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COHOMOLOGY OF THE INFINITE-DIMENSIONAL 
LIE ALGEBRA Lx WITH NONTRIVIAL COEFFICIENTS 

B. L. FEIGIN AND A. FIALOWSKI 

1. Let Z be the Lie algebra of vector fields on the circle of the form 
f((t>)d/d(j) where ƒ is a function having finite Fourier expansion [<j> is the 
angular parameter on the circle). In Z we can choose the basis 

en = x n + 1 —, n e Z , 

with the bracket [e^ej] = (j — i)ei+j. The Lie algebra Z is naturally graded, 
the degree of ê  being i. The most natural modules over Z are the so-called 
tensor field modules. A tensor field on the circle is of the form g((j))(d/d(l))x. 
A vector field acts on this by infinitesimally changing the coordinate </>, where 
g((j)) is a section of some line bundle on the circle S1 with a flat connection. 
In the space of tensor fields we choose a basis ƒ*, i G Z, such that e{(fj) = 
(—\{i-hi) + fi + j) • /t+y. Here À,fx G C are the invariants characterizing the 
module, i.e., the power of d/d(/) and the logarithm of the monodromy of the 
flat connection. We denote such a module by T\^ (see [3]). 

Denote by L\ the subalgebra of Z with basis (ei, e2, e3 , . . . ). It is easy to 
see that L\ is isomorphic to the Lie algebra of vector fields on the line, with 
polynomial coefficients, having a two-fold zero at the origin. The strategy of 
the cohomology computation for L\ with coefficients in the adjoint module 
is the following: we first compute the cohomology of L\ with coefficients in 
T\,n, and then remark that the adjoint representation of L\ is a submodule of 
such an 7\^> After this the spaces Hl{L\,L\) can easily be determined. The 
computations of Hl(Li,L\) and H2(Li,Li) are contained in [3]. Deforma
tions of Li are studied in [5]. In this paper we shall describe a more general 
method for the computation of i/*(Li, JA,^)-

It will be more convenient for us to deal with homology instead of cohomol
ogy. It is easy to see that H*{Li,J\^) is dual to i/*(Li, J_ I_A, - / I ) - Then, 
using the fact that L\ is the factor of some J\,n, we can compute Hi(Li,L\). 
Notice that for almost every (A,/i) the module 7\^ is an irreducible represen
tation of £, and L\ is the maximal nilpotent subalgebra in £. That means 
that the problem of determining üf*(Li, T\^) is analogous to that of deter
mining the cohomology of the maximal nilpotent subalgebra of a complex 
semisimple Lie algebra with coefficients in an irreducible representation. We 
call theorems of this type Bott-Kostant theorems [1, 8]. (Notice that the rep
resentations 7A,ii are reminiscent of the Harish-Chandra modules rather than 
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of representations in the category 0; see [l].) A method analogous to that 
used in this paper was applied to the current algebras in [2]. 

2. We first recall some pertinent facts. Introduce another Lie algebra 
L(0,1) which consists of polynomial vector fields on the line with zeros at the 
points 0,1. In L(0,1) we can choose the basis 

êi = xi(x- 1) —, ieZ, 
ax 

such that [ëiiëj] = (j — i)(êi+j — ëi+y-i). There exists a family of one-
dimensional L(0,1)-modules M (a, /?); ê» acts on M (a, 0) as multiplication by 
/? — a if i = 1 and by /? if i > 1. The significance of M (a, /?) is the following. 
The commutator of L(0,1) consists of vector fields on the line, which, together 
with their first derivative, vanish at 0,1. Therefore the character of M(a,/3) 
takes the value af'(ti)+l3f'{l) on the vector field f(x)d/dx G L(0,1). Observe 
that M(a,/3) = M(a,0) <8> M(0, /?), where M(a,0) is the module on which 
the vector field f(x)d/dx acts by multiplication on / '(0), and M(0,/?) is the 
one on which it acts by multiplication on / ' ( l ) . Recall that Hi(L\) is two-
dimensional for i > 0, and that the weight of the two homogeneous basis 
elements of Hi(L\) are 

3z2 + % J 322 - i 
— - — and — - — . 

2 2 
This result is proved in [7]. Further, the cohomology of L(0,1) is also two-
dimensional in every positive dimension. In [5] it is proved that 1/(0,1) is 
a deformation of L\. Namely, there exists a Lie algebra family L(0, t) with 
the basis ëi and the bracket [ë»,ëj] = (j — i){ëi+j + tëi+j-\). It is clear that 
L(0,0) = L\. In [4] it is proved that the cohomology spaces for t — 0 and 
t ^ 0 are isomorphic as graded vector spaces (although the multiplication and 
the Massey operations in them are different). 

We now describe the algebra structure of if*(L(0,1)). It turns out that 
#*(L(0,1)) is free and is generated by three generators, two of degree 1 and 
one of degree 2. The one-dimensional generators correspond to the cochains 
f(x)d/dx —• /'(0) and f(x)d/dx —• / ' ( l ) . The two-dimensional generator 
corresponds to the cochain 

ƒ ( * ) £ Ag(x)± - j\f'(x)g"(x) - f"(x)g'(x))dx. 

The cohomology space #*(L(0,1)) can be computed in the following way. 
The algebra L(0,1) is the intersection of two algebras of vector fields, L(0) and 
L(l). Here L(0) and L(l) consist of vector fields on the line with polynomial 
coefficients vanishing at 0 and 1 respectively. Their sum L(0) + L(l) = W\ is 
the algebra of all polynomial vector fields. We get a diagram of inclusions 

^ ^ L(0) ^ ^ 

L(0,1) Wi. 

^ ^ L(l) ^ * 
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From this it follows that, as a differential algebra, the standard cohomol-
ogy complex C*(L(0,1)) is the tensor product of the differential algebras 
C(L{0)) and C(L(l)) over C*(W^i). (Observe that C*(L(0)) and C*(L(l)) 
are modules over C*(Wi) as there exist inclusions L(0) —• Wi and Z(l) —• 
Wi.) This means that there exists an Eilenberg-Moore spectral sequence (see 
[9]) whose second term is TorH*(Wl)(H*(L(Q)),H*(L(l))), and which con
verges to #*(Z,(0,1)). Further, H*(L{0)) = 0 for i f 0,1 and H°(L{0)) = 
#*(£(<))) s C, L(l) s 1,(0). For ^ we have ff*(Wi) = 0 for i ± 0,3 
and i J ° (^ i ) s i f 3 ^ ) s C. The action of ff*(Wi) on ff*(L(0)) and on 
#*(L(1)) is obviously trivial. This means that 

TorH.{Wi)(H*(L(0)),H*(L(l)))9iH%Lm®H*(L(l))®TorH.{Wl)(C,C). 

According to [9], T o r ^ v ^ ^ C , C) is a free algebra with one two-dimensional 
generator. The differentials in the spectral sequence are zero and we get the 
desired result. 

In the following proposition we state the result about the homology 
of L(0,1) with coefficients in M (a, ft). It will be more convenient for 
us to describe the structure of the dual cohomology space. It is clear that 
#*(L(0,l),M(a,/?)) is dual to #*(L(0,l) ,M(-a; , -/?)). The Lie algebra 
L(0,1) can be embedded in the topological Lie algebra of all vector fields 
on the line. That means we can define the continuous cohomology 

tf*(L(0,l),M(-a, -/?)). 

PROPOSITION 1. The space H*(L(0,1), M(-a, -/3)) is different from zero 
only in the case where there exist two nonnegative integers A:, / such that 

3k2 ± k n 3/2 ± / 
a = = - T ~ ' " = - 2 — 

The space 

jr(i(M).j#(-?^t.-5^)) 
is a free module over if*(L(0,1)), with one generator of degree k + l. 

The proof is a standard exercise in continuous cohomology theory. The gen
erator can be obtained as follows. Let L(p) be the Lie algebra of vector fields 
on the line vanishing at p € R, and let M (a) be the module on which f(z)d/dz 
acts as multiplication by / '(p). The cohomology space H*(L(p),M(a)) is 
known, see e.g. [6]. It is nontrivial only if a = (3k2 ± k)/2 where A; is a 
nonnegative integer, and in that case /P(L(p),M(a)) is a free module over 
H*(L(p)) with one generator of degree k. Further, L(0,1) can be embedded 
in L(0) and in L(l). The restrictions of M (a) and M(/3) give the modules 
M(a,0) and M(0, /?). The product of the restricted classes of H* and Hl

c 

(a = (3k2±k)/2,0 = (3l2±l)/2) gives the generator of #*+' . Finally, one can 
show that H*(L(0, l ) , M ( - a , -/?)) is isomorphic to #*(L(0, l ) , M ( - a , -/?)). 

The standard complex 

C*(Li, J\,n) = A*Li <g) JA,/z, 
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which yields if*(Li, 7A,/Z)> is naturally graded, as Li is a graded algebra and 
7\,\x is a graded module over L\ (e.g. the chain e\ <8>/_i has degree zero). Let 
Cl?(Li, 7A,/X) be the subcomplex of the elements of degree zero. It is clear that 
C*(Li, 7x,fi) — 0fc^1?(-ki> Jx^+k), where the sum is taken over all natural 
numbers k. That means that it is enough to compute the cohomology of 
<?°(Li,JA,M). 

PROPOSITION 2. The complex C®(Li,J\^) is isomorphic to the complex 
M(ot,f3) ® A*L(0,1), which yields the homology of L(0,1) with coefficients in 
M(a, 0), where a — —fx — A, /? = A — 1. 

PROOF. Observe that L(0,1) can be realized as the subalgebra of £ with 
basis ëi — ei — e^-i, i = 1,2, Put e[ = ëi — eo; on M(a,/3), e[ induces 
multiplication by i/3 — a. Let z be a generator in M(a,/?). The differential 
M (a, /?) ® A*L(0,1) acts in the following way: 

= ]C(-l) r + a(*V ~ *•)* ® <+<. A - - A e ; â A - - A ê ; r A . - A e i f c 

( 1 ) + £ ( - l ) ' ( t i + • • • + tfc - t.) • z ® < A • • • A g;, A • • • A cj t 

+ £ ( - l ) s + 1 M - a) • « ® < A • • • A cj. A • • • A cj,. 

The first two sums correspond to the bracket with e'ir and e[ (we remark that 
[e[, e'j] = (j — i)e'i+j + ie\ — je'-), while the last one corresponds to the action 
of e'j on z. Now we determine the diflPerential in Cj(Li, 7\,n). The elements 
f-j(g>ei1 A- - - Aeik, j = i\ + z2 H h û , form a basis of C°(Li, 7A,/*). Then 

(2) <*(ƒ-,-® e^ A— A O 

= 5 ^ ( - l ) r + s ƒ-> ® («V - *a)e»r+i, A • • • A êi. A • • • A êir A • • • A eik 

+ ^(-l)a+1(Ki8 + l) + V-3)f-j+i.®*ii A---Aê i sA---Ae i f c . 

Observe that (1) becomes (2) if a = — A — /i, /? = A — 1. 
Combining Propositions 1 and 2, we get a new method for computing 

i/*(Li, JA,/Z)- Finally, we have the following result. 

THEOREM. H.(LUTX^) ^ © f c # * ( L ( 0 , l ) , M ( - A - / i + fc,A-l)), fcGZ. 
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