
BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 18, Number 1, January 1988 

A NOTE ON THE LOCATION OF COMPLEX ZEROS 
OF SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS 

STEVEN B. BANK 

1. Introduction. For second-order equations, w" + A(z)w = 0, where 
A(z) = amzm + • • • is a polynomial of degree m > 1, there is a classical 
result (due jointly to E. Hille, R. Nevanlinna and H. Wittich [10, p. 282]) 
which determines the possible location of the zeros of any solution ƒ ^ 0. 
The theorem states that for any e > 0, all but finitely many zeros of ƒ lie in 
the union (for j = 0 , 1 , . . . , m +1) of the ^-sectors, | arg z - (j>3] < £, where 
<t>j = (2irj — c)/(m + 2) for any choice of c = arg am . (The rays arg z = <\>j are 
called "critical rays".) In this paper, we determine the situation for higher-
order equations. 

(1) w (n ) + an_i{z)w{n"1) + • • • + ai{z)w' + a0(z)w = 0 (n > 2), 

where the CLJ(Z) are polynomials. As shown in Theorem 1 below (§3), an in­
teresting feature of the higher-order case is that the Hille-Nevanlinna-Wittich 
property (i.e., the existence of finitely many critical rays around which the 
zeros of any solution ƒ ^ 0 must be concentrated) need not hold when n > 2. 
There are equations (e.g. see §4 below) which have the property that for any 
ray, and any £>sector around it, some solution ƒ ^ 0 has infinitely many ze­
ros in the e-sector. In Theorem 1, we show that in general either this latter 
property or the Hille-Nevanlinna-Wittich property holds for a given equatiçn 
(1), and one can easily determine from the equation which of the two holds. 
In §7, we consider the problem of explicitly determining the critical rays for 
those equations (1) possessing the Hille-Nevanlinna-Wittich property. 

The key tools in the proof of Theorem 1 are asymptotic existence theorems 
which were proved in [4] and [6] using the Strodt theory [8, 9]. (Details of 
the proof will appear elsewhere.) 

2. Preliminaries. Given an equation (1) where the cij(z) are any rational 
functions, we first rewrite the equation (1) in terms of the operator 0 defined 
by Ow = zw'. (It is easy to prove by induction that for each m = 1,2,..., 

(2) w^=z-m(f^bjme^w\ 
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where B3 is the jth iterate of the operator 0, and where the bjm are integers 
with bmm = 1.) When written in terms of 0, let (1) have the form 

n 

(3) Y1B^Z)$3'W = 0' 
i=o 

(Of course, the Bj(z) are also rational functions.) By dividing the equation 
(3) through by the highest power of z which occurs in all Laurent expansions 
of the Bj(z) around z = oo, we may assume that for each j we have Bj — O (I) 
as z —* oo, and there exists an integer p > 0 such that Bj = o(l) as z —• oo 
for j > p, while Bp has a finite nonzero limit (denoted Bp(oo)) at oo. By 
multiplying the equation through by a constant, we may also assume that 
Bq(oo) = 1 where q = min{y : Bj (oo) ^ 0}. The integer p is called the critical 
degree of the equation (1). The equation 

n 

(4) Fm(a) = ^2Bjioo)oP =0 
j=o 

is called the critical equation of (1). (Clearly, F*(a) is a polynomial in a, 
of degree p, having constant coefficients.) We define a sequence of integers 
p = £(0) < t(l) < • • < t(a) = n as follows: t(0) = p, and if t{j) has 
been defined and is less than n, let t(j + 1) be the largest integer k such 
that t(j) < k < n and such that £,• = 0(Bk) as 2 —• 00 for all z' satisfying 
t(j) <i <n. The polynomial in v defined by 

(5) G{v) = J2ztU)*U)WvtU)~P 

3=0 

is called the factorization polynomial for (1). Clearly, G(t>) is a polynomial of 
degree n - p in t>, whose coefficients are rational functions of z. (We observe 
also that G(0) ^ 0.) We will say that "the roots of G(v) are asymptotically 
distinct" if the n — p possible expansions around z = 00 of the algebraic 
function defined by G(v) = 0 all have different first terms. It is easy to see 
that each first term is a function of the form cza where a is a rational number 
exceeding —1, and c is a nonzero complex constant. In the terminology of [4], 
these functions czQ are the critical monomials of G(v), and can be produced 
by the Newton polygon method described in [7, p. 105]. 

3. THEOREM 1. Given the equation (1) where the aj(z) are polynomials, 
then: 

(A) If two distinct roots of the critical equation for (1) have the same real 
part, then (1) has the following property: For any e > 0 and any value of (j) in 
(—7T, 7r], there exists a solution f ^ 0 of (1) which has infinitely many zeros 
in the e-sector \ argz — <\>\ < e. 

(B) Assume that no two distinct roots of the critical equation for (1) have 
the same real part, and assume further that the roots of the factorization poly­
nomial for (1) are asymptotically distinct. Then there exist a positive integer 
m and finitely many real numbers ai,...,am in (—7r,IT] such that for any 
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e > 0 and any solution f ^ 0 of (1), all but finitely many zeros of f lie in the 
union for j = 1 , . . . , m of the e-sectors | arg z — a3 \ < e. 

4. Example. For w^ + z2w" + zw' + w = 0 where n > 2, the critical 
equation is a2 + 1 = 0, and so (A) holds. 

5. Notation. We will use the notation F(a, b) introduced in [8, §94] to 
denote the neighborhood system of sectorial regions which are approximately 
of the form a < arg(z — ZQ) < b, where arg^o — {a + b)/2. We will also use the 
asymptotic relations f\ ~ ƒ2, / i « ƒ25 and f\ & ƒ2 over F(a,b) developed in 
[8, §13], which can be thought of respectively as fi/fz —• 1, / i / / 2 —• 0, and 
fi/f2 —• c for some nonzero constant c, as 2 —• 00 over F(a,b). 

6. Proof of Theorem 1. Part (A). Assume that the critical equation 
for (1) possesses distinct roots a and 0 with a — 0 = si, where s > 0. By 
[2, §7], there exist finitely many points <\>\ < fa < • • • < <t>q in (—7r,7r) such 
that in each of F{—TT, <f>i), F(^>i,fa),... ,F(<^,7r) separately, the equation 
(1) possesses solutions 01 and 02 with #i ~ ^a and 02 ~ ^ - Let 0 be any 
number in (—7r, IT) which is distinct from <\>\,..., (/)q, and let e > 0 be arbitrary. 
We can assume e is so small that g\ and 02 are analytic in some element of 
F(<t> — e, <j> + e), and satisfy #i ~ 2 a and 02 ~ z&. Using [5, Lemma D, p. 127] 
and Rouché's theorem, we produce infinitely many zeros of (01/02) — e~s^ 
lying in | arg z — <f>\ < e. Thus this e:-sector contains infinitely many zeros of 
the solution g\ —e~s<*>g2. (It follows easily that Part (A) then also holds when 
<f> is equal to one of the points (f>i,..., (/>q, IT.) 

Assume the hypothesis of Part (B) and let p be the critical degree of (1) and 
let q be as in §2. Let the distinct nonzero roots of the critical equation of (1) 
be c*i, . . . ,a r , with otj having multiplicity rrij. (Thus q + Y^mj — P-) Define 
M i , . . . , Mp as follows: M, = (Log*)-*-1 if 1 < j < q; Mq+j = zai (Log*)'"-1 

if 1 < j < mi, and in general, 

(6) Mq+mi+...+mk+j = za^ (Log zy-1 

for 1 < k < r and 1 < j < ra^+i. Let Ni,... ,7Vn_p be the distinct critical 
monomials (see §2) of the factorization polynomial for (1). It is proved in [4, 
§3] that there are finitely many points — IT = ro < ri < • - < rt < rt+i = n 
such that in each F(rj,rj+i), the equation (1) possesses a fundamental set of 
solutions {01, . . . , 0P, hi,..., hn-p}, where gj ~ Mj for 1 < j < p, and each 
hk is of the form exp ƒ Vfc, where Vk ~ Nk for 1 < k < n — p. In view of 
the hypothesis, it can be shown (using [1, §10], and a variant of [8, §41]) that 
in F(rj,rj+i), the ratio of any two distinct solutions in the fundamental set 
either tends to zero or to 00. Thus if ƒ ^ 0 is any solution of (1), then since ƒ 
is a nontrivial linear combination of 0 1 , . . . , gp, hi,..., hn-p, it easily follows 
that ƒ has no zeros on some element of F(rj, 7j+i), and the proof of Part (B) 
follows when we take {&i,..., am} to be { r i , . . . , rt+i}. 

7. Remark. For certain classes of equations (1) whose coefficients are 
rational functions, it can be shown that the critical rays can be explicitly 
calculated. For example, this is the case for those equations which satisfy the 
following two conditions: (i) The roots of the factorization polynomial are 
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asymptotically distinct; (ii) The roots of the critical equation are all simple, 
and no two distinct roots have the same real part. 
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