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THE FIRST EIGENVALUE IN A TOWER OF COVERINGS 

BY ROBERT BROOKS1 

Let M be a compact Riemannian manifold, and let {Mi} be a family of 
finite Riemannian covering spaces of M. Let Xi(Mi) be the first eigenvalue 
of the Laplacian on Mz. Ai is given by the variational formula 

*,<*)-«¥*"' 
where ƒ ranges over functions satisfying JM. ƒ = 0. 

In this note we announce results on the following problem: When is there a 
sequence oN's where Xi(Mi) is bounded from below as i —• oo? Our approach 
to this problem is of a piece with our approach to studying eigenvalue problems 
related to Ao in [1 and 3]. Namely, we reduce the eigenvalue problem to a 
combinatorial problem built out of the fundamental group. 

To state the combinatorial problem, let us pick generators g\,..., g^ for 
7Ti(M). Consider, for each i, the finite graph I\- described as follows: the 
vertices of I \ are the cosets Tï\{M)//K\{Mi). Two vertices are joined by an 
edge if they differ by left multiplication by one of the g^s. 

For each i, let hi = h(Ti) denote the following number: Let E = {E3} be 
a collection of edges of Ti such that I \ — E disconnects into two pieces, 

Ti - E = A U B. 

Denote by # ( # ) the number of elements of E, and #(A) (resp. #(B)) the 
number of vertices in A (resp. B). Then 

fc-inf- *{E) 

E min(#(A), # (£ ) ) • 

hi is of course the combinatorial analogue of Cheeger's isoperimetric constant 
[ii]. 

THEOREM 1. There is a positive constant C\ such that Xi(Mi) > C\ for 
all i if and only if there is a positive constant C2 such that hi > C2 for all i. 

The general question of describing manifolds M for which \\{Mi) is uni­
formly bounded away from 0 was raised recently by Sunada [10]. Letting 
{Mi} range over all coverings of M, Theorem 1 provides a combinatorial an­
swer to his question. Of course, the problem remains of finding good criteria 
to check when this combinatorial problem is solved. We comment on some 
examples at the end of this paper. 
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Note that the theorem shows that the combinatorial condition does not 
depend on the choice of generators of 7Ti(M). Using this observation, we can 
show 

THEOREM 2. Suppose that there is a surjective homomorphism 7Ti (M) —• 
7Ti(iV). If N has coverings Ni with Xi(Ni) —• 0, then the same is true of M. 
If N has coverings Ni with X\(Ni) > C for some positive C, then the same is 
true of M. 

COROLLARY 3. Suppose ni(M) has a homomorphism onto a group T 
which is infinite, amenable, and residually finite. Then M has coverings Mi 
with Xi(Mi) -> 0. 

PROOF. The condition that T is amenable means that there are subsets 
{Vi} of the graph of T with #(#VÇ)/#(TÇ) -» 0 as i -» oo. Residual finiteness 
and the fact that T is infinite then implies that there are subgroups Ti of finite 
index in T such that Vi maps injectively to r / I \ , and #(K) < ^fifi/Ft). 

Noting that Z is a group which is well known to be amenable and residually 
finite, we might regard Corollary 3 as a generalization of a result of B. Randol 
[7]. 

A result essentially like Corollary 3 was given by T. Sunada in his beautiful 
paper [10]. 

Using techniques from [2 and 4], we may weaken the hypothesis that M 
be compact in Theorem 1. It suffices to assume only that M is of finite 
topological type, finite volume, and satisfies an "isoperimetric condition at 
infinity." In particular, Theorem 1 applies to Riemann surfaces of finite type, 
endowed with a complete metric of finite area and constant curvature. 

The following theorem was proved by A. Selberg [9], see also Sarnak [8]. 

THEOREM (SELBERG). Let T = PSL(2, Z), and for each n let Tn be the 
congruence subgroup 

{(: i )«w«».D:(; i ) .± ( i ï ) (-*«>}. 
Then there is a constant C such that Ai(H2/rn) > C for all n. 

Selberg gives a value of 3/16 for C. At present we do not have a purely 
combinatorial proof, via Theorem 1, of Selberg's result (with, presumably, a 
smaller constant). We note, however, the following consequence, settling a 
question raised by P. Buser [6]. 

THEOREM 4. Let S be a hyperbolic Riemann surface of finite type. Then 
there is a positive constant C and infinitely many coverings Si of S such that 
Xx(Si)>C. 

PROOF. ni{S) has a homomorphism onto a free group on two generators, 
and hence onto PSL(2, Z). Theorem 2 and Selberg's theorem then imply 
Theorem 4. 
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Note that, somewhat oddly, the coverings Si constructed from Theorem 
4 have plenty of short geodesies, namely those in the kernel of Ki{S) —• 
PSL(2,Z). 

The proof of Theorem 1 follows closely the proof of the main theorem of 
[3]. There are two steps. 

Step 1. If hi —• 0 for some sequence of i, then one constructs test functions 
fi on Mi which are essentially 1 on fundamental domains corresponding to 
vertices in A, — d on fundamental domains corresponding to # , where d < 1 
is chosen to make fM fi = 0, and which taper off to 0 in some standard way 
where domains lying in A meet domains lying in B, corresponding to edges 
lying in E. It is easily seen that the Rayleigh quotients of fi tend to 0. 

Step 2. Now assume that \\(Mi) —> 0. According to Cheeger's inequality 
[11], there exist hypersurfaces Si on Mi dividing Mi into two pieces Mi — Si — 
M^i U Mij,, such that 

area(St) 
. / UXM v u%jr u -> 0 as % -> oo. 

mmfvol^Mi,!), vol(M;,2)j 

We now try to choose hypersurfaces Si which minimize the isoperimetric 
constant on M». As is shown in [3], the minimum will be achieved for some 
integral current T», which is of constant mean curvature. According to an ar­
gument of Buser in [5], the mean curvature of Ti will be bounded independent 
oft. 

Arguments similar to those in [3] now show that one may essentially take A 
and B to be those fundamental domains lying on M^i and Mi$ respectively, 
completing the proof of Theorem 1. 

We remark that there are examples of manifolds M with infinitely many 
coverings such that there is a positive constant C with Xi(Mi) > C for all 
coverings Mi of M. The known examples of these are arithmetic groups which 
have Kazhdan's Property T. Any such group could have been taken instead 
of PSL(2, Z) in Theorem 4. 

It is a pleasure to thank John Millson and Peter Sarnak for helpful conver­
sations. 
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