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A group representation is a homomorphism TT of a group G into the group of 
linear transformations of a vector space V. It is called irreducible if V is not 
zero, and no proper subspace of V is preserved by the operators in TT(G). It is 
called unitary if Scarries a Hubert space structure preserved by 7r(G). Unless 
otherwise stated, I will assume that all representations considered are unitary. 
(I will also suppress many extremely important technical qualifications 
throughout. The reader wishing a slightly more accurate picture may assume 
that all groups are locally compact, separable, and type I.) Representations of 
finite groups were first investigated by Frobenius and Schur. Hermann Weyl in 
the 1920s extended many of their ideas to compact groups. Weyl's work found 
its way into quantum mechanics. Because the Poincaré group P (of automor­
phisms of a flat space-time preserving the notion of interval) is not compact, 
relativity required considering representations of noncompact groups. Wigner 
in 1939 analyzed most of the irreducible representations of P, by a clever use 
of the normal subgroup Tof translations (see [15]). (T is isomorphic to R4 and 
its representations are relatively easy to understand.) In fact Wigner found 
everything which was of physical interest to him. The remaining irreducible 
representations he described in terms of the (unknown) irreducible representa­
tions of the groups SL(2, R) and SL(2, C). (These are the groups of two by two 
matrices of determinant one over the real and complex fields.) 

Wigner had found a fundamental division of representation theory into two 
parts. His ideas were greatly extended by Mackey, becoming what is now 
called the "Mackey machine": a systematic method for describing the irreduci­
ble representations of a group in terms of those of a normal subgroup. The 
centerpiece of Mackey's method is the idea of induced representations. Sup­
pose H is a closed subgroup of G. To any representation (77, Vm) (even 
infinite-dimensional) of H, one can associate a vector bundle f^ over the 
homogeneous space G/H. The fiber of this vector bundle over the identity 
coset eH is the original space Vv. The action of G on G/H lifts to V„, and G 
therefore acts on the vector space of sections. This action n is called the 
representation induced by TT: 

n = Ind£(w). 
Roughly speaking, the Mackey machine shows how to exhibit many irreducible 
representations as induced from proper subgroups. That is, it realizes the 
representations in an elegant geometric way: as spaces of sections of vector 
bundles. Mackey's theory has been carried very far. Its only serious limitation 
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is that one needs a good normal subgroup of G to show that all irreducible 
representations actually appear. This is the first part of representation theory, 
and the part most clearly foreshadowed in Wigner's work. 

The papers [2] and [6], published in 1947, began the second part of 
representation theory. They also have their roots in [15], for they complete the 
determination of the irreducible representations of P begun by Wigner: 
Bargmann found all the irreducible representations of SL(2, R), and Gelfand 
and Naimark found those of SL(2, C). Yet they represent almost a complete 
departure from Wigner's work in their methods, for these groups have no 
proper normal subgroups except for their two-element centers. A Lie group is 
called simple if every proper normal subgroup of it is finite; it is semisimple if 
it is (up to finite covering) a direct product of simple groups. The second part 
of representation theory is the part concerned with semisimple groups; it is of 
course the subject of the book under review. It is best described not from the 
perspective of these two papers, but rather by taking full advantage of 
hindsight. 

What semisimple groups lack in normal subgroups they make up in almost 
every other respect. There are very few of them (only finitely many of any one 
dimension), and they have an incredibly rich and rigid structure. The proto­
typical example is SL(«,R), the group of « by « matrices of determinant one. 
Matrices may be subjected to row reduction, the Gram-Schmidt process, polar 
decomposition, or Jordan decomposition; all of these processes have analogues 
for the elements of a general semisimple group G. SL(«, R) acts on the space of 
positive definite quadratic forms on Rn, and on each of the Grassmannian 
manifolds of A>planes in Rw; analogues of these homogeneous spaces exist for 
all semisimple groups. These are some of the basic tools of representation 
theory for semisimple groups. Their familiar nature gives to the subject a kind 
of particularity which is not common in serious mathematics. Most of the 
objects of interest come in countable families and can be treated almost as 
individuals. The established wisdom (coming largely from Harish-Chandra) is 
that one ought not to treat them so, and certainly Knapp's book seeks to 
convey general methods. Nevertheless, the fact that few examples exist makes 
each example much more interesting. It is part of the reason that the book 
succeeds. 

Mackey's work in the presence of normal subgroups at least suggests a 
source of some irreducible representations of a semisimple group G: induced 
representations. Recall that such a representation lives on the space of sections 
of a vector bundle on a homogeneous space G/P. Early results of Gelfand and 
Naimark [7] showed that the appropriate homogeneous spaces are what are 
now called generalized flag manifolds', these include the Grassmann manifolds 
and the ordinary flag manifold in the case of SL(/i,R). Equivalently, the 
isotropy group P is required to be parabolic. In addition, the inducing 
representation m of the isotropy group P should be trivial on the commutator 
subgroup of the solvable radical of P. When both of these conditions are met, 
we will call \nàG

P{m) a parabolically induced representation. It is likely that 
other induced representations are essentially never irreducible, but I do not 
know whether this has been proved. 
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The first question that must be addressed is the irreducibility of paraboli-
cally induced representations. Bruhat in [4] recognized that the irreducibility 
was related to certain natural maps among the representations, the standard 
intertwining operators, (An intertwining operator is just a linear map between 
the spaces of two different representations of the same group that respects the 
group actions. For semisimple groups the term often refers particularly to these 
standard intertwining operators, which have a long and colorful history—in 
fact several colorful histories among which one can choose.) Construction of 
the standard intertwining operators is somewhat difficult, but it yields unex­
pected rewards. Harish-Chandra showed that these operators control the way 
the parabolically induced representations fit into harmonic analysis on G 
(understood here as the decomposition of L2(G) under the action of G). They 
are also central to the theory of complementary series representations, which I 
will not discuss at all. 

We turn now to the irreducible representations that are not parabolically 
induced. The most interesting of these are the discrete series, which are the 
irreducible subrepresentations of L2(G). Write X for the symmetric space of 
maximal compact subgroups of G; for SL(w, R) this is just the space of positive 
definite quadratic forms in n variables. In general X is a complete Rieman-
nian manifold. Suppose V is a homogeneous Hermitian vector bundle on X. 
Write L2(X9i

r) for the space of square-integrable sections of Y*. There is a 
natural G-invariant second-order elliptic operator L on sections of y . Each 
eigenspace of L on L2( X, y ) turns out to be a direct sum of a finite number 
of discrete series representations. Constructing discrete series representations 
amounts to constructing eigenfunctions of L that decay nicely at infinity on X. 
Such functions can now be found in several ways. Harish-Chandra's original 
approach in [8] and [9] remains awe-inspiring, and it provides a wealth of 
auxilary information about harmonic analysis on G. Nearly fifteen years 
elapsed before Atiyah and Schmid [1] and Flensted-Jensen [5] found simpler 
arguments. 

There remain the noninduced representations that do not occur as subrepre­
sentations of L2(G). These are far from completely understood. Their analysis 
begins with the Langlands classification, which provides an explicitly parame­
trized list of all (possibly nonunitary) irreducible representations of G. Its 
shortcomings are that the representations are not very explicitly constructed, 
and that it is difficult to determine which of them admit unitary structures. 
Current research is directed at the resolution of problems like these. 

These are the highlights of representation theory for semisimple groups as it 
existed by about 1975: parabolic induction, the discrete series, and the Lang-
lands classification. They are also the main themes in Knapp's book. Each is 
developed carefully and thoroughly, with beautifully worked examples and 
proofs that reflect long experience in teaching and research. There are even 
problems (almost unheard of in a book at this level). Graduate students can 
read it unaided, and I suspect that one could teach several good courses from 
it. An appendix summarizes in detail what one needs from the general theory 
of Lie groups; any first course would at least make this appendix very easy to 
read. 
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The only other books of roughly comparable scope are those of Warner [13]. 
([3], [11], and [12] are narrower and technically more demanding.) Warner's 
books were written before the Langlands classification was established, so they 
have a little less to do; yet Knapp's book is shorter. Knapp achieves this 
miracle in two ways. First, he takes advantage of simplifications in Harish-
Chandra's original proofs. For example, he presents Flensted-Jensen's con­
struction of the discrete series, and sketches Herb's proof [10] of Harish-
Chandra's Plancherel formula. Most importantly, however, he simply omits 
some proofs. This is always done with ample notice to the reader, detailed 
references, and complete treatment of illuminating special cases. The result is 
delightful: a readable text which loses almost none of its value as a reference 
work. 

Finally, there is the question of what topics have been omitted entirely. Most 
experts would agree that a fourth topic should now be added to the basic three 
already mentioned. Regrettably they would not agree on what that fourth topic 
is. Some candidates (hsted more or less alphabetically) are non-Riemannian 
symmetric spaces; Beilinson-Bernstein localization; the Kazhdan-Lusztig con­
jectures; and Zuckerman's cohomological parabolic induction. The reader of 
Knapp's book will be well equipped to pursue the first of these, but the rest 
proceed in rather different directions. The problem is not with the book, but 
with a genuine (if incomplete) division of the subject into analysis and algebra. 
Knapp is an analyst; he uses all the algebra he needs to smooth the reader's 
path, but the destinations chosen betray his taste. As that taste is excellent, 
however, even those handicapped by a preference for algebra should relax and 
enjoy the ride. 
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The book under review is, to start with, a book about noncommutative 
Noetherian rings and prime ideals. (We call a ring Noetherian if it satisfies the 
ascending chain condition on both left and right ideals.) We should first ask 
why the Noetherian condition and prime ideals are of significance in the 
noncommutative case. Commutative Noetherian rings arise naturally, for ex­
ample as the coordinate rings of algebraic varieties, and the prime ideals then 
correspond to irreducible subvarieties. Noncommutative rings arise most natu­
rally as rings of operators of some sort—some of the first ones studied in this 
century were rings of differential operators. It is therefore not surprising that 
the primitive ideals (annihilators of irreducible representations) were studied 
before prime ideals, and that Artinian rings were studied before Noetherian 
rings. Jacobson's definitive book of 1956 makes no mention of the Noetherian 
condition. However, Noetherian rings do arise naturally—certain rings of 
differential operators are Noetherian, in particular, the enveloping algebras of 
finite-dimensional Lie algebras. Also, group algebras of polycyclic-by-finite 
groups are Noetherian. (A group is polycyclic-by-finite if it has a series of 
normal subgroups such that all of the factors are finite or finitely generated 
Abelian.) This suggested that the development of a theory making full use of 
the Noetherian hypothesis should shed particular light on some of the most 
important examples in representation theory, and recent events have borne this 
out. The correct definition of prime ideal was pointed out by Krull in 1928 (an 
ideal P is prime if for any pair of ideals A and B, if AB ç P then ^ ç P o r 
B Q P). (Prime ideals force themselves to one's attention, even if one is only 
really interested in irreducible representations and primitive ideals.) However, 
the first important theorem about prime ideals in the Noetherian case was 
Goldie's theorem, which was not proved until 1958. 

What Goldie's theorem provides is the correct analogue in the noncommuta­
tive case for the usual field of fractions of a domain in the commutative case. If 


