2, and v = n/(n — 2) if n > 3. If A / = af, one can 
remove the assumption ƒ > 0. 

REMARKS, (i) The method of proof is due to J. Moser (see [Gi-Tr, 
P. 180]); 

(ii) The assumption that ƒ is continuous is not really necessary; it is sat
isfied in the context in which we apply the theorem (Appendix II, part (a)) 
and simplifies the proof; 

(iii) Recall that our Laplacian is A / = —f" on R; 
(iv) The best results are obtained when 6 = 1 and n > 3. Indeed, when 

n > 3, we can take for v the limit value n/(n — 2). In the case n — 2, we 
cannot take v = oo because W1,2 does not embed in L°° [Aul, Chapter 2]; 

(v) We give the proof of Theorem 3 for completeness (it is very simple), 
and because we use it in the proof of Theorem 6 in Appendix II. 

PROOF OF THEOREM 3. If a < 0, multiplying the inequality A / < af 
by ƒ and integrating over M gives fM\df\2vg < a JM f2vg. It follows that ƒ 
vanishes identically. For a > 0, multiply the inequality A / < af by f2k~x 

(k > 1), and integrate. An elementary computation gives 

(4) \\d{fk)\\2<a^k(2k-\)-^\\f\\*k. 

Let /i = [y — l)/2v. Apply Sobolev inequality (1) to /fc, using (4); this gives 

||/ fc | |2, < 7«1/2M2fc - 1)-1/2||f\\k
2k + 6V(g)-»\\f%, 

and 

(5) ||fhku < (7V(ff)"a1/3fc(2A - I ) " 1 / 2 + 6)1"'V(g)-'>"'\\fhk. 

Write inequality (5) for k = v%, i = 0 ,1 ,2 , . . . , and multiply these inequalities 
to obtain 

oo 

H/HL < \{[^i{2ui - I)-1/2+^"-VforMi/iii 
i=0 

(we have used the fact that limp-.oo ||/ | |p = ||/||oo)5 where x = r)V(g)fÀa1^2^ 
H=(i/-l)/2v. D 

The following proposition gives the behaviour of Bn = Bn,\ when x goes 
to zero or to infinity. Clearly enough, it also describes the behaviour of Bnj-

6. PROPOSITION. The function Bn = Bn^\ satisfies the inequalities 

ƒ exp(2xy/U/(y/Iy — 1)), when 0 < x < 1, 
Bn{x) ~ { B n ( l ) x 2 ^ / ( - 1 ) , when x > 1. 

In particular, lima;_,o+ Bn(x) = 1, and Bn(x) < Bn(l)x
n for x > 1, when 

n > 3 . 

PROOF. The second inequality is obvious. In order to prove the first one, 
notice that 

oo 

\ogBn{x) = 5Z2z/~' kst1 + X Z /W ~ 1)~1/2) 
oo 

< 2z Y^ v~i/2 = 2xs/ï/(s/ï - 1 ) . a 
i=0 
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Appendix VI: Sobolev embedding constants. Let {M,g) be an n-
dimensional closed C°° Riemannian manifold with volume V(g). The Sobolev 
embedding theorem states that the Sobolev space W1,q(M), of functions 
whose derivatives of order at most 1 are in Lq, embeds continuously in LP (M), 
for p satisfying 1 < p < nq/(n — q) and p < oo. In particular, there exist 
constants AVA and BPtq such that 

(1) VfeW1'", \\f\\q<APtq\\df\\q + BpJf\\q. 

Indeed, it suffices to cover the manifold M by charts and to apply the classical 
Sobolev embedding theorem in R n , which turns out to be easy because M is 
compact [Aul, Theorem 2.20, p. 44]. 

It is not clear then how the Sobolev constants depend on the geometry of 
(M, g). On the other hand, in many geometric problems, it is quite impor
tant to control the Sobolev constants in terms of the geometry of (M, g) ; see 
Appendix II and [Aul]. 

In this appendix, we show that in order to give upper bounds on the Sobolev 
constants, it suffices to have a good isoperimetric estimator (see Appendix I). 
Such an estimator is given by Appendix I, Theorem 2, in terms of dimM, 
a lower bound on the Ricci curvature of (M, g) and an upper bound on the 
diameter of (M, g). 

We end this appendix with some comments on other methods which were 
used to estimate the Sobolev constants. 

For 1 < p < nq/(n — <?), and p < oo, let £(n; p, q) be the Sobolev constant 
of the canonical unit sphere £ n , defined by 

(2) E(n;p,q)=8upl[\\f\\p/\\df\\q:feW^(Sn), ƒ * 0, J f = 0 J . 

3. THEOREM. Assume that there exists a positive number R such that 
the isoperimetric profile of (M, g) satisfies 

h(M, g\ s) > h(Sn{R), can; s), for all s e [0,1], 

where can is the canonical metric on the sphere Sn(R) of radius R. Then, for 
1 < p < nq/(n — q) and p < oo, 

VfeWl>«(M), H/11,, < SUM^WflU+VigY^-^WflU, 

where Sp,q(M,g) = (V(g)/volSn{l))1/P-1^RE(n;P,q). 

PROOF. One can approximate functions in W1,q by Morse functions. For 
a nonnegative function ƒ on M, and a point A in Sn(R), we define a function 
f\ as follows. Let 5^(<) be the geodesic ball centered at A in Sn(R), such 
that 

(4) vo\BA{t)/vo\Sn{R) - vol{/ > t}/ volM. 

Define f\ as 

ƒ< \lx^dBA{t), 0 < t < s u p / , 
U{X) \ 0 \îx£BA{<S). 
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Now, let ƒ be a Morse function with fM fvg = 0. We write ƒ = ƒ+ — ƒ_, 
where ƒ+ (resp. ƒ_) is the positive (resp. negative) part of ƒ. We define the 
function ƒ* by 

r = (uyN-(f-Ys, 
where N (resp. S) is the north (resp. south) pole of Sn(R). 

Equality (4) implies that the functions ƒ and ƒ* are equi-measurable (up 
to normalizing constants). In particular, 

(5) I0 0 ) ƒ«•ƒ* = JM / = 0. A f = 5 » ( i 2 ) , 
(ii) vol(M)-1 fM \f\P = voKM*)-1 fM. \f*\P 

(see [Ba] or apply the co-area formula [Bé-Me, Appendix A]). 
Let h (resp. h*) denote either ƒ+ or ƒ_ (resp. ƒ+ or ƒ!) . Since ƒ is a Morse 

function, we can easily apply the co-area formula to h. This gives 

(a) f \dh\qvg = [°° f f \dh\q'xda) dt, 
J{h>t} Jt \Jh-*{t) J 

where da is the Riemannian measure on h~x(t). 
Holder's inequality gives 

(b) volh^it) < ( [ |dft|«_1 AH • ( [ \dh\~xda 
\Jh-Ht) J \Jh-Ht) 

Let V(t) = vol{h > t}. By the co-area formula, we also have 

(c) V'(t) = -f \dh\-xda. 
Jh-i{t) 

The assumption on the isoperimetric function of (M, g), (4) and the defi
nition of h*, imply that 

(d) vo l /T^O/vo lM > volfc*-1(0/volSn(iî) 

(we also use the fact that the geodesic balls minimize the volume of the bound
ary, among domains with given volume on Sn(R)). 

Relations (b)-(d) and (4) yield 

[ Idhl*'1 da/vol M > f \dh*\q-x da/vo\Sn{R) 
Jh-^t) Jh*-i{t) 

(h* being radial, equality holds in (b) applied to h*). From equality (a), we 
finally conclude that 

(6) | |dA||«/volM>||d/»l«/volSn(J2), 

i.e. "symmetrization decreases energy" (up to normalizing constants). 
From (5) and (6), we conclude that the number 

5p ,9(M, f f)=sup{| | / | |p / | |d / | | ( / : feW1'", / # 0 , £ / = oJ 

satisfies the inequality 

SP,g(M,g) < (vol(M)/vol(5n(iZ)))1/p-1/«Sp,,(5n(i?),can). 

file:///Jh-Ht
file:///Jh-Ht
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Recalling that \df\ is the norm of the one-form df in the dual metric, an easy 
homogeneity argument gives 

(7) Sp,q(M,g) < (vol(M,g)/volSn(l))1/'>-1/<>RZ(n;p,q). 

In order to finish the proof of Theorem 3, it suffices to take ƒ € W1,q and 
to apply (7) to A = ƒ - Vig)'1 fM fvg, 

\\fi\\p<SP,Mi\\q = Sp,Mh> 
and to notice that 

n/iiP<ii/iiip+^)(1/p-1/9)ii/ii, 
by Holder's inequality. G 

The interesting case for our purposes is when q = 2 and p = 2n/(n — 2) (if 
n > 3) or p € [1, oo[ (if n = 2). However, the case p = q = 2 also deserves 
special attention, as the following corollary shows. 

8. COROLLARY. Let (M,g) be an n-dimensional closed C00 Riemannian 
manifold such that h(M,g\s) > h(Sn(R),can;s). Let A2(M, #) be the first 
nonzero eigenvalue of the Laplacian on (M, g). Then 

\2{M,g) > A2(Sn(#),can) = nR~2. 

PROOF. Apply inequality (7) (proof of Theorem 3), with p — q = 2: for 
any ƒ € W1 '2, fM ƒ = 0, we have 

||/| |2<i2E(n;2,2)||c(f||2. 

By the variational characterization of A2, we have A |̂| ƒH2 < \\dfW2 for any 
such ƒ; similarly, we find that £(n; 2,2) = n - 1 / 2 . The corollary follows. D 

9. COMMENTS. AS was pointed out by E. Bombieri, H. Fédérer and 
W. Fleming, the Sobolev constant of the embedding W1*1 —> L n / ( n - 1 ) can be 
estimated in terms of the isoperimetric constant I(M, g) which we defined in 
Appendix I. More precisely, if C(M, g) is the least constant such that 

V/ eW1'1, igf | | / - o | | „ / ( „ - i ) <C(Af,ff)||4r||i, 

we have the inequality [Ch, Chapter IV], 

(10) 1/2/(M, g) < C(M, g) < 1/1 (M, g). 

In [Li], P. Li used inequality (10) to estimate the Sobolev constants of the 
embedding W1 '2 -+ Lp (p = 2n/(n - 2) if n > 3;p G [1,00[ when n = 2). 

In [Ga3], S. Gallot used I(M,g) and J. Cheeger's isoperimetric constant 
hc(M,g) (see Appendix I) for the same purposes. His method however is 
different from that of P. Li; it does not rely on (10), but on symmetriza-
tion. One can improve S. Gallot's method (still using I(M,g)) by using a 
symmetrization associated with a "double-disk" as in [Bé-Ga]. 

In order to obtain explicit bounds for the Sobolev constants, one still has 
to estimate / (M, g) and hc{M,g) from below, in terms of the geometry of 
(M, g). In [Li], P. Li used estimates of I(M,g) given by Ch. Croke [Cr or 
Ch, Chapter V]. In [Ga2, 3], S. Gallot applied the isoperimetric estimates 
given in [Gal]. 

file:////dfW2
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It follows from Appendix I that given an isoperimetric estimator for (M, g), 
one has lower bounds for I(M,g) and hc{M,g), and conversely. From this 
point of view, Theorem 3 is sharper and more conceptual than [Li and Ga3]. 
Another advantage of Theorem 3 is that it gives bounds for the Sobolev con
stant of the embedding W1,q —» Lp, for all p such that 1 < p < nq/(n — q) and 
p < oo; these bounds are sharper than the ones obtained by applying Holder's 
inequality to the embedding W1,q —• Lnq^n~q^ (q < n), as Corollary 8 shows. 

The proof of Theorem 3 follows classical ideas. We gave it with full details 
for the sake of completeness. The idea of using symmetrization for estimating 
the Sobolev constants was introduced by Th. Aubin and G. Talenti indepen
dently, for the embedding W^q{Rn) -+ Lp(Rn) (see [Aul, Ta, and Bé-Me] 
for a particular case of Theorem 3). 

Using [Bé, Chapter IV], one can generalize Theorem 3 to other isoperi
metric estimators. Estimating the Sobolev constants then reduces to a 1-
dimensional problem (compare with [Aul, Chapter 2]). 

Appendix VII: Symmetrization of elliptic or parabolic inequali
ties. In this appendix, we show how one can estimate H/H^o^CflO/ll/lli? f° r 

a nonnegative solution ƒ of the inequality A ƒ < a/, on a closed Riemannian 
manifold (M, g). We also state a theorem concerning the heat kernel of (M, g). 

We assume throughout that the isoperimetric profile h(M, g\ s) (see Ap
pendix I) satisifes the inequality 

(1) for any s G [0,1], ft(M, g; s) > h{Sn{R), g; s), 

where R is some positive number (see Appendix I, Theorem 2). 
In the context of Appendix II, ƒ is the norm \s\ of a C°° section of a 

Riemannian fiber bundle E over M. For e > 0, define |s|e(a;) = (|s(x)|2 + 
s2)1 /2 . We then have A|s|e < a\s\e. Since \s\£ is a C°° function, we can 
approximate it by Morse functions u£^p such that \u£iP — \s\£\ < e/p and 
\A(u£iP — \s\£)\ < e/p. We conclude that 

Au£,p < A|s|e + - < (a+-) \s\e < —^-r ( a + - V 
p \ pj p-1 \ pj 

l£,P' 

This implies that we can limit ourselves to ƒ a positive Morse function, at 
least for our purposes. 

2. THEOREM. Let (M, g) be a closed Riemannian manifold whose isoperi
metric function satisfies (1). Let f be a positive Morse function on M which 
satisfies the inequality Af < af for some number a > 0. Let b = aR?, and 
let (pb denote the regular solution of the Cauchy problem 

ƒ y"{r) + (n - l)cotgr y'(r) + by(r) = 0, 0 < r < 7r, 

I 2/(0) = 1. 

Let r& denote the first positive zero of (pt>. Then 

imi^(s)/ii/ii!<voi(s")r 

(recall that V(g) = vol(M, g)). 

KS"1'1) f ' <pl{r) sin71"1 rdr 
Jo 

vo 
'o 
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REMARK. Theorem 2 together with Theorem 2 of Appendix I gives an 
effective method for estimating the quantity ||/||2o^(^)/ll/Hi» °y elementary 
numerical analysis. 

PROOF OF THEOREM 2. We introduce the following notations. 

• F(t) = vo\{x G M: f(x) > t}, F is a decreasing continuous function; 

• F(T) — the inverse function of F, F satisfies vol{z G M: f(x)>F(r)} = T; 

• For s G [0,1], we define 

M(s) = {xeM: f(x) > F{8V(g))}, 

the level set of ƒ whose relative volume is s, 

r(s) = 9M(s), U(s)= [ fvg. 
JM{s) 

Recall the co-area formula [Bé-Me, Appendix A] 

f hv9= r if hw\-\ 
JM JO \Jf-l{t) 

(3) hv9= ƒ hldfl^da) dt, 
J M Jo yf-Ht) J 

where a is the Riemannian measure associated with the metric g\f~1(t) on 

rl(t). 
Applying (3) to !{ƒ>*} and differentiating, we have 

(a) F'{t) = -f Wilder. 
Jf-Ht) 

Applying (3) to h = / P 1 M ( S ) and using (a), we obtain 

rsV(g) 
/ % = / 

f(s) 
(b) / ƒ * « „ = / F(tfdt. 

JM(S) JO 

Since A / < a/ , integrating over M(s), applying Green's formula and using 
(a) gives 

aU(s) > f Afvg = f \df\ da > -(volT(s))2/F'(F(sV(g))). 
J M (a) Jr(s) 

Since volM(s)/volM = s, we can apply the isoperimetric inequality (1) 
(with H(s) = h(Sn(R), can; s)); this gives 

aU(s) > -V(g)2H2(s)/F'(F(sV(g))) = -V(g)2H2(s)F'(sV(g)), 

where the second equality follows from the fact that F is the inverse function 
of F. Taking (b) with p = 1 into account, we conclude that U(s) satisfies 

(4) 

( H2{s)Ü(s) + aU(s)>0; 

C/(0) = 0; 

U(o) = v(ff)||/|U. 
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Define the function a(r) = (sin(r/jR))n~1, 0 < r < Rn, and call N (resp. 
S) the north (resp. south) pole of Sn(R): N corresponds to r = 0 and S to 
r = RTT. Let (p be the regular solution of the Cauchy problem 

f u"(r) + {a'{r)/a(r))y'{r) + ay{r) = 0 on [0, R*\, 

I 2/(0) = 7 > 0 

(regularity implies that £>'(0) = 0 ) . As is easily seen, <p decreases from 7 to 0 
on [0, r0] C [0, Rir[, where r0 is the first zero of <p on R+. Call ƒ ̂  the function 
defined on Sn(R) by 

f y?(di8t(JV,a;)), when a: € B{N,r0) C S n (#) ; 

^ ~ I 0, when x & B{N, r0). 

For ƒ ~, define F ^ , JF1 ,̂ M^(s ) , . . . as we did above for ƒ. Let 

s 0 = v o l £ ( ^ r 0 ) / v o l S n ( # ) . 

Since ƒ ̂  is a radial function, the preceding calculations give 

( H2{s)Ü~{s) + atf~(ö) = 0 for s G [0, s0[î 

(5) J £7̂ (0) =0; 
[ ù-(0) = vol(M-) 7 = vol(S"(fi))|| ƒ I * , . 

The classical Sturm comparison trick shows that U^(s)/U(s) is nonincreas-
ing in [0, so[; the function U(s) is nondecreasing in [0,1] and U^(s) is constant 
in [so, 1]. This proves 

6. LEMMA. For all s e [0,1], 

V-(S) = ( v o l ^ C f l J J I I / l o o ) - 1 ^ » < ( v o K A f J H / l l o o ) - 1 ^ ) =V{8). 

It follows from equality (3) that 

/•svol(M) /*svol(M ) 
U{s)= F{t)dt and U~(s)= F~(t)dt, 

Jo Jo 
or equivalently, 

^ 00= f* \\ f \tëF(t vol M) dt= f y(t)dt, 
Jo Jo 

V~(s)= [S\\f~UF~(tvo\M~)dt= fSy-(t)dt. 
Jo Jo 

that the positive nonincreasing functions y 

/ y~(t) dt< y(t) dt for all s e [0,1]. 
Jo Jo 

and 

/o Jo 
Lemma 6 says that the positive nonincreasing functions y and y ""satisfy 

/o 
We can write 

ƒ V ( 0 - »*(«)) d< = f (v - yl(y + vl{t)dt 
Jo Jo 

= (2/(0) + îT(0)) P f o - y~)(t) 
Jo 

dt 
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for some si G [0, s], by the second mean value theorem. We conclude that 
fo lT a (0 at < f° y*{t)dt for all s e [0,1]. 

Using equality (3b) again, with p = 2, we finally obtain 

(voKs^Rmrwir'wrwi < (vowwwir'wm 
To finish the proof of Theorem 2, take <p(t) = <pt(t/R) for 0 < t < RTT, 

note that a'(t)/a(i) = (n — l)cotg(t/R)/R and use polar coordinates about 
the north pole TV to compute || ƒ 112. G 

REMARK. Theorem 2 can be generalized to other isoperimetric estimators. 
The function ƒ is always compared to a radial function (see [Garni] where 
Theorem 2 was proved for a "double disk" instead of a sphere as comparison 
model, compare with [Bé-Ga] where the "double disk" was first introduced, 
and to [Bé, Chapter IV; Gam2] where the sphere appears as comparison 
model). 

Theorem 2 can be extended to deal with parabolic equations. For the proof 
of the following theorem we refer to [Bé-Ga, Bé-Be-Gal and Bé, Chapter 
V]-

7. THEOREM. Let (M, g) be an n-dimensionalC°° Riemannian manifold, 
which satisfies the isoperimetric inequality (1). Let k(M,g\t,x>,y) denote the 
kernel of the heat operator exp(-tfA) on C°°(M). Then 

/ fc(M, g; t, x, x)vg < V{g) sup fc(M, g; i, x, x) 
J M x 

< ƒ ^(^^an;^"2^,^)^ 
Jsn 

where (Sn,can) is the canonical unit sphere in R n + 1 . 

REMARKS, (i) Let m(k) denote the multiplicity of the eigenvalue X(k) = 
k(k + n — 1) of the Laplacian on (S'n(l),can). The right-hand side of the 
inequalities in Theorem 7 is just 

00 

]Tm(/c)exp(-a(/c)/fl2). 
fc=0 

This simple formula, together with Theorem 2 in Appendix I give a very 
effective method for estimating fc(M, g\ t, x, y). 

(ii) An immediate consequence of Theorem 7 is that the isoperimetric in
equality (1) implies lower bounds on the eigenvalues of A, and upper bounds 
on the L°°-norms of the eigenfunctions of A; see [Bé, Chapter V] and compare 
with [Ch, Chapter IV, VI, XII; Bé-Ber, Chapter 11]. 
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