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chapters of the book carry us through that time at Cornell. We hear of his 
colleagues, of travels, and adventures, and achievements, of his work with the 
Radiation Laboratory at MIT, and through all of this of his never-ending 
struggle with mathematics. His publications, only modestly referred to, went 
on clarifying fundamental concepts of probability theory, extending them to 
number theory, opening new approaches in theoretical physics. 

This is not a book on mathematics, but a life story of a mathematician. 
There are few places devoted entirely to mathematics, or where even some 
formulas are displayed. One is in Chapter 3, "The Search for the Meaning of 
Independence," that in a near-popular manner discusses some work initiated 
jointly with Steinhaus and then continues to show how justified Henri Poincaré 
was in saying that the normal probability law is considered "by mathematicians 
to be a fact of observations and by observers a theorem of mathematics." There is 
just one formula displayed in an amusing discussion of Ehrenfest's "dog-flea" 
model, and there are some isolated graphs and formulas scattered elsewhere. 

After Cornell came a first exhilarating and later on disappointing affiliation 
with Rockefeller University (1961-1981). The last five years of his life Kac 
spent at the University of Southern California. 

The charm of Enigmas of chance cannot be even hinted at by surveying its 
contents. There is in it the spirit of a warm human being possessed by driving 
curiosity, by an urge to understand and clarify. There is an account of going 
through a stormy period in history, with personal tragedies and times of 
happiness. And there is the picture of a mathematician who, instead of clinging 
to mathematics as an abstract game, treated it as a bridge to reality; a 
mathematician who, as quoted by Gian-Carlo Rota, warned that "axioms will 
change with the whims of time, but an application is forever" To Kac the 
problem often was the reason for the theory; he admitted that "almost 
everything new in mathematics I learned after getting my doctoral degree has been 
by being forced to learn it in trying to solve a problem" 

In the Introduction to his book, Kac expressed the hope to be able to impart 
to the reader some feeling for the thrill that comes with getting a new idea, as 
well as for the frustrations and disappointments in the life of a scientist. He 
did it with charm and grace. He also succeeded in carrying out his other wish: 
the book gives a moving account of a rich life, and the way it was shaped by 
family, teachers, collaborators, history, and last but not least, by " that powerful 
but capricious lady Chance." 
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The study of derivations is one of the early disciplines in operator algebra 
theory with roots back in the beginnings of the subject (see, e.g., [13]). 
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Let 51 be a C*-algebra. Then a derivation 8 is defined to be a linear 
endomorphism of 51 satisfying the familiar Leibniz rule 

(1) 8(ab) = 8(a)b + a8(b), Û , J Ê ! 

A milestone in the study of such maps is the Derivation Theorem (1966) which 
states that every derivation in a von Neumann algebra 51 is inner. (We refer 
the reader to [7, pp. 310-312] for details and for references to the original 
papers.) We say that a derivation is inner if it is implemented by some element 
h G 5Ï, that is, 

(2) 8(a)=[h,a] = ha-ah9 a e 51. 

It is known [19a] that if a derivation 8 is defined everywhere on a C*-alge-
bra 51, then 8 is automatically bounded, i.e., the supremum 

(3) sup{||8(fl)||: a e 5 I , H | = 1} 

is finite. The number in (3) is called the norm of 8. During the seventies, the 
subject continued with the study of bounded derivations in C*-algebras, and 
culminated in 1978 with contributions by Elliott [8] and Akemann-Pedersen 
[1], and, at the same time (in the early to mid-seventies), the study of 
unbounded derivations was starting. 

An unbounded derivation is defined only on a subalgebra (the domain of 8), 
D(8) c 51, and it maps into 51. We shall assume that D(8) is dense in 51, and 
that (1) holds for a, b e D(8). (The case when D(8) is not assumed dense is 
interesting and important but not treated in the book.) In view of applications, 
we shall assume in addition that D(8) is a *-subalgebra of the C*-algebra 51, 
and that 

(4) 8(a*) = 8(a)*9 fleD(«). 

We will restrict attention to this case and refer to 8 as an unbounded derivation. 
(A few of the results described below will hold also for derivations which are 
not *-derivations, i.e., which do not verify condition (4), but we shall skip this 
technical point.) 

The interest in unbounded derivations originated in different parts of the 
world but roughly at the same time. The early contributions were motivated 
however by distinct considerations and applications. Sinai [21] in the U.S.S.R. 
was motivated by applications to ergodic theory, while Bratteli and Robinson 
[5a, b] in Marseille were motivated by a broader class of problems in mathe­
matical physics, most notably in statistical mechanics. Powers and Sakai in 
Philadelphia were motivated by similar considerations, originating in work by 
Hugenholtz et al. [9] and Segal [20], among others. Bratteli begins his present 
book with a list of names of the researchers who were influenced by these early 
developments and who subsequently took up the study. (The reviewer is one of 
them, and he worked in Philadelphia at the time!) 

On the mathematical side, the list of sources of problems includes cohomol-
ogy [12a], differentiable structures [15], and Hubert's fifth problem [23]. From 
the point of view of cohomology, the Derivation Theorem amounts precisely to 
the statement JftT

1(51) = 0 when 51 is a von Neumann algebra. During the 
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eighties, Connes developed cyclic cohomology [6b] and noncommutative dif­
ferential geometry [6a], and the derivations with dense domain continue to play 
a prominent role. 

As it turned out, the important algebra is not the initial C*-algebra 21 itself, 
but rather a preordained dense *-subalgebra 210 of smooth elements in 21, and 
the derivations are defined only on 5l0 and not on 21. Consider a Lie group G 
which acts continuously on 51 as a group of automorphisms 

(5) r: G-+ Aut(21). 

If the action is given in terms of 21 in a "natural" way, then we may take for 
the subalgebra 21 0 the algebra of C00-elements (or smooth elements) for the 
action, i.e., the elements a in 21 such that the orbit function, g -> rg{a), is C00 

from G to 21. If g denotes the Lie algebra of G, then the infinitesimal form of 
(5) is a Lie algebra of derivations. For X e g the derivation dr(X) is defined 
by 

r(exptX)(a), a e 2l0, 

and 

dr([Xl9X2])(a)^[dr(Xl)9dr(X2)]a 

holds. 
Bratteli's book begins with a discussion of bounded derivations, and turns 

quickly to the active and rich field of unbounded derivations. There are two 
parts in the book: general theory, and noncommutative vector fields. Part 1 is 
structured as follows. 

1. Analytic properties 
1.1. Closability 
1.2. Generators 

2. Classification 
2.1. Nonabelian C*-algebras with special emphasis on 

the simple ones 
2.2. Abelian C*-algebras (i.e., differentiable structures) 

The organization of Part 2 is modelled on that of Part 1 but the specific 
results are much more detailed in the more specialized case of a noncommuta­
tive vector field, by which is meant a derivation mapping one class of smooth 
elements to another. 

A derivation 8 is said to be closed if the graph G(8) is closed in 21 X 21, and 
8 is said to be closable if the closure of G(8) is the graph of some Hnear 
operator, or equivalently if G(8) is contained in the graph of some closed 
derivation 8C say. We then say that 8C is an extension of 8. 

A derivation 8 is said to be a generator if there is a strongly continuous 
one-parameter group of *-automorphisms, {at: t e R} C Aut(21), such that 

at(a), A e / ) ( « ) , 
o 

(6) dr{X)(a)= Jt 

(7) 0(a) 
dt 
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i.e., the elements a in D(8) are precisely those for which the limit 
lim,_^0/_1(a,(ö) — a) exists. Generators are closed, and we want to study 
closed derivations to be able to isolate differentiable structures. An important 
problem for infinite dynamical systems is to decide when a given derivation 8 
is a generator, or when it has an extension which is a generator. We refer to 
[5b, vol. II] for some of the models from physics. 

Let Â' be a totally disconnected compact space, and let C(K) be the abelian 
C*-algebra of all continuous functions on K. Then Sakai [19b] observed that 
C(K) does not have any nonzero closed derivations with dense domain. We 
therefore note that K does not carry any differentiable structure. (It is known 
that C(K) has derivations which are not closed.) 

In Part 1 of the book, differentiable structures are studied in terms of closed 
derivations. The existence of functional calculi (i.e., various forms of a gener­
alized chain rule) for closed derivations plays a central role in results from the 
general theory. This functional calculus is developed efficiently in Part 1 for 
various algebras of regular functions. The treatment is especially useful since 
the research papers in this area are scattered over many journals, and some of 
the details are somewhat technical (with some surprises), although the general 
ideas are clear. The functional calculus is used in, e.g., ^-theory [2], and often 
without explicit references to research papers on the subject. 

The one-parameter groups, a: R -» Aut(2t), are applied to the study of 
dynamical systems in quantum mechanics, both in quantum field theory [20], 
and in statistical mechanics [5b, vol. II]. We also refer to [10b] and [lib] for 
additional details and references. 

Physicists wish to construct a self-adjoint (generally unbounded) Hamilto-
nian operator H in some Hubert space 3tf, and consider the unitary group 
{ e ' / W } / G R on 3tf in order to solve the corresponding Schrödinger equation. 
Let % be a C*-algebra of operators on 3tf satisfying 

(8) eitH%e~itH=%, * e R . 
Then there is a one-parameter group {at} c Aut(5t), given by 

(9) at(a) = eitHae-itH
9 a e 5t, t e R, 

and describing the familiar correspondence between the Schrödinger picture 
and the Heisenberg picture of dynamics. An important and basic problem is to 
determine the automorphism group 

(10) a : R ^ A u t ( 2 I ) . 
This is nontrivial because H generally does not exist as an operator, but only 
as a formal expression. From the outset, it is not clear even what Hubert space 
to choose. The symbol H — H0 + V in quantum field theory is, a priori, only 
a formal expression, as is the infinite sum 

(11) H = ZJ,AOJ 

(summation over a given graph G in L X L for some configuration or spin 
lattice L) in quantum lattice models. (We refer to [5b] and [16] for details.) The 
mathematical difficulty, which can be overcome by introducing a suitable 
derivation ô, is that H is not given, or defined, as an operator, let alone a 
self-adjoint one. But it is possible in important examples from physics to 
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introduce 8 and thereby give a precise meaning to H (the Hamiltonian) as a 
self-adjoint operator in some Hubert space. Suppose for example that H 
(formal expression) is given by (11). Then define a derivation 8 by 

(12) 8(a) = i[H,a] 

for elements a in the dense subalgebra D(8) of finite tensors in the Pauli spin 
variables {cft}iGL, ot = (o^o^of). (The C*-algebra is constructed to be 
simple, and it is the completion of the finite tensors, so D(8) is automatically 
dense.) We wish to stress that the commutator on the right-hand side of (12) 
involves only a finite number of terms in the expression (11), although the 
number of terms does depend on the particular element a in D(8). It follows 
that 8 is perfectly well defined as a derivation. The problem is now to show, in 
concrete examples, that 8 generates a one-parameter group {a,} c Aut(5l), or 
has a generator extension. For the quantum lattice models, the problem is 
already solved, but not so for other physical models. (The derivation given by 
(11) and (12) is approximately inner, and if supzEy|/0| < oo, where the 
summation, for fixed /, is over the set {j e L : (/, j) e G), then the closure of 
8 is a generator [5b, vol. II].) In the final analysis, a genuine hermitian operator 
H satisfying (8), (9), and (12) enters the picture only " through the back door," 
when the GNS-construction is applied to some invariant state, e.g., ground 
state, or KMS temperature state. 

A number of papers in the seventies were concerned with the Powers-Sakai 
conjecture [17] which arose in connection with the existence problem for 
ground states and KMS-states. During the eighties, an important role was 
played by a second problem, raised by Sakai at the 1980 Kingston Symposium 
[lib, vol. II, p. 326]. Sakai asked for simple C*-algebras with nontrivial 
differentiable structures. While the Powers-Sakai conjecture was never solved 
completely, but only in special cases, Sakai's problem was solved fully: first in 
a special case by Takai [22], and then in complete generality (and for all 
dimensions) by Bratteli, Elliott, and the reviewer [3]. 

One might think of Sakai's problem much more broadly stated as: "under­
stand differentiable structures on (simple) C*-algebras"! This "generalized" 
problem is certainly not solved, but a variety of aspects of the broader program 
are currently being investigated by many researchers. 

We need two definitions. A derivation 8 with dense domain D{8) in a 
C*-algebra % (resp., an automorphism group ( a j c Aut(9l)) is said to be 
approximately inner if there is a sequence of elements hn = -h* e % such that 

(13) 8(a) = lim [hn,a], aeD(8), 
n—* oo 

respectively, 

(14) at(a) = Urn eth"ae~th% 
n-+ oo 

where the limit is relative to the norm on 31. Compare formula (13) with (2), 
and similarly (14) with (9). The conjecture states that every continuous 
automorphism group { a , ) c Aut(5t) is approximately inner if 21 is UHF, i.e., 
a matricial C* -algebra in the terminology of [12b]. The approximately inner 
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one-parameter groups {a,} are especially important in quantum statistical 
mechanics since these groups have ground states, and (whenever 21 has a trace) 
they have KMS-states for all values of inverse temperature /? = (kT)~l, as 
proved by Powers and Sakai [17]. 

It follows from general theory [14] that (13) implies (14). But, so far, (13) has 
only been established for elements a in various subalgebras of D(8). While 
these subalgebras are dense in 5t, they are not known to be dense in D(8) 
relative to the graph norm. The remaining problem is called the core problem, 
and, so far, no one has been able to solve it or to supply a counterexample. 

To understand how a differentiable structure can be realized on a C'"-alge­
bra it is necessary to factor out by the approximately inner derivations. Sakai 
asked [lib] for a class of simple C*-algebras which admit a nontrivial 
differentiable structure. The paper [3] supplied the differential analysis of such 
a class, and the C*-algebras are now called "pseudo tori", or "noncommuta-
tive tori" since they are generalizations of Tn for n = 1,2, Although they 
are simple C *-algebras, they share differentiable structure with Tn. In the 
special case n = 2, they were introduced in [6a] and [18] under the name 
"irrational rotation algebras." The more general "pseudo tori" may be defined 
on arbitrary compact abelian groups G. If G is the corresponding dual discrete 
group of characters, and p is a nondegenerate antisymmetric bicharacter on G, 
then the simple C*-algebra 2ï(p) is defined as a functor from the category of 
bicharacters (properties as above) to the category of simple C*-algebras. It is 
known that 2T(p) carries a canonical ergodic action of G, T: G -> Aut(2ï(p)). 
Let 51 ̂ (p) be the corresponding ring of C°°-elements for the action. Let J£? be 
the oo -dimensional Lie algebra of all derivations in % ̂ (p). Then a result in [3] 
states that 

(15) &= o£?0 4- ) Sex (semidirect product), 

where £?0 is just the infinitesimal Lie algebra of the action T, obtained by 
differentiation as in (6), and <£\ consists of all approximately inner deriva­
tions. In particular, j£\ is an ideal in «£?, and nonzero elements in J?0 are not 
approximately inner. If G has dimension n, 1 < n < oo, it follows that the 
abelian Lie algebra J^0 is of dimension n. We say that it is a differentiable 
structure. (An earlier result of Sakai can be reformulated (modulo the unsolved 
core problem) as saying that the UHF algebras have no differentiable struc­
ture, i.e., they are the noncommutative (quantized) versions of Cantor sets.) 

If it is further assumed that p satisfies a certain generic diophantine 
property, then, as we proved in [3], J£\ consists of inner derivations. In 
particular, approximately inner derivations, cf. (13), mapping ^ ( p ) into 
itself, are automatically inner, and therefore bounded. For the irrational 
rotation algebras %e (irrational rotation angle 0), the generic condition is 
known to hold if 0 is irrational algebraic. 

It was shown later in [10b, Connes-Rieffel] that Yang-Mills functionals are 
defined for 21 e in terms of the differentiable structure. Connes [6a] had already 
defined the differential geometric concepts for tytf: connections, curvature, 
and Chern character; and he had proved an Atiyah-Singer index theorem in 
this setting. It was shown in [10b, Connes-Rieffel] that constant curvature 
connections on % f are extremal functionals for the Yang-Mills problem. 
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The constant curvature connections turned up recently in a further analysis 
of noncommutative vector field theory. The authors of [4] classified, using 
results from [10a], all the smooth Lie group actions on the simple C*-algebras 
%(p) when p is assumed to satisfy the generic condition. The Lie groups which 
act as groups of diffeomorphisms were classified, and the actions determined. 
Letr: G -» Aut(5ï00(p)) be such a Lie action, and let Jt T be the Lie algebra of 
derivations obtained from T by differentiation, cf. (6). We proved that every 
finite-dimensional real Lie subalgebra Ji <z. £g arises this way from a Lie 
action of some G, and we thereby linearized the classification problem. 

Let Ji — 6f +}<% (semidirect product) be the Levi decomposition of some 
given Jt with JS? semisimple, and ^ the solvable radical. Then we showed [4] 
that Sf must be compact (i.e., have negative definite Killing form), and consist 
of inner derivations. All compact semisimple cases may be realized. Moreover 
0t must necessarily be step 2 and of a very special form. If n = 2, then 9t may 
contain a copy of the 3-dimensional Heisenberg Lie algebra, and we show that 
the classification of the possible smooth actions of the Heisenberg group is 
closely connected with the analysis of constant curvature connections: The 
classification of the Heisenberg actions is given in terms of the moduli space 
for the Yang-Mills problem. 

The book under review gives an excellent background on the theory of 
noncommutative vector fields, along with recent applications, including some 
of those mentioned above. While this review has focused on derivations, the 
book also treats dissipations, alias semiderivations. The derivations (or rather 
*-derivations) describe the dynamics in conservative systems, and the semide­
rivations are used to make explicit the dynamics for (infinite) dissipative 
systems. 

Bratteli's book is very clear and well written, and it should prove useful for 
graduate students and researchers in functional analysis and related fields. So 
far, there has been no systematic treatment of recent results in this very active 
area of operator algebras. We finally note that a book by Sakai is in 
preparation. It covers a rather different (but equally interesting) side of the 
subject. 

REFERENCES 

1. C. A. Akemann and G. K. Pederson, Central sequences and inner derivations of separable 
C*-algebras, Amer. J. Math. 101 (1979), 1047-1061. 

2. B. Blackadar, K-theory for operator algebras, Springer-Verlag, New York, 1986. 
3. O. Bratteli, G. A. Elliott and P.E.T. Jorgensen, Decomposition of unbounded derivations into 

invariant and approximately inner parts, J. Reine Angew. Math. 346 (1984), 166-193. 
4. O. Bratteli, G. A. Elliott, F. M. Goodman and P.E.T. Jorgensen, Smooth Lie group actions on 

non-commutative tori, Preprint, 1986. 
5a. O. Bratteli and D. W. Robinson, Unbounded derivations of C*-algebras, Comm. Math. Phys. 

42 (1975), 253-268. 
5b. , Operator algebras and quantum statistical mechanics. I, II, Springer-Verlag, New 

York, 1979/81 (vol. I in new éd., 1987). 
6a. A. Connes, C*•-algebres et géométrie différentielle, C. R. Acad. Sci. Paris 290 (1980), 599-604. 
6b. , Noncommutative differential geometry. I, The Chern character in K-homology; II, 

deRham homology and noncommutative algebra, Publ. Math. IHES 62 (1985). 
7. J. Dixmier, Les algébres d'opérateurs dans l'espace Hilbertien, 2nd éd., Gauthier-Villars, Paris, 

1969. 



BOOK REVIEWS 209 

8. G. A. Elliott, Some C*-algebras with outer derivations. Ill, Ann. of Math. (2) 106 (1977), 
121-143. 

9. R. Haag, N. M. Hugenholtz and M. Winnink, On the equilibrium states in quantum statistical 
mechanics, Comm. Math. Phys. 5 (1967), 215-236. 

10a. P.E.T. Jorgensen and R. T. Moore, Operator commutation relations, D. Reidel Publishing 
Co., Dordrecht-Boston, 1984. 

10b. P.E.T. Jorgensen and P. S. Muhly (eds.), Operator algebras and mathematical physics, 
Contemp. Math., vol. 62, Amer. Math. Soc, Providence, R.I., 1987. 

l ia . R. V. Kadison, Transformation of states in operator theory and dynamics, Topology 3 (1965), 
177-198. 

l i b . R. V. Kadison (éd.), Operator algebras and applications, Proc. Sympos. Pure Math., vol. 38, 
parts 1 and 2, Amer. Math. Soc, Providence, R.I., 1982. 

12a. R. V. Kadison and J. R. Ringrose, Cohomology of operator algebras. I, Type I von Neumann 
algebras, Acta Math. 126 (1971), 224-244. 

12b. , Fundamentals of the theory of operator algebras, vols. I and II, Academic Press, 
1983/86. 

13. I. Kaplansky, Modules over operator algebras, Amer. J. Math. 75 (1953), 839-859. 
14. T. Kato, Perturbation theory f or linear operators, Springer-Verlag, New York, 1976. 
15. D. Montgomery and L. Zippin, Topological transformation groups, Interscience Publishers, 

Inc., New York, 1955. 
16. R. T. Powers, Resistance inequalities for KMS-states of the isotropic Heisenberg model. Comm. 

Math. Phys. 51 (1976), 151-156. 
17. R. T. Powers and S. Sakai, Existence of ground states and KMS states for approximately inner 

dynamics, Comm. Math. Phys. 39 (1975), 273-288. 
18. M. A. Rieffel, C*-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), 

415-429. 
19a. S. Sakai, On a conjecture of Kaplansky, Tôhoku Math. J. 12 (1960), 31-33. 
19b. , The theory of unbounded derivatives in C*-algebras, Lecture Notes, Univ. of 

Newcastle, England, 1977. 
20. I. E. Segal, Notes towards the construction of nonlinear relativistic quantum fields. Ill, 

Properties of the C*-dynamics for a certain class of interactions, Bull. Amer. Math. Soc. 75 (1969), 
1390-1395. 

21. Ja. G. Sinaï and A. Ja. Helmskiï, A description of differentiations in algebras of the type of 
local observables of spin systems, Funktsional Anal, i Prilozhen 6 (1972), 99-100; English transi., 
Funct. Anal. Appl. 6 (1973), 343-344. 

22. H. Takai, On a problem of Sakai in unbounded derivations, J. Funct. Anal. 43 (1981), 
202-208. 

23. C.-T. Yang, Hilbert's fifth problem and related problems on transformation groups, Proc. 
Sympos. Pure Math., vol. 28, Amer. Math. Soc, Providence, R.I., 1976, pp. 142-146. 

PALLE E. T. JORGENSEN 


