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like a noncommutative version of the Chern character. This opens up a whole 
new subject of "noncommutative differential geometry". Furthermore, the 
algebraic formalism of the behavior of the trace leads one to the theory of 
cyclic cohomology. "But that is the subject for another book [Cn 3]", as 
Blackadar says at the end of his final chapter. (If you can't guess what the 
"[Cn 3]" refers to then you will have to look it up in Blackadar's bibliography.) 

Final verdict: this is an excellent book, combining formidable scholarship, 
impeccable accuracy, and lucid if succinct exposition. It sets a very high 
standard for Springer's commendable new series of MSRI Publications. 
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A standard introductory textbook on ordinary or partial differential equa­
tions presents the student with a maze of seemingly unrelated techniques to 
construct solutions. Usually these unmotivated and boring techniques con­
stitute the total experience with differential equations for an undergraduate. 
Faced with a given differential equation which is not a textbook model, one is 
hopelessly lost without "hints"! 

In the latter part of the 19th century Sophus Lie introduced the notion of 
continuous groups, now known as Lie groups, in order to unify and extend 
these bewildering special methods, especially for ordinary differential equa­
tions. Lie was inspired by lectures of Sylow given at Christiania, present-day 
Oslo, on Galois theory and Abel's related works. [In 1881 Sylow and Lie 
collaborated in editing the complete works of Abel.] He aimed to use symmetry 
to connect the various solution methods for ordinary differential equations in 
the spirit of the classification theory of Galois and Abel for polynomial 
equations. Lie showed that the order of an ordinary differential equation can 
be reduced by one if it is invariant under a one-parameter Lie group of point 
transformations. His procedures were both constructive and aesthetic. 

For ordinary differential equations Lie's work systematically and compre­
hensibly related a miscellany of topics including: integrating factors, separable 
equations, homogeneous equations, reduction of order, the method of unde­
termined coefficients, the method of variation of parameters, Euler equations, 
and homogeneous equations with constant coefficients. Lie also indicated that 
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for linear partial differential equations, invariance under Lie groups leads 
directly to superpositions of solutions in terms of transforms [1]. Why has Lie's 
approach not been adopted in standard textbooks? 

A symmetry group of a system of differential equations is a group which 
maps solutions to other solutions of the system. In Lie's framework these 
groups consist of point transformations depending on continuous parameters, 
acting on the space of independent and dependent variables. Elementary 
examples include translations, rotations, and scalings. More generally, a solva­
ble autonomous system of first-order ordinary differential equations essentially 
defines a one-parameter Lie group of transformations. Lie showed that, unlike 
discrete groups, for example reflections, the continuous group of point trans­
formations admitted by a differential equation can be found by an explicit 
computational algorithm. 

The applications of continuous groups to differential equations make no use 
of the global aspects of Lie groups. The applications use connected local Lie 
groups of transformations. Lie's three fundamental theorems showed that such 
groups are completely characterized in terms of their infinitesimal generators, 
which form a Lie algebra determined by its structure constants. Lie groups, 
and hence their infinitesimal generators, are naturally extended or " prolonged" 
to act on the space of independent variables, dependent variables and deriva­
tives of the dependent variables. Consequently, the nonlinear conditions of 
invariance of a given system of differential equations under Lie groups of 
transformations reduce to linear homogeneous conditions in terms of the 
infinitesimal generators of the group. These conditions are called the determin­
ing (or defining) equations of the group. Since the determining equations form 
an overdetermined system of linear homogeneous partial differential equations, 
one can usually determine the infinitesimals in closed form. For a given 
differential equation the entire procedure to determine the infinitesimal gener­
ators of its invariance group is routine; symbolic manipulation programs [2] 
have been developed to implement the scheme. 

Accomplishments in applying Lie groups to differential equations also 
include: 

(1) The use of differential invariants, resulting from the infinitesimal (Lie 
group) approach, to find the most general differential equation invariant under 
a given symmetry group. 

(2) If an ordinary differential equation is derivable from a variational 
principle through a Lagrangian or Hamiltonian formulation, then invariance 
under a one-parameter " variational" symmetry leads to a reduction of order 
by two. 

(3) If a system of partial differential equations is invariant under a Lie group 
of transformations, one can find constructively special classes of solutions, 
called similarity or invariant solutions, which are invariant under some sub­
group of the full group admitted by the system. These solutions correspond to 
a reduction in the number of independent variables. In the case of two 
independent variables, the reduction is to a system of ordinary differential 
equations. This use of Lie groups was initiated by Lie but first came to 
prominence in the late 1950s through the work of the Soviet group at 
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Novosibirsk, led by Ovsiannikov [3]. Others [4] have shown how to use 
invariance to construct similarity solutions for specific boundary value prob­
lems. Special cases of such solutions include self-similar solutions which are 
derivable from dimensional analysis or more generally through invariance 
under groups of scalings (cf. Birkhoff [5]), and traveling wave solutions which 
are derivable from invariance under translations. The connections between 
invariant solutions and separation of variables have been developed by Miller 
[6] and his co-workers. 

(4) Without explicitly solving the determining equations for its infinitesimal 
generators, one can determine constructively whether or not a given nonlinear 
system of differential equations can be mapped into a system of linear 
differential equations by some one-to-one transformation. Moreover, one can 
find explicitly the transformation if such a mapping is possible. In general, Lie 
groups can be used to find mappings between equations provided the target 
equation can be characterized completely in terms of invariance under a Lie 
group of transformations. Most of the work in this direction has been devel­
oped in the past decade. 

(5) In 1918 Emmy Noether [7] showed how the symmetry group of a 
variational integral (variational symmetry) leads constructively to a conserva­
tion law for the corresponding Euler-Lagrange equations. For example, con­
servation of energy follows from invariance under translation in time; con­
servation of linear and angular momenta respectively from translation in space 
and rotational invariances. Such variational symmetries leave invariant the 
Euler-Lagrange equations but the converse is false. 

(6) Recently the use of generalized symmetries defined by infinitesimal 
generators, including derivatives of the relevant dependent variables, has 
extended further the applicability of Lie groups to differential equations. The 
possibility of the existence of such transformations (which, according to Olver, 
are mistakenly called Lie-B'âcklund transformations in the modern literature) 
was recognized by Noether in her celebrated paper and came to fruition in the 
works of Kumei [8] and other authors. These generalized symmetries cannot be 
represented in closed form from the integration of a finite system of ordinary 
differential equations as is the case for Lie groups. Generalized symmetries can 
be computed for a given differential equation by a simple extension of Lie's 
algorithm. They can be shown to account for the conserved Runge-Lenz vector 
for the Kepler problem and the infinity of conservation laws for the Korteweg-
de Vries equation and other nonlinear partial differential equations exhibiting 
soliton behavior. Furthermore, multi-soliton solutions are similarity solutions 
for corresponding multiparameter generalized symmetries. The invariance of a 
partial differential equation under a generalized symmetry usually leads to 
invariance under an infinite number of generalized symmetries. The means of 
constructing an infinite number of such symmetries through the use of recur­
sion operators was ingeniously shown by Olver in his famous paper [9]. 

The book by Olver. Olver's text, evolving from a set of lecture notes 
distributed at Oxford [10], is certainly the most scholarly and comprehensive 
book on the appHcation of Lie groups to differential equations since the 
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appearance of Lie's collected works. The book is carefully written and well 
organized, with many examples, numerous exercises (some qualifying as thesis 
projects), detailed introductions, and valuable, long historical notes for each of 
its seven chapters. There is an excellent seven-page Introduction, a useful 
introductory Notes to the Reader, a superb 18-page list of references, and 
separate symbol, author, and subject indices. Olver has many entertaining and 
delightfully provocative comments. 

The reader should not be daunted by the somewhat detailed "introductory" 
chapter. Only the final two chapters on Hamiltonian methods for finite-dimen­
sional systems and evolution equations require the full abstract machinery of 
the first chapter. 

Chapter 2 is concerned with symmetry groups of differential equations. In 
addition to discussing the basic topics, Olver presents novel results on multi­
parameter invariance of ordinary differential equations, overdetermined and 
undetermined systems, and solvable groups. In the notes of this chapter he 
provocatively states that " Needless to say, all the results stated here have many 
alternative restatements and reformulations, using more and more technical 
and abstract mathematical machinery, a pointless exercise enjoyed by a num­
ber of researchers. The net result, of course, is always the same no matter how 
one tries to dress it up; the unfortunate reader of these versions comes away 
thoroughly confused, learning nothing of the ease and efficacy of applying his 
theory to concrete problems." 

The third chapter includes a seven-step methodology for determining the 
group admitted by a given system of differential equations, classification 
results for group-invariant solutions and a rather short account of dimensional 
analysis. 

The fourth chapter gives a fine account of Noether's work. It includes a new 
result on the reduction by two of the order of the Euler-Lagrange equations 
from the invariance of the variational integral under a one-parameter varia­
tional symmetry. Olver shows explicitly that a symmetry of the Euler-Lagrange 
equations may not leave invariant the corresponding functional. It is shown 
that for the Kepler problem invariance under a two-parameter Lie group leads 
to a reduction of the order by four. Olver defines trivial conservation laws of 
the first and second kind and introduces the notion of characteristics of 
conservation laws. His comments on Noether's results are elucidating. 

In the fifth chapter specialists as well as users of generalized symmetries will 
welcome Olver's detailed presentation on recursion operators, their construc­
tion (some "guesswork" is necessary) and uses. Olver shows that with gener­
alized symmetries, Noether's theorem provides a one-to-one correspondence 
between variational symmetries and conservation laws through the use of 
adjoints of differential operators. Olver derives the Runge-Lenz vector. 

The sixth chapter discusses the connections between symmetry groups, 
conservation laws, and reduction in order for systems in Hamiltonian form. In 
order to have coordinate-free results, Olver does not use special canonical 
coordinates. The fundamental object of study is the Poisson bracket. Olver 
shows that his results for ordinary differential equations in Lagrangian form 
result more naturally in a Hamiltonian framework. For systems of Euler-
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Lagrange equations, first integrals arise from variational symmetry groups; for 
Hamiltonian systems the role of such groups is played by one-parameter 
Hamiltonian symmetry groups whose infinitesimal generators are Hamiltonian 
vector fields. Olver defines Hamiltonian symmetry groups in terms of a 
Poisson bracket. 

In the final chapter on Hamiltonian methods for evolution equations, Olver 
shows that canonical coordinates do not generalize but the Poisson bracket 
does. He defines a Hamiltonian linear operator in terms of its Poisson bracket 
and gives the criterion for an operator to be Hamiltonian. It is shown how a 
partial differential equation can be put in Hamiltonian form. There is an 
important section on bi-Hamiltonian systems which are systems which can 
be written in Hamiltonian form in two distinct ways. An example is the 
Korteweg-de Vries equation. Bi-Hamiltonian systems are shown to have in­
finite sequences of generalized symmetries with corresponding explicit con­
servation laws, generated by a recursion operator. This operator is calculated 
from the two Poisson brackets so that such systems are "completely integrable". 
Some of the results in this chapter stem from crucial work of Arnold [11, 12] 
and Gardner [13]. 

Olver discusses effectively most of the accomplishments in applying Lie 
groups to differential equations. He has unearthed important results unknown 
to many specialists. Olver does not discuss connections with separation of 
variables nor applications to boundary value problems and relegates his 
limited presentation on mappings mostly to the exercises. These omissions in 
no way reflect negatively on this exciting text. 

Olver's textbook is a tour de force which will surely become a classic in the 
mathematical literature. I highly recommend it to both users and specialists. 
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Let R n = R n U {oo} be the one-point compactification of Rn , n > 1. 
The group Gn of Möbius transformations is the transformation group on R n 

generated by the translations 

(1) x»->x + a, a e R n , 

and the inversion 

(2) x H- x/\x\2 

in the unit sphere. There are a number of reasons why Möbius transformations 
play a central role in the geometry of R n . For instance: 

(a) According to a classical theorem of Liouville, if n > 3, every confor­
mai map from one subregion of R n to another is the restriction of a Möbius 
transformation. 

(b) The sense-preserving transformations in G% are the fractional linear 
transformations 

(3) g{z) = {az + b)(cz + d)~x, ac?-6c = l, 

which are fundamental tools in geometric function theory. 
(c) If we embed R n in R n + 1 in the usual way, by identifying R n with 

(en+i)-1, formulas (1) and (2) define an action of Gn on R n + 1 . In fact Gn is 
the subgroup of <?n+i that maps the half-space 

# n + 1 = {xe Rn+*; x • en+i > 0} 

onto itself. i J n + 1 with the Poincaré metric ds = \dx\/(x • en+i) is the (n +1)-
dimensional hyperbolic space, and Gn is its isometry group. 

(d) Every Riemannian manifold of constant negative curvature (—1) can 
be represented as the quotient of üTn+1 by a discrete subgroup T of Gn. 
In particular, the classical uniformization theorem implies that almost all 


