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What are spectral sequences, and what are they good for? Perhaps we can 
best answer this question by giving a couple of examples. 

First example, from homological algebra. Let G be an arbitrary group, and 
let A be a G-module. To understand this example, the reader needs to know a 
little bit about the cohomology groups of G with coefficient module A, 
denoted by Hq(G9 A), q = 0,1,2, In the study of these cohomology groups 
the following problem arises: Let N be a normal subgroup of G\ assume we 
know the cohomology groups of the subgroup N and the quotient group G/N 
(with some suitable choices of coefficient module). With this information, can 
we determine the cohomology groups of G? A Uttle thought should convince 
the reader that, in general, the answer will probably be No, because usually 
there exist many different, nonisomorphic "extensions" G, given N and G/N. 
In other words, more information will be needed. 

Thus a more reasonable problem is the following: Determine what relations 
must exist between the cohomology groups of TV, G/N, and G. The answer to 
this problem is given by a spectral sequence. We will now explain what this 
spectral sequence is. 

The reader will recall that the cohomology groups of G are defined by means 
of a certain "cochain complex," which consists of a sequence of abelian groups 
{Cq\q = 0,1,2,...} together with a "coboundary operator," S, which is a 
homomorphism 8:Cq -> Cq+1 defined for all q > 0 and having the basic 
property that 8 <> 8 = 0. The subgroup of Cq which is the kernel of 8 is 
denoted by Zq, and the image subgroup 8(Cq~x) is denoted by Bq. From the 
basic property 8 <> 8 = 0, it follows that Bq c Zq\ and the quotient group, 
Zq/Bq, is by definition the qih. cohomology group, Hq. 

In connection with spectral sequences the following alternative terminology 
for these concepts has become common: the sequence of abelian groups {Cq} 
is called a "graded abelian group", and the homomorphism 8 is said to have 
"degree 4-1", because 8(Cq) c Cq+\ and to be a "differential" because 
8 « 8 = 0. The following slight generalization of these concepts has also become 
standard: a bigraded group is a doubly indexed sequence of abelian groups, 

E= {EP>q} 
135 
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where p and q may run through all integers, or all nonnegative integers. A 
homomorphism d: E -* E is said to have bidegree (r, s) if for each (p,q), d is 
a homomorphism of 2? M into Ep+r,q+s. As before, such a homomorphism is 
said to be a "differential" if it satisfies the condition d ° d = 0. If this is the 
case, we can define the nested sequence of subgroups Bp,q c Zp,q c Ep>q

9 as 
before, and then define 

Hp>q(E9d) = Zp>q/Bp>q. 

Note that H(E9 d) = {Hp,q(E9 d)} is again a bigraded group; it is sometimes 
called the "derived group." 

A spectral sequence is an infinite sequence of bigraded (or graded) groups 
with differentials, 

(El9dl),(E29d2)9(E39d3)9... 

with the property that 

En+1=H(E„,d„) 

for n = 1,2,3,. . . , In other words, the derived group of each term of the series 
is the group of the next term. Its differential, dn+1 is not determined by 
(En9dn)9 however. 

We can now explain the Lyndon-Serre-Hochschild spectral sequence. As 
above, let G be a group, N a normal subgroup, and A a G-module. Note that 
A is also an iV-module, by restricting the action of G on A to the subgroup N; 
hence the cohomology groups Hq(G9 A) and Hq(N9 A) are defined for all 
q > 0. Note also that the action of G on N by conjugation gives Hq(N9 A) the 
structure of a G-module; however, it can be shown rather easily that the 
restriction of this action to the normal subgroup N is trivial, hence Hq(N9 A) is 
really a G/iV-module. Therefore the cohomology groups 

Hp(G/N9 Hq{N9A)) 

are defined for all p9 q > 0. The Lyndon-Hochschild-Serre spectral sequence 
(or LHS spectral sequence for short) is a spectral sequence of bigraded groups 

(E29d2)9(E39d3)9...9(Er9dr)9... 

such that 

EP,q=fHp{G/N9H
q(N9A) iîp,q>09 

2 \ 0 otherwise, 

and such that the differential dr has bidegree ( r , l - r) for r = 2,3,4, 
(For this spectral sequence, as is often the case, the first term is that for which 
r - 2 . ) 

Unfortunately, the various methods of constructing this spectral sequence 
are all rather lengthy, and therefore cannot be described in a short essay like 
this. 

While these conditions make clear that the cohomology of the groups N and 
G/N enters into the picture, it remains to explain the connection with the 
cohomology of G. 
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First of all, since Ep,q = 0 if either p or q is negative, it follows that for 
such values of p and q, Ep,q = 0 for all r > 2. Now consider the following 
groups and homomorphisms from the rth term of this spectral sequence 

pp-r,q+r-l . pp,q __> pp + r,q-r+l 
dr dr 

Assume that r > max(/?, q + 1); this condition implies that 

Ep~r^r~l = 0 and Ep+r>q-r+l = 0. 

Hence, Zp>q = Ep>q, and B™ = 0. It follows that 

Ef±\ = Hp>q(Er9 dr) = Zf«/B™ = £/>»«. 

In other words, for fixed (p9q\ the groups Ep'q are the same for all sufficiently 
large values of r. It is convenient to use the notation E&,q to denote the group 
Ep,q for these large values of r. 

We can now describe the connection of the spectral sequence with the 
cohomology groups of G. For each n > 0, there is defined a nested sequence of 
subgroups of Hn(G, A\ 

Hn(G, A) = F°Hn D FxHn D - D FnHn D Fn+1Hn = 0, 

such that for allp.q > 0, 
£?p><? = FPffp+4/fp+iffp+qt 

As is so often the case in mathematics, a special jargon has arisen to describe 
this situation. The nested sequence of subgroups of Hn(G,A) is called a 
filtration of Hn(G, A), In this case, the filtration is decreasing, since FkHn D 
Fk+1H". The doubly indexed sequence of quotient groups 

FPHP+q/Fp+1HP+q 

is called the associated bigraded group of the graded group {Hn(G, A)} with 
respect to the given filtration. The fact that 

£P><i = FPffp+q/fP+iffP+q 

is expressed by saying that "the spectral sequence (Er,dr) converges to the 
associated bigraded group of H*(G,A) appropriately filtered." It should be 
pointed out, however, that the word "converges" is rather misleading in this 
context, since there is no limiting procedure involved. For a fixed (p,q), the 
groups Ep'q reach their "limiting value" E™ after only a finite number of 
steps. 

Using this jargon, we can summarize all this as follows. 

THEOREM. Let N be a normal subgroup of the group G, and let A be a 
G-module. Then there exists a spectral sequence of bigraded groups 

(Er,dr), r = 2 ,3 ,4 , . . . , 

such that 

EP,q _ I H"(G/N, H"(N, A)) ifp, q>0, 
2 \ 0 otherwise. 
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and such that dr has bidegree (r, 1 - r). This spectral sequence converges to the 
associated bigraded group of H*(G, A) appropriately filtered. 

At this stage, it probably seems plausible to the reader that this spectral 
sequence does indeed prescribe certain relations between the cohomology 
groups of N9 G/N9 and G; however, the whole thing is so complicated, and 
there is so much arbitrariness in this description, that it is difficult to see how 
one could ever make use of this machinery. We will come back to this point 
after our next example. 

Second example, from topology. This example concerns the cohomology 
groups of a fibre space. Given two topological spaces X and 7, we can form 
the product space 1 x 7 . The notion of "fibre space" is a generalization of the 
concept of a product space; indeed, in Russian mathematical literature they 
are sometimes called "skew products/' Let Sl denote the unit circle x2 + y2 = 
1 in the (x, y) plane, and let / denote the closed unit interval [0,1]. Then one 
can form the product space Sl X ƒ, which is an annulus, and S1 X 51, which is 
a torus. But one can also slightly modify the construction, and by putting a 
"twist" in each of these spaces, form a Möbius strip and a Klein bottle 
respectively. These are the simplest nontrivial examples of a fibre space: 
locally, a Möbius strip is like an annulus, and a Klein bottle like a torus, but 
globally they are different. 

The precise definition goes as follows: A fibre space is a quadruple 
(£ , p, B, F) , where E, B, and F are topological spaces and p is a continuous 
map of E onto B which satisfies the following condition: Given any point b of 
B, there exists a neighborhood U of b and a homeomorphism h of U X F onto 
p-\U) such that 

p[h(x,y)] = x 

for any (x, y) (= U X F. 
This condition means that locally the map p is like the projection of a 

product space onto one of its factors, even though this may not be true 
globally. In one of the examples cited above, E = the Möbius strip, B = S1 

and F = I; it should be clear to the reader how to define the continuous map 
p so that the required local product condition holds. 

The spaces E, B, and F are customarily called the "total space," "base 
space," and "fibre" respectively, and the mapping p is called the "projection." 
The subspaces p~l(b) for any b e B are also called "fibres"; each of them is 
homeomorphic to F. In the last fifty years or so the fibre space concept has 
played an increasingly important role in algebraic topology itself, in related 
disciplines such as differential geometry and global analysis, and even in 
algebraic geometry. The basic definition given above has been modified, 
generalized, and specialized in almost every conceivable way. 

An obvious question which arises in the study of fibre spaces is the 
following: Do the homology (or cohomology) groups of the base space and 
fibre determine the homology (or cohomology) groups of the total space? In 
the case of a product space, the answer is Yes: The homology groups of A" X 7 
are completely determined by those of X and of 7. (This result is called the 
"Künneth Theorem.") However, with given choices for the base space and 
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fibre, it is usually possible to construct many different fibre spaces (provided 
the base space is not contractible). Thus it seems likely that the answer to this 
question will be No (in general); more information is needed. It is perhaps 
more sensible to study the following problem: Determine what relations must 
exist between the homology (or cohomology) groups of the base space, fibre, 
and total space of a fibre space. The answer to this problem is given by another 
spectral sequence, called the Leray-Serre spectral sequence. The version for 
cohomology goes as follows: 

THEOREM. Let (E, p,B,F) be a fibre space with all three spaces arcwise 
connected and B simply connected, and let A be an abelian group {the coefficient 
group). Then there exists a spectral sequence ofbigraded groups 

(Er9dr), r = 2 ,3 ,4 , . . . , 
such that 

EP,q=\Hr{B,H«{F,A)) ifp,q>0, 
2 10 otherwise, 

and such that dr has bidegree (r, 1 - r). The spectral sequence converges to the 
associated bigraded group ofH*(E,A) appropriately filtered. 

EXPLANATORY REMARKS. (1) If X is a topological space and A is an abelian 
group, then Hn(X,A) denotes the «-dimensional singular cohomology group 
of X with coefficient group A. 

(2) The hypothesis that B is simply connected is unnecessary; however, if it 
is omitted, the description of E**q involves what is known as "cohomology 
with local coefficients," and hence is more complicated. 

(3) The reader will undoubtedly note a strong analogy between the Lyndon-
Hochschild-Serre spectral sequence and the Leray-Serre spectral sequence. This 
analogy is not just an accident. By regarding the cohomology of a group as the 
cohomology of the corresponding Eilenberg-Mac Lane space, it is possible to 
"realize" the LHS spectral sequence as a particular case of the Leray-Serre 
spectral sequence. 

How does one actually use a spectral sequence to get results? As was 
suggested previously, in general the LHS or Leray-Serre spectral sequence is 
very complicated, and it is difficult to extract much information out of it. 
However, if special hypotheses hold, it is often possible to get significant 
results. Here are some examples. 

(1) Note that if dr = 0, then Er+1 = Er\ hence if dr = 0 for all r > 2, then 
E2 = E^. In this case the spectral sequence is said to "collapse." Whenever the 
LHS spectral sequence collapses, it is much easier to derive significant relation­
ships between the cohomology groups of G, N9 and G/N. (An analogous 
statement is true for the Leray-Serre spectral sequence.) 

It may happen that enough of the groups E^q are 0 so that the spectral 
sequence must of necessity collapse. For example, observe that each of the 
differentials dr increases the "total degree", p + q, by one; hence it follows 
that if the groups E**q which are nonzero all have even total degree (or they all 
have odd total degree), then dr = 0 for all r, and the spectral sequence 
collapses. 
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It can also happen that a spectral sequence collapses for other reasons. For 
example, the Leray-Serre spectral sequence collapses if the coefficient group A 
is a field, and the fibre is "totally nonhomologous to zero," which is a 
shorthand way of saying that the inclusion map of a fibre into the total space 
E induces a surjection of the cohomology groups of E onto the cohomology 
groups of the fibre (with coefficients in the field A). 

(2) Suppose that for some fixed integer n > 1, E?>q = 0 unless q = 0 or 
q = n. Then the information contained in the spectral sequence is the same as 
that contained in a certain long exact sequence of abelian groups, and hence is 
relatively easy to extract. This case actually occurs for the Leray-Serre spectral 
sequence if the fibre F is an «-dimensional sphere, or at least has the same 
homology groups as an «-dimensional sphere. The resulting long exact se­
quence is called the Gysin sequence. Similar remarks are true if E%'q = 0 
except for p = 0 or p = «. This case occurs if the base space B is an 
«-dimensional sphere; the resulting long exact sequence is called the Wang 
sequence. 

(3) One can be less ambitious and demanding in the amount of information 
one tries to extract from a spectral sequence. For example, assume that 
(E9 p9B9F) is a fibre space such that the Leray-Serre spectral sequence is 
defined, as described above, and that the Euler characteristics of the spaces B 
and F are both defined (the Euler characteristic is the alternating sum of the 
ranks of the integral cohomology groups, provided this alternating sum is 
finite). Then the Euler characteristic of the total space E is also defined, and is 
equal to the product of the Euler characteristics of B and F. This theorem is 
easily proved using the Leray-Serre spectral sequence. 

(4) Although spectral sequences are not as useful as one would hope, for 
making calculations in the specific cases, they are often valuable tools for 
proving rather general theorems. As an example of such a theorem, we present 
the following: Assume that (E, p9 B9 F) and (E', p\ B', F') are fibre spaces 
which satisfy the hypotheses given above for the Leray-Serre spectral sequence. 
Assume that we have given a pair of continuous maps f\E-*E' and 
g:B^>B' such that the diagram 

l p Ï P' 

B -> B' 
g 

is commutative. This hypothesis implies that ƒ maps each fibre of the first 
fibre space into a fibre of the second (hence it is often called a "fibre-preserv­
ing" map). 

It follows that there are induced homomorphisms of homology groups, 

U:Hp(E9A)-*Hp(E',A), 

g*:Hq(B9A)-+Hq(B'9A)9 

(f\F).:H,(F9A)-*H,(F'9A), 
which are defined for all integers p9 q, and r > 0. 
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THEOREM. Assume the coefficient group A is infinite cyclic. Then any two of 
the following conditions imply the third: 

(a) f* is an isomorphism f or allp > 0. 
(b) g* is an isomorphism for all q > 0. 
(c) ( ƒ |F)* is an isomorphism f or all r > 0. 

This theorem is proved using the Leray-Serre spectral sequence for the 
homology of fibre spaces, which is very similar to the one described above for 
the cohomology of fibre spaces. One also uses what is called a "comparison 
theorem" for spectral sequences. 

(5) Spectral sequences can often be given additional natural structures, 
which makes it possible to derive additional conclusions. For example, the 
LHS and Leray-Serre spectral sequences as described above are spectral 
sequences of bigraded groups, {Er,dr). However, if we assume that the 
coefficient group A is a commutative ring with unit, then it is possible to define 
in a natural way products in each of these bigraded groups, so they become 
bigraded rings. The differentials dr have very nice properties vis-a-vis these 
products: 

dr(x-y) = {drx)-y±x-(dry). 

These products are frequently called "cup products." 

History of the early development of spectral sequences. Spectral sequences 
were developed and first used in France immediately after World War II. 
Apparently they were first introduced by J. Leray in some papers concerned 
with what would nowadays be called the sheaf-theoretic cohomology of locally 
compact spaces; see [3] and the references given there. Soon afterwards they 
were being used by H. Cartan and J.-L. Koszul. (The latter used them in his 
work on the cohomology of Lie algebras.) The reviewer recalls quite vividly the 
difficulties algebraic topologists on this side of the Atlantic had in trying to 
understand and digest these first papers about spectral sequences. Fortunately, 
the famous theses of J.-P. Serre [6] and A. Borel [1] appeared within a few 
years. These theses gave many interesting new results which were derived using 
spectral sequences, and the exposition was exceptionally clear. (Serre and Borel 
both had announced the principal results of their theses in brief Comptes 
Rendus notes which appeared a year or so before their respective theses.) 

Probably the first application of spectral sequences to algebra was the 
above-mentioned work of Koszul on Lie algebras. The first explicit statement 
of the LHS spectral sequence was in a Comptes Rendus note by Serre in 1950 
[5], followed by a complete exposition by Serre and Hochschild in 1953 [2]. 
The earlier work of R. C. Lyndon, contained in his 1946 Harvard University 
Ph.D. thesis and published in 1948 [4], was done before spectral sequences 
were known in the U.S.; hence he had to try to state his results without the use 
of spectral sequences. 

After the publication of the theses of Serre and Borel, spectral sequences 
techniques gradually pervaded more and more of algebraic topology and 
homological algebra. They also came to be used in certain other parts of 
mathematics, such as algebraic geometry, category theory, and algebraic 
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X-theory. To the best of the reviewer's knowledge, nobody has ever tried to 
catalog all the many different applications of spectral sequences in modern-day 
mathematics. 

The book by McCleary. Other than the original papers, most expositions of 
spectral sequences have been in textbooks on some aspect of algebraic topol­
ogy or homological algebra, and are aimed at a few particular applications. 
From a pedagogical point of view, this is most sensible, because the only way 
one can possibly learn much about spectral sequences is to actually work with 
them and get used to doing all the gory details. A reader of the introduction to 
McCleary's new book might be misled into thinking it is a general, abstract 
book about spectral sequences, equally applicable to whatever field of mathe­
matics they might be applied to. Fortunately McCleary has not tried to write 
that kind of book. What he has actually written is a guide to the use of spectral 
sequences in algebraic topology. Only one brief chapter (10 pages out of the 
books' total of 423 pages) is devoted to applications of spectral sequences in 
algebra, algebraic geometry, etc. 

As a matter of fact, the major part of the book is concerned with four 
particular spectral sequences in algebraic topology: the Leray-Serre spectral 
sequence, the two Eilenberg-Moore spectral sequences, and the Adams spectral 
sequence of stable homotopy theory. Undoubtedly most algebraic topologists 
would agree that these four spectral sequences are the most important ones in 
the subject. The first three of these are applications to fibre spaces, hence the 
expositions of these three fit together rather nicely. 

The author states in the introduction that a student of algebraic topology 
who studies this book should have a basic knowledge of singular homology 
theory, homotopy groups, and homological algebra. Chapter 4, which is almost 
40 pages long and is entitled "Topological Background," reviews rather briefly 
a number of more advanced concepts that are needed in the book. 

But even this knowledge would probably not be enough to understand some 
of the sections which are specifically labeled "not for the novice." Thus this 
book is both a textbook for beginners in the subject and an encyclopedic 
reference book for experts. Its value as a reference book is enhanced by a 
lengthy bibliography. However, in spite of its encyclopedic nature, the author 
very wisely does not try to give all the details of every proof; for example, 
regarding the introduction of cup products into the Leray-Serre spectral 
sequence, the author states the main results, and refers the reader to Serre's 
thesis and a couple of other references for the details. 

In an encyclopedic book about a subject as complicated as spectral se­
quences, it is inevitable that any author would inadvertently introduce a fair 
number of errors. This reviewer did not notice very many obvious errors; most 
of them will only be detected by extremely careful study. Presumably these will 
be caught by alert readers and can be corrected in subsequent printings. 

McCleary has undertaken and completed a daunting task; few algebraic 
topologists would have the courage to even try to write a book such as this. 
The mathematical community is indebted to him for this achievement! 
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It is generally believed that a most interesting area in nonlinear partial 
differential equations lies in the study of special equations, particularly those 
arising from geometry and physics. The monograph under review is an account 
of problems on the existence of a Riemannian metric with given curvature 
conditions. It contains some of the most important results in mathematics in 
recent years. 

There are all kinds of curvatures: Gaussian curvature, scalar curvature, Ricci 
curvature, Riemannian sectional curvature, etc. When any one of them is 
prescribed, we get a system of partial differential equations on the fundamen­
tal tensor of the Riemannian metric. The problems have a meaning for a 
manifold without boundary, giving rise to some problems attractive because of 
their simplicity. But Chapter IV of these notes gives a treatment of some recent 
developments on boundary-value problems. 

Even for the Gaussian curvature there are unanswered questions. To be the 
Gaussian curvature of a compact surface M2, a function K e C°°(M2) must 
satisfy a sign condition forced by the Gauss-Bonnet theorem. Kazdan and 
Warner proved that this is sufficient. It would be interesting to prove this by a 
conformai transformation of a given metric g0 on M2. There will be no 
difficulty if the Gaussian curvature K0 of g0 is negative. For K0 > 0 there are 
further necessary conditions and it is not known whether they are sufficient. 
Even for the two-sphere M2 = S2 it is not known whether one could obtain a 
metric of constant curvature through the conformai transformation of a given 
one. 

The simplest generalization of the Gaussian curvature to higher dimensions 
is the scalar curvature, which is a scalar invariant. By applying the Bochner 


