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CLAUDE CHEVALLEY (1909-1984) 

JEAN DIEUDONNÉ AND JACQUES TITS 

Both parents of Claude Chevalley came from Protestant families. His mother 
was the daughter of a Calvinist minister from southern France, who had a 
distinguished career in the Protestant hierarchy, culminating in the deanship of 
the Protestant Faculty of Theology in Paris. Chevalley's father was the son of a 
Swiss watchmaker who had settled in western France. He held several teaching 
positions in secondary schools before entering the diplomatic service; when 
Chevalley was born, his father was the French consul in Johannesburg. 

Chevalley's intellectual gifts were soon apparent, and allowed him to enter 
the École Normale Supérieure in Paris at the early age of 17. There he met 
J. Herbrand, who was one year older, and with whom he struck a deep 
friendship, unfortunately broken when Herbrand died in a mountain climbing 
accident in 1931. Both starting doing research while still students at the École 
Normale; they were interested in topics that were taught nowhere in France at 
the time, such as mathematical logic, number theory and algebra; after their 
graduation, with the help of research grants (very scanty at that time), they 
were able to visit German universities where these fields were being actively 
developed. The research they did there was strongly influenced by the work of 
E. Noether, E. Artin and H. Hasse; it was chiefly concerned with the theory of 
algebraic numbers, and was highly valued by the German school. 

The main contributions of Chevalley during the years 1930-1940 were 
focused on both local and global class field theory. What is now called 
"global" class field theory deals with abelian extensions of number fields and 
has its origin in the early results of Kronecker, H. Weber, and Hilbert at the 
end of the 19th century. Inspired by the special cases Kronecker and Weber 
had treated, Hilbert had formulated general conjectures; these (later gener­
alized by Takagi) established a one-to-one natural correspondence between the 
abelian extensions of a number field K and certain classes of ideals in K, and 
also described how a prime ideal in K splits in an abelian extension of K, in 
terms of that correspondence. Hubert's conjectures were proved between 1910 
and 1923 by Furtwàngler and Takagi, whose results were completed in 1927 by 
E. Artin's famous "reciprocity law" which exhibited an explicit isomorphism 
between the Galois group of an abelian extension E of K and a quotient group 
of the group of ideal classes of K, in the construction of which there entered 
the norms in K of the prime ideals of E. 

Received by the editors December 1, 1986. 
1980 Mathematics Subject Classification (1985 Revision). Primary 01A70. 

1 



2 JEAN DIEUDONNÉ AND JACQUES TITS 

The proofs of these theorems were extremely complicated; Herbrand and 
Chevalley were able to substantially simplify them, and these improvements 
were incorporated in Chevalley's thesis of 1933 [4]. It was also in his thesis that 
he laid the foundations of an autonomous local class field theory, which until 
then had been derived by Hasse from the global theory, by localizing the 
number field at a prime ideal p. Chevalley showed that it is possible to start 
directly from a £-adic field and to consider its abelian extensions. The main 
theorems are then much simpler than in the global theory; the one-to-one 
correspondence is between abelian extensions E of a £-adic field K and the 
subgroups of finite index in the multiplicative group Kx of nonzero elements 
of K; the Galois group of E over K is then naturally isomorphic to the 
quotient of Kx by the group of norms over K of the elements of the 
multiplicative group Ex. 

In the following years, Chevalley's efforts were directed towards the elimina­
tion from class field theory of the tools involving analytic number theory 
applied to zeta functions, which had been essential in the proofs of his 
predecessors. He also wanted to generalize class field theory to number fields 
which are extensions of infinite degree of the rational field. He succeeded in 
both endeavors by the introduction of the new concept of idèle [11], which has 
become fundamental in algebraic number theory, where it is the first explicit 
instance of "passage from local to global." A number field K of finite degree 
is embedded into the product Y\vKvoi all completions Kv of K at the places v 
of K, both finite and infinite', this is a definite improvement on earlier similar 
ideas of Prufer and von Neumann, who had only embedded K into the 
product over the finite places. In fact, the product Y\VKV is too big; Chevalley 
restricted it to the set of elements (£v) such that £D # 0 for all u, and for finite 
places v, i-v is a unit in the ring of integers of Kv, except for a finite number of 
places. These elements are the idèles of K\ they form a multiplicative group JK\ 
it contains the multiplicative group Kx as a subgroup, when one identifies an 
element a e Kx with the idèle whose components £y are all equal to a. If E is 
an abelian extension of K, there is a norm homomorphism JE -> JK\ if (Çw) is 
an idèle in JE, the corresponding idèle (£y) in JK is obtained by taking for 
each place v all places w of E above u, and the norms over Kv of the elements 
fw; iv is the product of all these norms for the places w above v; the image of 
JE in JK is a subgroup written N(JE/JK). The main theorem of global class 
field theory, expressed in terms of idèles, is that the Galois group Gal(E/K) of 
an abelian extension is isomorphic to 

JK/KXN(JE/JK) 

and there is a natural isomorphism of that group onto Gai(E/K), expressed in 
terms of Artin symbols. In 1940, Chevalley was able to obtain that result 
directly from the local theory, using neither Takagi's results nor analytic 
number theory [13]. He made great use of topological notions in the group JK, 
but the topology he introduced was not the best one for the theory, and it was 
later replaced by a more useful one, for which JK is a locally compact abelian 
group, to which the general theory of such groups (in particular Fourier 
theory) may be applied, with beautiful results. 
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In 1939, Chevalley had been invited for a semester to the Institute for 
Advanced Study, and he was in Princeton when the war broke out. The French 
ambassador suggested that he stay in the USA for the time being, and after the 
German invasion he could not go home. He was offered a position on the 
faculty at Princeton University, and taught there until 1948. After that date, he 
became a Professor at Columbia University, where he stayed until 1955; during 
the year 1953-54 he visited Japan on a Fulbright scholarship, and gave several 
series of lectures at Japanese universities. His lectures always were at a very 
high level of rigor and did not attract average students; but several bright 
graduate students did research work under his guidance, and his encyclopaedic 
knowledge and original ideas always were very much appreciated by mathema­
ticians who exchanged ideas with him. 

After 1940, Chevalley turned his attention to mathematical fields in which 
he had not previously done much work, Lie groups and algebraic geometry. In 
1941, he became interested in algebraic geometry over an arbitrary field, which 
A. Weil, who had been able to escape from France to the USA, was at that 
time building up on new bases. Chevalley proved several key properties of the 
local rings of an algebraic variety [16], and constructed an original theory of 
intersections, which used methods different from those of Weil, and could be 
applied to algebroid varieties as well [21]. For more than ten years he actively 
remained interested in the foundations of algebraic geometry, both for their 
own sake—they were the essential topic of his joint seminar with H. Cartan* 
[51]—and in view of his work on algebraic groups. All his life, in fact, and 
besides his deepest and highly technical mathematical investigations, Chevalley 
was passionately concerned with problems of foundations, a concern insepara­
ble from his great interest in philosophy. 

But Chevalley's most important contribution to mathematics is certainly his 
work on group theory. Here, one must first mention the trilogy: Theory of Lie 
groups, I, [41], Théorie des groupes de Lie, II [43] and III [44]. The titles suggest 
that they are three successive parts of a same opus. In fact, the three books are 
very different in conception and scope (not to mention the language and the 
publisher!). Part one was the first systematic exposition of the foundations of 
Lie group theory consistently adopting the global viewpoint, based on the 
notion of analytic manifold. This book remained the basic reference on Lie 
groups for at least two decades. 

But in the late forties, Chevalley became more and more interested in the 
purely algebraic (so-to-speak still more global) aspects of the theory. This shift 
of focus is already apparent in I, the last chapter of which is very algebraic in 
nature; in particular it contains Chevalley's well-known result that "compact 
Lie groups are algebraic." The evolution is complete in part II, which takes one 
over the whole theory again (it is essentially independent from I) but in the 
framework of algebraic Lie groups and Lie algebras. By working over an 
arbitrary field of characteristic zero, the author precludes any use of analytic 
methods. An important tool created on that occasion (in fact, already intro­
duced in an earlier paper [17]) is that of "replica of a matrix M": by 

*Here, the French word "schéma" appears for the first time in algebraic geometry. The 
influence of that seminar on Grothendieck's ideas is worth mentioning. 
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definition, these are all elements of the smallest algebraic Lie algebra (i.e. the 
Lie algebra of a linear algebraic group) containing M. As an application of 
that notion, Chevalley proves the following criterion for a subalgebra Q of gl„ 
to be algebraic: this is the case if and only if g contains all replicas of its 
elements. Part III is a somewhat more standard exposition of fundamental 
results in the theory of Lie algebras. 

Of greatest significance and with major impact was Chevalley's most seminal 
paper entitled Sur certains groupes simples, published in 1955 in the Tôhoku 
Mathematical Journal [36]. Since Killing and E. Cartan it was known that the 
only existing simple complex analytic groups were the so-called classical 
groups and the five exceptional groups G2, F4, E6, E7, Es. In the mid-fifties, 
classical groups over arbitrary fields had already been defined and extensively 
studied; algebraic analogues of some of the exceptional groups had been 
known for quite a while, and several mathematicians, including Chevalley 
himself [26,29,30], were pursuing investigations of the individual exceptional 
groups, in order to better understand them and, for some people, to define 
algebraic analogues for all of them. This last goal was attained in all cases at 
once in the "Tôhoku paper." The importance and originality of that paper Hes 
less in the new simple groups it was exhibiting (in fact, all " Chevalley groups" 
except those of type E% had already been or were on the verge of being 
constructed by ad hoc methods), than in the unified treatment of the groups 
involved. This inaugurated a completely new theory and revealed important 
structural features of a general nature. It opened the way to further progress 
both in the theory of algebraic simple groups and that of finite simple groups, 
whose classification could not have been contemplated without the understand­
ing of the "Chevalley groups" provided by the "Tôhoku" approach. 

The crucial discovery of Chevalley in that paper is the fact that a complex 
simple Lie group, considered as a linear group via the adjoint representation, 
can be described by means of a generating system of "one-parameter" (addi­
tive or multiplicative) subgroups, given by polynomial formulas with integral 
coefficients, this being of course true only with respect to cleverly chosen bases 
of the Lie algebra, now called Chevalley bases. Once the group is given such a 
description, where all coefficients in the formulas are rational integers, it is a 
simple matter to define "analogues" of that group over an arbitrary field K: 
indeed, it suffices to let the variables run over K instead of C, the field of 
complex numbers. 

After Grothendieck, we now recognize in that process a "change of base," 
and we suspect that what Chevalley had actually done in the Tôhoku paper 
was to associate to every simple complex Lie group G a simple group scheme & 
over Z such that G is the group ^(C) of complex points of ^, the Chevalley 
groups being the corresponding &(K). The conceptual step was indeed accom­
plished by Chevalley himself (this time, not only for the adjoint groups but 
also for their various coverings) in a lecture at the Séminaire Bourbaki in 1961 
[39]. 

In 1955, Chevalley returned to France, where he became a professor in the 
University of Paris; he taught there until his retirement in 1978, and started a 
seminar, chiefly devoted to algebraic geometry and the theory of groups. It is 
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there that in 1956-58 he lectured on what many consider his masterpiece, at 
least as important and of even more prowess than the "Tôhoku paper": the 
determination of all semisimple groups over an arbitrary algebraically closed 
field. The mimeographed notes of that seminar were nicknamed "The Bible" 
by the specialists; curiously enough, those notes of fundamental importance, 
still currently used by many mathematicians, never appeared in print [49]. 

The classification of complex semisimple groups, due to W. Killing and E. 
Cartan, was more than half a century old. It was a relatively simple matter to 
transfer the theory from the complex field to an arbitrary algebraically closed 
field of characteristic zero: this was in fact essentially done in Chevalley's 
books already mentioned. But the methods of Killing and Cartan belonged to 
what is now called the theory of Lie algebras, and there was no hope to extend 
them to the case of finite characteristic, for at least two reasons: Chevalley 
himself had observed that in characteristic p > 0, an algebraic group is no 
longer determined locally by its Lie algebra (in heuristic terms, the latter only 
determines an "infinitesimal neighborhood of order p" of the identity in the 
group). Moreover it was known that the classification of simple Lie algebras in 
characteristic p—a classification that is not yet completed to this day—was 
much more complicated and led to a longer enumeration than in characteristic 
zero. For those reasons, it was widely believed in the early fifties that the realm 
of algebraic simple groups was much richer and intricate in finite characteristic 
than in characteristic zero. 

When Chevalley was able to solve the problem, it therefore came as a great 
surprise that, although the methods were completely different from those of 
Killing and Cartan, the final result was independent of the characteristic: 
existence of four infinite classes of "classical groups" and of five "exceptional 
groups"; and a like number of "central isogeny classes" (groups that are, in a 
suitably defined way, "locally isomorphic" for each group. Along the way, 
Chevalley was also able to extend E. Cartan's theory of irreducible linear 
representations of semisimple groups. Here again, the result is "characteristic-
free," to some extent at least: irreducible representations are classified by the 
same "highest weights" as in characteristic zero; however, WeyPs dimension 
formula is no longer valid and one does not have complete reducibility for 
arbitrary representations. 

Lie algebra techniques being no longer available (or rather, being useless), 
Chevalley had to devise purely group-theoretical and algebro-geometric meth­
ods. This was made possible by A. Borel's work on algebraic linear groups 
(Annals of Math., 1956) of which Chevalley's seminar is in fact a continuation. 
Borel's fundamental discovery was that some essential structural properties of 
complex Lie groups, which had been established by transcendental methods or 
using the classification, could be proved very simply by means of purely 
algebro-geometric arguments which worked equally well over arbitrary alge­
braically closed fields; thus, he could extend to those fields such properties as 
the conjugacy (in a connected algebraic group) of all maximal connected 
solvable subgroups—now called Borel subgroups—and the conjugacy of all 
maximal tori. An essential result in Borel's theory is that a coset space G/P of 
a connected algebraic linear group G by a closed subgroup P is a projective 
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variety if and only if P contains a Borel subgroup. In particular, to every such 
group G there is associated in a most canonical fashion one especially 
remarkable projective variety, namely G/B for B a Borel subgroup. Maximal 
tori, Borel subgroups, and the variety G/B are the major ingredients of 
Chevalley's proof, which is much longer and more involved than the proof of 
Killing and Cartan, and is a monument of technical skill and ingenuity. 

Although by far the most important single piece of work of Chevalley on the 
subject, the "Séminaire" does not exhaust his contributions to the theory of 
algebraic groups. Especially worth mentioning are an unpublished paper 
describing the Chow ring of G/B, and the important theorem according to 
which every algebraic group G is in a unique way an extension of an abelian 
variety by a hnear algebraic group (i.e., G has a unique closed maximal linear 
subgroup L which is normal, and G/L is an abelian variety). 

In the sixties, Chevalley turned his attention to finite group theory, which he 
made the main subject of his teaching and seminars. In that way, he created an 
active school responsible for important new developments in Brauer's theory of 
blocks and modular representations. 
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