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CHAPTER I 
1. Introduction. This is an expanded version of the Jaqueline Lewis talks I 

gave at Rutgers in April 1984. It is partly an exposition of recent results and 
new open problems. Also, some new proofs are given here. The subject is the 
global analysis of algorithms of linear and calculus mathematics, especially in 
regard to efficiency. This is part of the subject called computational complex­
ity. However, in the past, computational complexity has usually referred to the 
study of algorithms for discrete problems. In what follows, the problems come 
from numerical analysis, operations research, and classical mathematics ("con­
tinuous" classical mathematics). It is sometimes forgotten how close numerical 
analysis and classical mathematics are to each other. But to confirm this 
relationship one can note the frequent appearance of the names of Newton, 
Lagrange, Gauss in numerical analysis texts, and look at Goldstine. 
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The development of computational complexity theory for continuous 
mathematics may well raise questions for the foundations of computer science. 
My point of view on this is not new. It is close to that expressed by Von 
Neumann ("The General and Logical Theory of Automata") who wrote: 

We are very far from possessing a theory of automata which deserves that 
name, that is, a properly mathematical-logical theory. 

There exists today a very elaborate system of formal logic, and, specifically, 
of logic as applied to mathematics. This is a discipline with many good sides, 
but also with certain serious weaknesses. This is not the occasion to enlarge 
upon the good sides, which I have certainly no intention to belittle. About the 
inadequacies, however, this may be said: Everybody who has worked in 
formal logic will confirm that it is one of the technically most refractory parts 
of mathematics. The reason for this is that it deals with rigid, all-or-none 
concepts, and has very little contact with the continuous concept of the real 
or of the complex number, that is, with mathematical analysis. Yet analysis is 
the technically most successful and best-elaborated part of mathematics. Thus 
formal logic is, by the nature of its approach, cut off from the best cultivated 
portions of mathematics, and forced onto the most difficult part of the 
mathematical terrain, into combinatorics. 

The theory of automata, of the digital, all-or-none type, as discussed up to 
now, is certainly a chapter in formal logic. It would, therefore, seem that it 
will have to share this unattractive property of formal logic. It will have to be, 
from the mathematical point of view, combinatorial rather than analytical. 

And Von Neumann went on to say: ".. .a detailed, highly mathematical and 
more specifically'analytical, theory of automata and of information is needed". 

Certainly the numerical analysts have studied speed of computation. How­
ever, this has usually been in terms of a rate of convergence, or the cost in 
asymptotic terms. This contrasts with understanding the total cost, as in the 
subject of computational complexity. 

A study of total cost for algorithms of numerical analysis yields side 
benefits. It forces one to consider global questions of speed of convergence, 
and in so doing one introduces topology and geometry in a natural way into 
that subject. I believe that this will have a tendency to systematize numerical 
analysis. This development could turn out to be comparable to the systematiz­
ing effect of dynamical systems on the subject of ordinary differential equa­
tions over the last twenty-five years. 

The rest of Chapter I is organized around four theorems, named A, B, C and 
D. The goals and perspectives of these theorems are the same. Experience in 
the use of algorithms, especially with the computer in recent decades, has given 
rise to certain practices and beliefs. To give a deeper understanding of this 
culture, we try to give reasonable underlying mathematical formulations, and 
eventually to prove theorems, usually confirming the experience of the practi­
tioners. Idealizations and simplifications are made, but we try to keep the 
essence of the observed phenomena. There is a kind of parallel in this 
approach to that of theoretical physics. Our primary goal is not the design of 
new algorithms, but we hope that this deeper understanding will eventually be 
constructive in that domain too. 
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2. On efficient zero-finding. Let me discuss an example a numerical analyst 
might give against the theoretization of his subject. To solve on the machine a 
system of nonlinear equations, the usual procedure is the following. Choose a 
starting point at random (but using previous experience in this choice if 
possible). Then apply some variation of Newton's method iteratively for a 
while. If that does not work, pick another starting point at random and repeat. 
This ad hoc procedure seems not to lend itself to the usual kind of theorizing. 
On the other hand a mixture of probability and global analysis might eventu­
ally yield a good understanding of this practice. 

At this time Mike Shub and I (Shub-Smale II) have a result which shows 
that for a polynomial of one complex variable, this method works in fact 
relatively quickly; six random choices are sufficient on the average. Of course, 
one must spell out the appropriate modification of Newton's method, the 
number of iterations, etc. 

In the following, I use the general idea of Shub-Smale II, but simplify and 
sharpen the result by altering the algorithm. 

First the version of Newton's method, which is a little different from that of 
Smale III, Shub-Smale I and II, is specified. Suppose one is given a complex 
polynomial/, complex numbers, z and co, where co is considered as a parame­
ter. Define Gu : S -> S, where S is the Riemann sphere, S = C U oo, by 

Thus G0 is precisely Newton's method. If one uses Newton's method to solve 
f(z) — to = 0, then one obtains the iteration Gw. Consider the problem 

Prob(e, ƒ ): Given (e, ƒ), 0 < e < 1, ƒ a complex polynomial, find z e C such 
tha t | / (z ) | < e. 

Write f(z) = Z^a^ and suppose that ad = 1, \at\ < 1. In any case an 
easy change of variables can put ƒ into this form. 

THEOREM A. On the average six returns of the following algorithm is sufficient 
to solve Prob(e, ƒ ) for any e and any f (normalized as above). 

LetK= 98. 
Alg(e,/): 

(1) Choose z0 G C satisfying \z0\ = 3 at random. 
(2) Define n as the smallest integer greater than K(d\o%3 + |loge|) and 

Zt = G«,(*/-i), "/ = Mlf(z0), i = 1,...,«, where M = 1 - (1/K). 
(3) If\ f(zn)\ < e, terminate. Otherwise return to (1). 

COROLLARY, (i) On the average 6K(d\og3 + |log e|) is a sufficient number of 
iterations to solve Prob(e, ƒ ) by Alg(e, ƒ ). 

(ii) The number of arithmetic operations for the same is proportional to 
6Kd(d\og3 + |log e|). See Shub-Smale II for the counting involved. 
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"On the average" in all of the above is given in terms of a probability 
measure on the space of all sequences of choices zQ with \z0\ = 3. To obtain 
this measure, start with normalized Lebesgue measure on the set { Z E C | 
\z\ = 3}, and then take the infinite product measure. 

The proof of Theorem A will be given in §5 of Chapter II below. 
ADDED IN PROOF. I subsequently noticed that the number of iterations in 

Theorem A and the corollary could be reduced substantially by simply taking 
\z0\ = e3 instead of 3 and in §5 (Chapter II) changing the condition (È) f z > 
IT/12 to (§) f z > TT/4. Then K comes out to about 32, the number of returns 
close to 2 and the average number of iterations about 2 times 32(3*/ + |log e|). 

On the other hand the example f(z) = zd shows that one can't do better 
than the number of iterations being linear in d with Newton's method, even 
when it is globally convergent. 

PROBLEM 1. Extend the result of Theorem A to two (or more) variables. 
Renegar III seems to have made a breakthrough on this problem, as this paper 
was being finished. 

PROBLEM 2. Prove an analogous result for \z0\ < 1 rather than \z0\ = 3. 
This would seem to be a more natural way to start the algorithm and one 

would expect a sharper estimate. However, the analysis seems difficult; see §5 
of Chapter II below and Shub-Smale II for more on this problem. 

3. On the efficiency of linear programming. We review very briefly certain 
recent results on the average speed of simplex type methods for the linear 
programming problem (LPP). One of the standard forms of this problem is 

LPP: Find x e Rn subject to x > 0, Ax > b such that x minimizes c • x. 
Here (A, b, c) are the data, where A is an m X n matrix, è e R " 1 and c e Rw. 
The simplex method of Dantzig is a fast algorithm for exhibiting an answer 

to the LPP or showing that no minimum exists. In his book {Dantzig) on this 
subject he wrote (p. 160) these often-quoted Unes: "Some believe that for a 
randomly chosen problem with fixed m (the number of constraints), the 
number of iterations grows in proportion to n (the number of variables)." 

I proved that this was indeed the case (in Smale IV, V) using Dantzig's 
self-dual parametric variant of the simplex method (p. 245 of Dantzig). Here is 
the result in more detail. 

The space of the data {A, b9 c) of LPP is Cartesian space S = Rmn X Rm X 
R". For defining the average of functions on this space, just take the normal (or 
Gaussian) distribution on Cartesian space. Let pAtbtC be the number of steps of 
the self-dual method, defined almost everywhere on @. Then the average of 
PA,b,c on ^ i s defined and yields a function p(m, n). 

THEOREM B. Fix m and e > 0. Then there is a number K > 0 depending on 
m, eand 

p(m, n) < Kne. 

Thus the number of steps for a fixed number of constraints grows more 
slowly than any prescribed root of the number of variables. Take e = 1 to 
obtain Dantzig's conjecture, above. 
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PROBLEM 3. Can one estimate p(m, n) by a polynomial function of m and nl 
or even a linear function? 

In this direction there are the following results. 
K.-H. Borgwardt since the late seventies has been working on a limited 

version of the LPP (one in which feasibility is built in by the special form of 
the constraints). He analysed a simplex-related algorithm he called "Schat-
teneckenalgorithmus". In Borgwardt he obtains an average-case polynomial 
bound in m and n for this problem. 

More recent are results of Adler-Megiddo, Adler-Karp-Shamir, and Todd. 
They each obtained average-case bounds, quadratic in m and n, for the general 
LPP using another version of the simplex method. Lower bounds (quadratic) 
were also shown for this particular algorithm by Adler-Megiddo. 

PROBLEM 4. Find a theory of average speed for a reasonable general class of 
algorithms for the LPP. This could allow one to compare different methods for 
efficiency. In particular, what can one say about the original simplex method 
as to efficiency? 

I have spoken of probability measured in terms of a Gaussian distribution 
on the space of data. In fact, in the various works cited above, the results are 
proved with much gentler hypotheses made on the measure. 

Some discussion of Dantzig's "self-dual parametric" method is called for. 
For the last couple of decades the LPP has often been considered as a special 
case of what is called the linear complementarity problem or LCP. The LCP 
may be described in this way: If M is an N X N matrix, define 

<&M:R"-R" by®M(x) = x++Mx-, 

where x+ is obtained from x by setting the negative coordinates zero and x~ 
the positive coordinates zero. Then it is easily seen that 0 M is linear on 
orthants, continuous and the identity on the positive orthant. 

LCP: Data (M, q), M an N X N matrix, q e R*. S o l v e ^ x ) = q for 
x<=RN. 

The LPP is obtained by setting 

[A 0 

and N = n + m. 
In general the LCP unifies many of the problems of operations research. See 

the references in Smale V for a more detailed discussion of this subject. 
The central algorithm for the LCP is due to Lemke and can be described by 

lifting back via &M the segment joining q0 to q in R ,̂ where q0 = (1 , . . . , 1). 
It turns out that in the context of the LCP, the self-dual algorithm coincides 

with Lemke's. Also, the algorithm studied by Adler-Megiddo, Adler-Karp-
Shamir, and Todd may be interpreted as Lemke's algorithm with a different 
choice of q0 (whose coordinates are powers of e > 0 sufficiently small). 

For me, there is a further very attractive advantage of this perspective. There 
is a close relationship between Newton's method and Lemke's method as can 
be seen in Eaves-Scarf and Smale II. There is a unity of numerical analysis and 

* = ( c , - 6 ) , 



92 STEVE SMALE 

operations research implied by this connection. In the direction of making this 
connection more concrete is the work of Kuhn-Wang-Xu and Renegar ƒ, II. 

There is a crucial step in the proof of Theorem B which, while easy to prove, 
is important conceptually. This is as follows. Suppose as above the LPP is 
imbedded in the LCP. 

PROPOSITION. The average, over (/), c) G Rm X R", number of steps to solve 
the LPP is given by 

£ measure {OM( if) , -^r0}, 
H 

H a hyperorthant. 

Here a hyperorthant is the intersection of a coordinate hyperplane in R^ 
with an orthant, {$M(H\ -qQ} is the convex cone in R^ generated by -q0 and 
the elements of the image ®M(H). Recall that the Gaussian measure is used 
and that 

M - f 0 ~AT 

[A 0 

The proof is given in S male IV. 
Linear programming has part of its origins in economic theory (especially 

production) as in work of Leontief and Koopmans. See Dorfman-Samuelson-
Solow and Dantzig. Moreover, in economic equilibrium theory, complexity of 
decision-making is often taken to be trivial (in contrast to practice). These 
factors suggest 

PROBLEM 5. Relate work on the efficiency of linear programming algorithms 
more directly with economic theory. 

There is a vast amount of literature on the simplex method and, in the last 
few years, on its average speed. Ron Shamir has written an extensive survey on 
the work to which I will defer, for those wishing to pursue the subject further. 
Also, there is the paper Vershik-Sporyshev. 

4. On well-posed linear systems. In solving linear systems of equations, how 
much is the error in the input going to affect the solution typically? Von 
Neumann and his various co-authors, Bargmann, Goldstine, and Montgomery, 
dealt with this problem in three papers amounting to more than 150 pages (see 
Von Neumann). He was concerned with the question: In principle, can linear 
systems with a large number of variables be solved by computers? 

Clearly, for nearly singular systems lack of input precision can make the 
output error arbitrarily large. This indicates that some kind of average result is 
called for. As before, for simplicity, we will use the Gaussian distribution to 
define a probability measure on the space of real n X n matrices. 

Let us recall the notion of a condition number KA, of a matrix A, as defined 
by numerical analysts. See especially Wilkinson I and / / , Forsyth-Moler, or 
Atkinson for details. Suppose Euclidean norms are taken on Cartesian spaces 
and their induced operator norms on matrices. 

? 0 - ( l , . . . , l ) e R " . 
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Consider a linear system 

Ax = b, 

where A is an n X n matrix and b e Rw. One is to solve for x e Rn with A and 
b given. 

Regarding A as exact and fixed for the moment, suppose that 8b is an error 
in input producing an error in output ox. For a linear problem it is natural to 
consider the relative magnitudes ||ô&||/||Z>||, ||&c||/||x||. Using the equations 
A(x + Ôx) = b + 8b, A(8x) = 8b, this ratio is 

\\8x\\/\\x\\ \\A-\8b)\\ \\Ax\\ 

\\*b\\Ab\\ 11**11 IWI ' 
An upper bound for this quantity over b, 8b is the condition number KA of A, 
%A = Mil M_1II- Thus KA ranges between 1 and oo and is large for ill-condi­
tioned (nearly singular) matrices. 

To understand something about the average error of linear systems, one is 
tempted to average KA over all matrices. However, this average is infinite. On 
the other hand, log KA has a finite average. But most importantly, log KA has a 
direct computational interpretation, as we will see now. 

To talk about precision, or the number of digits of accuracy, the use of logs 
is called for. This would be log base 2 for binary numbers or log base 10 for 
decimals. For mathematical convenience we will always use natural logs. 

In speaking of the linear system Ax = b with A fixed and input error 8b, a 
reasonable series of definitions is: 

DEFINITIONS: 

Input precision = -log \\8b\\, 

Relative input precision = -log(||S2>||/||Z>||) = -log||ÔZ>|| + log||2>||, 

Relative output precision = -log(||ôx||/||x||), 
Loss of precision = relative input precision - relative output precision. 

Thus from the definitions it follows that 

, . . - / \\A-l(8b)\\ \\Ax\\\ Loss of precision — log -" —-^ -—- . 

To define a quantity LA which depends only on the matrix A one takes the 
worst case of b, 8b as above in the definition of condition number. Thus 

LA = \oiKA 

and we have shown that LA is the greatest loss of precision that the system 
Ax = b can exhibit for fixed A. 

The question is thus posed, what is the expected value of LA1 
I gave a lecture in my seminar in February 1984 focusing on this question 

and stating an explicit integral expression for this average in terms of the 
singular values of A. Three different estimates (upper bounds) were given to 
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me before the next week's meeting by L. Blum, E. Kostlan, and A. Ocneanu. 
Eventually this distilled into the following result: 

THEOREM C. Let L(n)be the average of LA over real n X n matrices. 
(i) KOSTLAN. 

L(n) < 1 + f logn. 

(ii) OCNEANU. Given any e > 0, there is n0 such that for n > n0 

( | - e)logn < L ( « ) . 

The Blum estimate L(n) < 3«log n was obtained using the general theorem 
in Blum-Shub which dealt with precision for evaluating rational functions. 
Ocneanu obtained the upper bound, for any e > 0, 

L(n) < (3 + e)log« if n > n0(e). 

The estimate of f log n + 1 in Theorem C is quite reasonable and even for 
100 variables the average loss of precision is not badly estimated. But L(n) 
contains in its definition a worst case; moreover, the variance is an issue. See 
§2 of Chapter III for these matters. 

ACKNOWLEDGMENT. Conversations with L. Blum, A. Grunbaum, E. Kost­
lan, and A. Ocneanu were helpful to me in developing the ideas in this section. 

5. On efficient approximation of integrals. In first-year calculus, three 
numerical methods are often given for approximating an integral of a continu­
ous function/, say, for simplicity, on the interval [0,1]. These are: 

n 

Riemann integral, ^ / , ( / ) = ^ Z / ( ^ ) » 

Trapezoidal method, Th(f) = h 

I. 

Simpson's rule, Sh(f)= -r 

-k/(i)+/«>))+ i/oh) 

/( l)+/(0) + 2 £ f(ih) 
I ' - l 

+ lif((2i-l)h) 
i - l 

Here h is the step size, so that h = \/n for the first two methods and h = \/2n 
for Simpson's rule, n a positive integer. 

This section is concerned with the average cost of these algorithms; the 
practice of numerical analysts is confirmed in these cases. In fact, some simple 
exact formulas on the average cost (not just asymptotic cost) are produced. 

This work was suggested to me as I tried to understand the theory of 
Traub-Wozniakowski. Conversations with them were especially helpful. 

Besides the help of Traub and Wozniakowski, conversations with A. 
Calderon, P. Collet, J. Franks, M. Shub, and especially David Elworthy in 
Caracas, July 1984 (where I found these results) were important for me. So also 
were conversations with Feng Gao and Nat Smale. 
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An important earlier paper in this area is: F. M. Larkin, Gaussian measure in 
Hubert space and applications in numerical analysis, Rocky Mountain J. Math. 
2 (1972), 379-421.. 

Here is a precise statement of my conclusions. The three algorithms Rie-
mann, Trapezoid, and Simpson define respectively maps Rh, Th, Sh: C°[0,1] 
-» R where C°[0,1] is the space of continuous functions on the interval [0,1]. 
Let / : C°[0,1] -* R denote the integral / ( ƒ ) = /o f(s) ds. 

For step size h, the error in computing J(f) with the Riemann approxima­
tion is given by 

e*(h,f)=\J(f)-Rh(f)\. 
Similarly 

eT(h, f ) = \J(f) ~ Th{f)\, es(h, ƒ ) = |/( ƒ ) - Sh(f)\. 
Of course, for ƒ e C°[0,1], these quantities tend to zero as h -> oo. For 

averaging these error functions, we need a probability on function spaces. To 
this end, the Gaussian measure on Hilbert space is used. See §1 of Chapter III 
below and its references. 

The Hilbert spaces of functions natural to this problem are called the 
Sobolev spaces 3tfk for k = 1,2, These are defined as follows for n = 1,2: 

Let ƒ ', ƒ " be the first and second derivatives of/, respectively. 

JT1 = / ƒ G C°[0,1] | / ' is defined almost everywhere and ƒ |/r|2 < oo>. 

The inner product onJ^1 is 

(f,g)^=f(0)g(0) + fns)g'(s)ds. 

Similarly 

Jt?2 = / ƒ G Cl[0,l]\f" is defined almost everywhere and ƒ |/"|2 < oo| 

with inner product 

<ƒ, g)^ =/(0)g(0) + /'(0)g'(0) + ff"(s)g"(s) ds. 
J0 

Now it is possible to average the errors displayed above and to obtain 
ek

R(h)= Av eR(h,f), 

e£(/j) and eg(h) described similarly. 
The cost of implementing each of these three algorithms is essentially the 

same for given h, and, moreover, this cost is proportional tol/h. To see these 
facts one can count the arithmetic operations in the expressions for Rh, Th and 

s„. 
THEOREM D. (i) On the average for Jf?1 functions, to obtain the same accuracy, 

the trapezoidal method costs one half as much as the Riemann approximation. 
More precisely 

e U M = / f - i . *\(h) = \el
R(h) allh=\. 
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(ii) On the average for 3tf2 functions, Simpson's rule is much cheaper than 
Riemann integration. One has the precise formulae 

4 W = V ^ ^ ( 1 + 2 + î ô ) allh=~n-

The proof can clearly be extended to give a much broader body of results. 
The approach here might lead to a more systematic way of analysing the cost 
of numerical algorithms where the mesh size h is the principal parameter, as for 
example, difference methods for approximating solutions of partial differential 
equations. The proof of Theorem D will be given in §1 of Chapter III. 

CHAPTER II 
1. Convergence of Newton's method. Consider a complex polynomial, ƒ(z) = 

Ef.ofliz '» t r i e at complex numbers. Denote by S the Riemann sphere, the 
complex numbers C with "oo" adjoined. Define a rational endomorphism (i.e. 
a map z -> P(z)/Q(z)9 P, Q polynomials, of S into itself) Nf: S -> S by 

Nf{z) = z- HfL. 
' ƒ ' (*) 

Newton's method can be viewed as iterating this map starting with some 
z0 e S. That is, zn is produced inductively by zn = Nf(zn_l), n = 1,2, We 
can also write zn = N"(z0\ where Nf1 is the composition of Nf with itself n 
times. The global study (over all z0 e S) of Newton's method is thus the same 
as the study of Nf as a dynamical system. The early work in dynamical systems 
of one complex variable of Cayley, Fatou, and Julia was in large part 
motivated by Newton's method; see Peitgen-Saupe-V. Haeseler. The dynamical 
system point of view will become apparent as we proceed. 

PROPOSITION 1. The number f e C c 5 « a fixed point of Nf if and only if f is 
a zero of f. In this case, the derivative Nj(Ç) = (m — l ) /m, where m is the 
multiplicity of that zero. Moreover, the degree ofNfis the number of distinct zeros 
off. 

Here the degree of a rational map T = P/Q of S into itself is the maximum 
of the degrees of polynomials P and Q, where we assume P and Q have no 
common factors. 

The above proposition is very well known and easy to prove. The proof of 
the second part can be obtained by expanding ƒ as a Taylor's series about f ; i.e. 
use/(z) = a(z — f )m + • • • in the expression for Nf. 

Note that always \Nj(Ç)\ < 1 and it follows that there is a neighborhood U 
of f such that, for any z G U9 N"(Z) is finite for all positive integers n and 
converges to f as n tends to oo. The complex number f is called a sink or an 
attractive fixed point of Nf. The open set B = Uw>0 Nfn(U) is called the basin 
off. 
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In the general case of distinct roots of/, f has multiplicity one as a zero of/, 
N/(Ç) = 0 and f is "superattractive". In the numerical analysis literature, 
Newton's method is said to converge quadratically. The converse of Proposi­
tion 1 was recently proved by Saunders (for the first time, as far as I know). 

PROPOSITION 2. Let T: S -> S be a rational endomorphism such that at each 
fixed point f of T, the derivative T'($ ) = (m — \)/mfor some positive integer m. 
Also suppose that the degree of T equals the number of these fixed points. Then 
there is a polynomial f such that T — Nf. 

The following goes back to Cayley (see e.g. Peitgen-Saupe-V. Haeseler). 

PROPOSITION 3. Suppose ƒ is a quadratic polynomial with distinct roots. Then 
Nf is conjugate to T: S -» S with T(œ) = o2 by a linear fractional (or M'ôbius) 
transformation g. 

PROOF (which I learned from Gregg Saunders). Let a and ft be the two roots 
which must go to oo, 0 respectively under g. Let g(z) = (z - fi)/(z - a) - œ. 
Then it can be checked that g(Nf(z)) = <o2(= T(co)). 

From Proposition 3, the dynamics of Nf and T are qualitatively the same. 
For T, there are two fixed points, oo and 0, both attractive. The circle |co| = 1 
is invariant, and if |w| < 1, then T"(œ) -» 0; if |co| > 1, then Tn(œ) -> oo. 
Thus under iteration by T9 every point converges to 0 or oo except for the unit 
circle. Now this circle |w| = 1 under the linear fractional transformation g 
corresponds to the straight line in C which is the perpendicular bisector of the 
segment between a and ft. This implies that except for this Une every point in 
C converges to a or ft under iteration by Nf. We can say that Nf is "generally 
convergent" for quadratic polynomials (the case of quadratic ƒ with coincident 
zeros is simpler). 

For polynomials of higher degree, Newton's method is not generally conver­
gent in any reasonable sense. To see this well-known fact I will find a 
polynomial ƒ and a sink ioxNjOt least period two. 

A sink a of period k for a rational endomorphism T is defined by the 
conditions Tk(a) = a and \(Tk)'(a)\ < 1. In this case one can easily show that 
there is a neighborhood U of a consisting of z satisfying (Tk)n(z) -* a as 
n -> oo. So if k > 1 and the points a, T(a%.. .,Tk~\a) are distinct and 
z e U, the iterates T\z) do not converge to the fixed points of T, but 
asymptotically cycle about the Tl(a\ i = 0,.. . ,k - 1. 

A similar situation will prevail for T0 near T. Thus if Nf has a sink of least 
period two, then one can say fairly that Â - is not generally convergent. 
Conditions on ƒ for 0 to be a sink for Nf of least period two will be studied to 
prove the well-known 

PROPOSITION 4. Newton 9s method is not generally convergent. 

PROOF. Let f(z) = Ef=0 OjZJ and fix a0 = 1, ax = - 1 , a2 = 0 so that ^ ( 0 ) 
= 1, JV/(0) = 0 and if N/Q) * oo, then (Nf

2)'(0) = 0 by the chain rule. Thus if 
A^(l) = 0 and ivy(l) =£ oo then 0 is a sink of least period two (and superattrac-
tive, even). The condition A^(l) = 0 is seen to be: 

-1 + 2a3 + 3a4+ • • • +(d - \)ad = 0, 
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and the condition Nj{\) # oo is satisfied if ƒ '(1) ^ 0 or 

-1 + 3a3 + 4Û4 4- • • • + dad ± 0. 

These conditions are satisfied by a dense open subset of a hyperplane of 
{ (03 , . . . , ^ )} = C*-2 space. 

As a special case let d = 3 and take a2 = 1/2 to obtain 

/ 0 (z) = ±z3 - z + 1. 

Then from what we have shown, starting with points near 0, Newton's method 
for f0 will approximately cycle between 0 and 1 forever. Note that this example 
works over the real as well as the complex numbers in the same way. 

The robustness of the sink of period two will carry over to yield that Nf for ƒ 
near f0 has periodic sinks as well. Thus even on degree three polynomials 
Newton's method is not generally convergent. This proves Proposition 4. 

In the above proof 0 and 1 were chosen for the periodic sink because of 
difficulty dealing with the composition Nf <> Nf. 

PROBLEM 6. Find more systematically the set of ƒ whose Newton's endomor-
phism Nf has periodic sinks, not fixed (and thus fails to generally converge). 

Proposition 4 relates to the problem discussed in §4 below: "Is there any 
purely iterative generally convergent (complex) algorithm for polynomial zero 
finding?" "Generally convergent" will be defined then precisely. 

To make precise the idea of "close polynomials" used above, one needs to 
define a space of polynomials. Two ways of doing this present themselves. If ƒ 
is a polynomial and X a nonzero complex number, then ƒ and X ƒ have the same 
zeros, and the same critical points (zeros of the derivative). Moreover, Nx = Nf, 
so that Newton's method is the same. Thus it is natural to identify ƒ and \f, 
and consider the projective space P^(C), complex of dimension d, of poly­
nomials of degree less than or equal to d. To make this explicit, let f(z) = 
Ef_0

fliz'> anc* identify (n + l)-tuples of complex numbers (a0,...,ad) and 
( \ Û 0 , . . . Md) to obtain P^C). 

Oftentimes, it is handier to use another space, used in Smale HI and 
Shub-Smale ƒ, / / . This is the space of all polynomials Ef .o 0 / 7 ' with ad = 1 
and \at\ < 1, which we denote by Pd(l). It is represented by a bounded 
polycylinder in Cd = {(fl0>---»flrf-i)}-

Given any polynomial ƒ(x) = Eoû/z/> ad * 0, the transformation z -> az = 
co, a e C, for appropriate a will transform ƒ into /a(co) = Ef_0/>,.«' with 
\bd\ > l^iI an< i- Then further division by bd will put the polynomial into Pd(l). 
The roots are all changed by the factor a. This gives some justification for 
using Pd(l). 

PROBLEM 7. (Compare Smale III, Problem 7.) What is the probability that 
Newton's method will converge for a random choice of initial point? For a 
given polynomial/? For an average polynomial? 

While there are several reasonable ways to make this into a precise mathe­
matical problem, we will proceed using the space Pd(l). 

Let f(z) = Ef.o0/2 '» ad = 1 an(* Kl < 1. Denote by Bf the union of the 
basins of the sinks of Nf. Thus z & Bfii and only iîNP(z) tends to a zero of ƒ 
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as n goes to infinity. Recall that DR = {z e C||z| < R}, and define 

area of B, n D0 

^ — I £ 
f area of D2 

Here R is chosen to be 2 by virtue of the well-known (cf. Henrici or Ostrowski) 
fact that |f| < 2 if/(f) = 0. 

This number Af can be interpreted as the probability that Newton's method 
will converge for a random point in D2. Let 

Ad — min Af. 

Of course 0 < Ad < 1. By Proposition 3,A2 = I, and by Proposition 4, 

^ < lfor </> 2. 

I would conjecture that Ad > 0, all </, but have not proved 4̂3 > 0. 
PROBLEM 7.A. Estimate Ad as a function of d. 
Thus ^4j represents the "worst case" of the Af. However, Af is not continu­

ous in fat f with multiple roots. It would seem likely that Af becomes smaller 
in any neighborhood of the polynomial f0(z) = zd. 

One can also average Af over Pd(l)9 using normalized Lebesgue measure as a 
probability measure to obtain Âd. 

PROBLEM 7.B. Estimate Âd as a function of d. 
The later discussion on "approximate zeros" has some bearing on this 

problem. 
As mentioned earlier, the global analysis of Newton's method for solving 

ƒ(?) = 0» with ƒ a complex polynomial, is closely related to the work of Fatou 
and Julia on iteration of rational endomorphisms, and recent work in that area. 
Some of that general theory can be used to clarify the convergence question of 
Newton's method. The main cause of lack of convergence of Nf is due to 
periodic sinks other than fixed points. 

The following theorem from the Fatou, Julia theory gives a limitation on the 
number of such sinks (see also Blanchard and Guckenheimer). 

THEOREM 1. The immediate basin of a periodic sink of a rational endomor-
phism T: S -» S must contain at least one critical point of T. Moreover, if every 
critical point of T lies in some basin of aperiodic sink, then these basins have full 
measure in S (and Axiom A is satisfied). 

Let us define these terms. If T(f ) = f and |jT'(f )| < 1, then f is a fixed sink. 
The basin B of f is the set of z such that Nf

n(z) -> f as n -+ oo. The immediate 
basin \ r i s the component of B containing f. If Tk($) = f and \(Tk)'($)\ < 1 
then {f, 7Xf ) , . . . , Tk~\Ç)} is a sink of period k and its immediate basin is the 
union 

k-i 

( J BTi(^Tk. 
»-o 

A critical point z of Tis simply z e C satisfying T\z) = 0. By differentiating 
this, it is clear that there are at most 2d - 2 critical points of T, where d is the 
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degree of T, and so Theorem 1 implies the existence of at most 2d - 2 periodic 
sinks. 

Consider now the case of Newton's method T = Nf. The degree of Nf is less 
than or equal to the degree of the polynomial ƒ, less in case of multiple roots. 
The derivative of Nf is 

ruf 
for any z in C. Confining our study to the case of ƒ with distinct roots 
£i> • • • >£</> we see that d of the 2d — 2 critical points of Nf are the f, and the 
remaining d — 2 are the inflection points of/, i.e. the zeros of ƒ". By Theorem 
1, the general convergence of Nf will depend crucially on whether these 
inflection points He in the basins of the zeros of/. 

For example, consider the polynomial ƒ (z) = azd - bz. Here of course 0 is a 
zero of ƒ, but every inflection point is 0, too. Thus by Theorem 1 there is no 
periodic sink except for the zeros of ƒ, and Newton's method for ƒ converges 
for a set of initial points of full measure. A more general interesting case comes 
from the theory of Barna. 

THEOREM 2 (BARNA). Iff has all roots real then the inflection points of f lie in 
the immediate basins for Nf of the roots Çv... ,Çd of f. Moreover, except for a 
cantor set K of real numbers, every real number converges under Nfto a zero off. 

The dynamics of Nf on K has been recently studied by Saari-Urenko and 
Saunders. Both of these references give an extended account of these questions. 
See also Curry, Curry-Garnett-Sullivan, Douady, Martin-Hurley, Peitgen-Saupe-
V. Haeseler, and Sullivan for papers very relevant to this subject. 

2. A short elementary proof of the fundamental theorem of algebra and the 
topology of polynomials. I would like to present a proof of the fundamental 
theorem of algebra which is important for complexity theory. This proof is 
suggested in Smale III. It does not use any results from topology (it is 
topology!). The proof is implemented as a fast algorithm in Theorem A above 
and the next section. 

The main tool is the inverse function theorem for one variable which is used 
in the following form. Let ƒ be a complex polynomial and z e C with 
ƒ'(z) =£ 0. Then there is a 8 > 0 and a complex analytic map 

fz-
1:D8(f(z))^C 

with f-\f(z)) = z and f(f-\ù>)) = co for all <o G D8(f(z)). Here D8(f(z)) is 
the set of all to such that \co — f(z)\ < 8. 

Moreover, if z ranges over a closed and bounded set K c C where ƒ r is never 
zero, then the corresponding 8 > 0 can be chosen independent of z G K. The 
proof of this last fact can be obtained by taking a convergent subsequence as 
in usual compactness arguments. 
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Another elementary fact is assumed: If ƒ is as above, then the derivative ƒ ' 
has a finite number of zeros, the critical points off. 

THEOREM 3 (FTA). A complex polynomial f has a zero. 

PROOF. We use the above facts and notation. Assume ƒ (0) ¥= 0 for all critical 
points 0 off. Otherwise such a 0 is our desired zero and we are finished. 

LEMMA 1. There is a segment I in C joining 0 to some number of the form f (z0) 
which meets no critical value (number of the form f (0), 0 a critical point). 

PROOF OF LEMMA 1. Let zx e C with ƒ \zx) ¥= 0. From the inverse function 
theorem it follows that there are an infinite number of zt near zx with f(zt) 
lying on distinct rays through 0. Only a finite number can meet a critical value, 
which proves the lemma. 

LEMMA 2. The setf~\l) is closed and bounded. 

This follows from the fact that ƒ is a polynomial and its behaviour near oo is 
dominated by its highest-order term. 

From the lemmas and the inverse function theorem, take 8 > 0 so that the 
inverse//1: Ds( f(z)) -> C is defined for each z e f'1 (I). Let « be a positive 
integer with « > \f(z0)\/8. 

Define cof, i = 0,. . . ,«, by 

(* " 0/(*o) 
' n 

and observe that !<*>, — <^t-i\ < 8, for i = 1,... ,n; thus 

w , e i ) > i - i ) -

Now one can define inductively 

zi=fz~i\(<*i)> i = 1,2,...,/!. 

Smœ/(z,) = « , , / ( z j - « w = 0. Q.E.D. 
Now a certain problem on the topology of polynomials will be considered. 

Let ƒ be a complex polynomial. Newton's method is an Euler approximation to 
solutions of the ordinary differential equation dz/dt = -grad| f(z)\2 in C (see 
Smale HI). Let <p, be the one-parameter group of solutions, and for a critical 
point 0 of ƒ define 

Wu(0)= {z<=C\q>t(z)-+6 2iSt^ -oo}. 

Then the closure of the union of Wu(0) over all critical points 0 is an oriented 
planar graph which I will call Tf. This graph is the same as a "diagram" in 
Smale I. Its vertices are the zeros and critical points off. This graph carries the 
essence of the qualitative picture of the "Newton Flow", 

Figure 1 shows some examples of Tf9 where 0 denotes a critical point and X 
a zero off. Assume that the zeros of ƒ are distinct. 



102 STEVE SMALE 

® 

(Ü) 

(iii) 

-O X 

(iv') (iv") 

FIGURE 1. Graphs Tf for (i) quadratic/, real roots; (ii) cubic/, real 
roots; (iii) the case of Barna, all roots real; (iv' and iv") the case 
f(z) = zd - z, for d = 4 and for general d. 

One may prove without difficulty the following 

PROPOSITION. Suppose f is a polynomial with no two critical values lying on the 
same ray. Then 

(i) Tf is planar ( of course ). 
(ii) Tfis connected. 

(iii) There are exactly two edges ending on each critical point of Tf. There are 
no edges between the critical points or between the zeros. 

(iv) Tfhas no cycles. 

PROBLEM 8. What (abstract) graphs Tf can occur for polynomials ƒ ? For 
polynomials with no two critical values on the same ray? 

For polynomials with this last property, are the conditions of the proposition 
complete? 

The first case of the last question is for d = 5. I don't know a polynomial 
with the graph shown in Figure 2. 
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FIGURE 2 

ADDED IN PROOF. See also the work of H. Th. Jongen, P. Jonker and F. 
Twilt, for example, The continuous, desingularized Newton-method for meromor-
phic functions Memorandum No. 501, Twente Univ. of Technology (1985). 

More recently M. Shub and R. Williams have contributed to this problem. 

3. Fast convergence of Newton's method. If f is a simple zero of a polynomial 
ƒ then we have seen (Proposition 1 of §1) that Nf(S) = ? and N/tf) = 0. This 
implies by Taylor's Theorem that \N(Ç) - f | < c\z - f |2 for \z - }\ < e. Thus 
locally Newton's method converges fast (quadratically) to a simple zero. Yet, 
the constants c, 6 depend on the coefficients of ƒ in ways which often make it 
difficult to use this fact. The notion of "approximate zero" gives a more 
elegant and more useful way to deal with this fast convergence. 

Motivation also comes from a different direction. Since algorithms won't in 
general yield exact zeros of polynomials, one seeks a replacement of the notion 
of a zero by a notion which will be effectively as good. "Approximate zero" is 
a reasonable candidate for this in view of Theorem 4, the main result of this 
section. 

One can be concerned that multiple zeros are excluded from this framework. 
However, locating a multiple zero or an almost multiple zero is a badly posed 
problem in a certain sense. The "loss of precision" in this problem is infinite, 
or arbitrarily large, respectively (see §2 of Chapter 3). 

Define 

Dr(o>0) - {*> G C||c* - <o0|< r) and/) r = Dr(0). 

Recall that if ƒ \z) ± 0, fz~
l: Dr(f(z)) -> C is the inverse of/, defined locally 

by the inverse function theorem, which sends f(z) to z. Let r = r(f~l) be 
maximal, or what is the same thing, let r be the radius of convergence of f~l as 
a power series. Then 

DEFINITION. The set of approximate zeros of a polynomial/, denoted by Qf9 

is 

0/= U fflM>'s-r{ffl)> Af -D^, 
f 

/(O-o 

The 9 seems ad hoc, but in fact enters naturally as we will see. The definition 
is justified by the next theorem. 
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THEOREM 4 (APPROXIMATE ZERO THEOREM). Let z0 be an approximate zero of 
fandzn = N"(z0). Then there is ab < 1, and 

\f(zm)\<b*-i\f(z0)\ alln. 

REMARKS. (1) Here b is defined by the condition \f(z0)\ = b(r>/9)9 where f 
is the zero of ƒ for which z0 e ffl( Af). From the definition of approximate 
zero, the sets ƒ - 1 (A f ) must be disjoint. 

(2) Versions of the notion of approximate zero and the above theorem are in 
Smale III and Shub-Smale I. 

(3) Note the extremely rapid convergence in the estimate of the theorem. 
Since there are no excess constants in the theorem, the convergence is more 

than asymptotically fast. If one prefers b < \ just replace the 9 by 18 in the 
definition. 

(4) The result works for complex analytic functions/: °U -> C as well; here °U 
is an open set of C. In this case r(f~l) is the maximal r for which fz~

l: 
A-( ƒ(*)) -* & is defined analytically with f~\f(z)) = z and f(f~l(o>)) = <o 
for<oeZ)r(/(z)). 

Now, I will give the proof of the theorem on approximate zeros. For that the 
following estimate is used. Let % be an open set of complex numbers, z e tfly 

and ƒ: ^ - > C a n analytic function with ƒ \z) # 0. Let z' denote the Newton 
iterate z' = z - f(z)/f\z). 

THEOREM 5. If r > 4|f(z)\ where r = r(f~l), then 

/(*') I . i 
/ ( z ) r r / 4 | / ( z ) | - r 

Here the 4 is sharp. 

Versions of Theorem 5 appear in Smale III and Shub-Smale I. 
For the proof of Theorem 2 we need (see Hay man) 

LOEWNER'S THEOREM. Let g be a Schlicht function, i.e. g(co) = HfLibjW* for 
\co\ < 1, bx — 1 and g is one-to-one on the set of <o with |<o| < 1. Let f(z) = 
TffLx aiz

i be the inverse to g (sofg(o)) = to and gf(z) = zfor sufficiently small |co| 
and\z\). Then 

\ak\^4k~l allk. 

Actually the conclusion of Loewner's Theorem is usually stated a little 
differently, i.e. that 

\ak\<Bk, **~2*V-V-V-of+ir * = 1'2'3'-" 
In this form, Loewner shows that the Bk are the best possible, using the 

Koebe function for g. It follows that in the version \ak\ < C*~\ C = 4 is the 
best possible. 

An easy application of the Loewner Theorem is as follows (cf. Smale III). 
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EXTENDED LOEWNER THEOREM. Let ƒ: C 

/<fc )(*o) 

W(*o) (?)*"' 
C be analytic and z0 e C. 77ze« 

Jfc = 2 , 3 , . . . 

where r = r(f~Q
l) is as above. 

For the proof we may assume z0 = co0 = 0, so that f(k\zQ)/k\ = â . and 
f'(z0) = #!• Now define 

G(«) = 
S'(«o) (7) 

for |w| < 1 and apply the previous theorem to G. Here g is the inverse of ƒ on 
Dr(0). 

Theorem 5 is proved using the extended Loewner Theorem. Since 

i -0 * " 

Therefore 

/ ( * ' ) 
/ ( * ) <E 

ik-2 

M|/(r)| 
' /4 | / ( * ) | -

which proves Theorem 5. 
Still working toward the proof of Theorem 4, we need another result from 

Schlicht function theory. See Hille and Shub-Smale I for the very slightly 
generalized theorem of Koebe and Bieberbach. 

KOEBE-BIEBERBACH THEOREM. Let g: Dr -> C be one-to-one and analytic. 
Then the image g(Dr) contains a disk of radius \g'(0)\r/4 about g(0). 

Here the 4 is sharp, again by the Koebe function. 

LEMMA. Let ƒ(£) = 0, z Gff\A^ and z' = z - f(z)/f'(z). Then z' e 
f{\AK) and\f(z')\ < \f(z)\. Moreover, r > f rf, where r = r( f ' 1 ) . 

PROOF. Since \f(z)\< r f/9, the last sentence is immediate from the defini­
tions. Then r > 8| f(z)\ as well. Thus Theorem 5 applies to yield 

/ ( * ' ) 
/ ( * ) 

4|/(z)[ 
< 1. 

r/4\f(z)\-l r - 4 | / ( z ) | 

It remains to show that z' e ff1( A^). From what we have just proved it is 
sufficient to show z' e ff\Dr ). But by the Koebe-Bieberbach theorem, since 
z' - z = -f(z)/f'(z), it follows that 

\z' - zl < 
9i/'(*>r 

and the proof of the lemma is finished. 
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Now the proof of Theorem 4 can be finished. Let z0G/ f
_ 1(A f) and 

zn = Nf
n(z0), n = 1,2, The lemma assures us that zn is an approximate 

zero, all /i, and even that zn e ffl(A^). Let rn = r(fz~
1). It follows from the 

lemma that rn > |r f , all n > 0. Let | f(z0)\ = £>(r?/9), so 6 < 1. 
Proceeding by induction, the case n = 0 of the theorem is trivial. For the 

general step, by Theorem 5 

4|/(z„_1)|2 

\J\*n)\ ** 

and by the induction hypothesis 

4br 

l/(OI < — 

b2"-

r„_t - 4|/(z„_ 

"'-1l/(^o)l*2'-
' - i " 4|/(z„. 

•*fo/9)K*o)l 

t)l' 

%'t - 4 (V 9 ) 

< ft2"-1!/**»)!. 

This proves Theorem 4. 
One can imagine an algorithm for finding a zero of a typical polynomial ƒ as 

follows. Choose an initial point and apply Newton's method as long as one is 
getting fast convergence, repeating the process if necessary. Bearing on the 
success of this algorithm is 

PROBLEM 9. Let 

Area(fi /nD4) 
<*(</)= average j — . 

fepd(i) Area î 4 
Estimate a(d) as a function of d especially from below. 

Here D4 is the disk of radius 4, but could be taken as Dx also, for example. 
The average over Pd(l) means the integral with respect to normalized Lebesgue 
measure on the space of polynomials defined in §1, Chapter 2. 

I don't know if a(d) > e > 0, where e is independent of d. 
The following proposition, a version of one in Shub-Smale ƒ, is suggestive in 

looking at this problem. 

PROPOSITION, (i) 

0,=> U DRt({), Rs = 

/<n-o 

and the union is disjoint. 
(ii) 

h 

36|/'(f)l 
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where pf is the minimum of | / (0) | over the critical points 6 of f, Df is the 
discriminant of f {see Lang) and \/K = 16 • 36 2. 

PROOF. Part (i) is an immediate consequence of the Koebe-Bieberbach 
Theorem and the definitions. 

For part (ii), first note that r^ ̂  pf for all roots f of ƒ. Next observe that 
DR (f ) c D4 since |f| < 2 and i*f < 2 (the DRs (?) are disjoint and ƒ e P^(l)). 
Thus 

a(d)>Kf PfL—Z 
W D 'Tl/'tt)l2 

Now apply the inequality on arithmetic versus geometric means to obtain 

a{d) > Kdj P) 

{ns\fV)\2)1/d' 
The result of the proposition follows from the identity Dfd

d = Y\$\f '(01 
(see Lang). 

The function py is discussed in Smale III, where it is proved that 

Vol{fePd(l)\pf<a} <rfa2, 

where Vol means normalized Lebesgue measure. 

4. Purely iterative algorithms. Newton's method is an example of a broad 
class of algorithms I will call purely iterative. This concept will be formalized 
in the zero-finding problem for one complex polynomial. 

Let 9>d be the space of all polynomials of degree < d and define 

j : Cx&d-»Jk 

by 

j(z9f) = ( z , / ( z ) , r ( z ) , . . . , / ^ > ( z ) ) . 

Here Jk (a "jet" space) is C*+2 representing the source and the first h 
derivatives. Assume for simplicity that d > k\ then y is surjective. 

The datum of a purely iterative algorithm is a rational map F: Jk -» C, 
which will be written in the following form: 

F(z £ £ ) = z - P(*'*o»-"»**) 
ö(z,£0,...,£J 

where P and Ô are polynomials in the k + 2 variables with no common factor. 
A purely iterative algorithm is a rational endomorphism 7}: C -> C depend­

ing on ƒ e ^ and having the form 

Tf(z)-F(j(z,f)) 

for some rational map F. 
Rational maps are natural in this context because they represent the primi­

tive operations, addition, multiplication, subtraction and division, of the 
computer. In this case, the computer is an idealized complex computer. 
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In the example of Newton's method, 

Tf=Nf, * = 1, P(z , «o,«i) = «o. Ô(*,£o,£i) = £i-

I will say that the purely iterative algorithm Tf (defined by some F) is 
generally convergent if there is some open set °U of full measure in C X Pd such 
that, for (z, ƒ ) e < ,̂ Tf

n(z) tends to a zero of ƒ as n -> oo. 
The definition depends on J and &. We have seen above that f or d = 2 

(A: = 1), Newton's method is generally convergent, and for d > 2, Newton's 
method is not generally convergent. 

I conjecture a negative answer to the following: 
PROBLEM 10. If d > k + 1, does there exist any generally convergent purely 

iterative algorithm? 
In fact, for any d > 2, I know of no generally convergent purely iterative 

algorithm, any k, and I don't know how to prove the conjecture even for 
k — 1. The case k = 0 may not be so hard, perhaps using the arguments in 
Proposition 2 below. 

It might be natural to add a homogeneity hypothesis in the problem. One 
could suppose that P and Q as polynomials in (£0,...,i-k) are homogeneous of 
the same degree, so that F is defined on C X P^(C), where Pd(C) is the 
projective space of polynomials. Newton's method and extensions due to Euler 
(see Shub-Smale I) are purely iterative algorithms satisfying this homogeneity 
condition. Even in this case it seems hard to decide the existence of a generally 
convergent purely iterative algorithm. 

There does exist a generally convergent purely iterative algorithm in another 
context. That is the power method for approximating the dominant eigenvector 
of a matrix. 

Two little propositions in the direction of the above conjecture are given. 

PROPOSITION 1. If 

Tf(z) = z-^^=F(j(z,z)), 9dLjk^C, 

is a generally convergent purely iterative algorithm, then for each f of degree d, 

degQU(z,f))>âeg(P(z,f))-l, 

where deg means degree in z. 

PROOF. Otherwise \Tf
n(z)\ -> oo as n -> oo (for some open set of z, ƒ ). 

PROPOSITION 2. If d > k + 1, k > 0, and 

P(z,f(z),...,fk(z)) 
Tf{z) = z -

Q(z,f(z),...,f«(z)) 

is a generally convergent purely iterative algorithm, then dP/d£k = 0. That is to 
say P is independent of the last coordinate. 

The proof needs some lemmas. 

LEMMA 1. If Tf is generally convergent, then I}(f ) = f and Tf'{$) = 0 imply 
ƒ«) = o. 
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PROOF. If the lemma is not true there exist f and ƒ such that/(f) =£ 0 and yet 
f is a superattractive fixed point. This yields the lemma. 

LEMMA 2. Let Tf be generally convergent as above. Then there exist an integer 
p > 0 and polynomials a, ft of variables (z, £0 , . . . ,£*+1) such that 

(è0Q)p = aP + p(Q-P'). 

Here P' = Lf=0 £/+i^Y + ^> «wwg tf usual partial derivative notation. 

PROOF. First, by Lemma 1, 

P/Q = 0 and 1 - (P'Q - Q'P)/Q2 = 0 => £0 = 0 

or 

P = 0, g " ^ = 0 => $0Ô = 0. 

The Hilbert NuUstellensatz (see Lang) applies to yield a positive integer p and 
polynomials a and ft as above with 

(t0Qy = aP + fi(Q-P>). 
LEMMA 3. Let Tfbe generally convergent as in Lemma 2. IfP(z, | 0 , . . . ,£k) = 0 

then 

[{oôU.{o y ^ - i o i*)-o. 
PROOF. Expand a and ft in powers of £*+1, 

AT A/ 

i - O i - O 

We may assume M = N — 1. 
In the equation of Lemma 2, the coefficient of the highest power of £k+l is 

identically zero, implying 

aNP - ftN_xPik s 0. 

Suppose that P(z, | 0 , . . . ,ffc) = 0 and that /$/£, £0>- • • ^k) * °- Then from 
the previous expression it follows that ftN_x(z, £0> • • • >£*) = 0-

Similarly, from the identity 

aN_YP - ftN_2Pik + ftNJç - i>z - £ É / + 1pJ ^ 0 

it follows that ftN_2(z9... ,£k) = 0. Continuing by induction, one obtains that 
/?(z, lx, . . . ,!*., £*+i) = 0, all èk+i' Thus, again using Lemma 2, the statement 
of Lemma 3 follows. 

Assume one has a generally convergent purely iterative algorithm as in 
Proposition 2. Then by Lemma 3 there is a polynomial y in (z, £0 , . . . , ^ ) such 
that (£0Ö)PP^ = yP. Since Ö and P have no common factors, this implies Qp 

divides y; thus £gP^ = yxP for some polynomial yv li k > 0 and yY & 0 then 
the left side has a lower degree in £k than the right side. Thus yx = 0 and 
P | = 0. This proves Proposition 2. 
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It is easy to find examples which satisfy the equation of Lemma 3. For 
instance take k = 1, P an arbitrary function of z and £0. Let y be an arbitrary 
function of (z, £0, £x) and Q = ^P^ + Pz + £0 + yP. Then this equation is 
satisfied with a = Qp and 0 = -ay. 

However, a generally convergent purely iterative algorithm has no periodic 
sink of least period two (or more). This fact has not been used, here, as it was 
in §1, Chapter 2, to show that Newton's method is not generally convergent. 

ADDED IN PROOF. Curt McMullen in his Harvard thesis, 1985, has solved 
problem 10. 

5. Proof of Theorem A. The goal is to prove Theorem A. First some general 
considerations are discussed. Recall the endomorphism Gu: S -> S defined by 
Gw(z) = z + ( w - / (z)) / / ' (z) , S = C U oo the Riemann sphere. One cannot 
expect zk = Gu)(zk_1) to converge to a solution of / (z ) = o. However, one can 
proceed as follows: 

Suppose z0 is given. For i = 0,...,w, choose w, evenly spaced along the 
segment from <o0 = / (z 0 ) to o>n = co. Then the algorithm defined by z- = 
ŵ ( z / - i ) wu*l converge to a solution of f(z) = co for almost all/, provided the 

spacing of the <o, is fine enough. Certain difficulties prevent us from using this 
more simple and natural approach. See Problem 2 and Proposition 4 at the end 
of this section for more on this. 

Theorem A involves a small modification of the above. Now for its proof. 

LEMMA 1. Let z' = G^z) = z + (w - f{z))/f\z). Then 

r - 4 | w - / ( z ) | 
for all z, co such that \o) — f(z)\ < r/4. Here r = r{f~l) is the radius of 
convergence of the branch off'1 which sends f {z) into z. 

PROOF. Let g(z) = ƒ(z) - w and apply Theorem 2 of §3 (Chapter 2) to g, 
obtaining the lemma. 

LEMMA 2. Consider L, M and J = (1/(1 - M + L))(sin(7r/12) - L) such 
that 

(1) 0 < L < sin(7r/12), 
(2) 0 < M < 1, 
(3) 4 < / , 
(4) ((1 - M 4- L)M)(4/( / - 4)) < L. 

77ieye inequalities are consistent. Moreover M can be chosen less than 1 — 1/97 
with L < 1/80. 

PROOF. Note that except for (2), M = 1 and L - \ sin(7r/12) is a solution. 
Now decrease M below 1 and use continuity to prove the first statement. 

For the second, let M = 1 - asin(7r/12), L = j8sin(?r/12). Conditions 1-4 
translate into l / -4 / : 

(1') 0 < i 8 < l , 
(2') 0 < a < (sin(7r/12))-\ 
(3') 0 < 1 - 4a - 50, 
(4') 4(a + P)2 < 0(1 - 4a - 50)(1 - asm(<ir/l2)). 
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Consider special solutions of the form a = /?. Then the crucial condition (4') 
specializes to 

(4") 16a < (1 - 9a)(l - asin(7r/12)), 
and for this it is sufficient for a to satisfy 

(4'") 1/a > 25 + sin(7r/12). 
The rest of Lemma 2 follows by a very easy calculation. Since M is an 

important constant it would be good to obtain a closer approximation to the 
best M satisfying the conditions of Lemma 2 (not a hard problem). 

Condition (§ ) . Say that a pair (z, ƒ ), z a complex number, ƒ a polynomial 
satisfies Condition (§) if f(z) ^ 0, and/ / 1 can be analytically extended to the 
sector about the ray 0 to ƒ(z) of total angle 7r/6 (Figure 3). This is essentially 
the condition ®fz> ir/12 in Shub-Smale I, II. 

FIGURE 3 

PROPOSITION 1. Let M, L, J be as in Lemma 2, (z0, ƒ) satisfy (n), and 
wo = f(zo)- define <o, = M ^ . Then zi,= /"H^-i) » defined, finite for all 
i > 0, tf«d 

i>0 , ( û J : k - / ( z , ) | < L k | ; 
i > 0, (*,): k - / (z^JI < k . j a - M + L); 

i>o , ( ^ k - A z , ^ ) ! </-,_!//, 

where rt_x = r(/z;
1

i). 

PROOF. (a0) is true. Suppose that (tf,_i), (&/_i), (c/-i) are true. We will 
show that (bj), (c,) and (a,) are true (one has to modify the argument slightly 
for (&!>, (cx). We use 

LEMMA 3, 

rt_x > (smiv/U))^^ - | / U - i ) - w^J. 

The proof of the lemma is simple trigonometry, and uses (n). 
Assertion (bt) is a consequence of the following estimate. 

l / U - i ) - «J < |/(z,_x) - «,_x| + k - co^l < (L + 1 - M ) k _ J . 
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Assertion (c,-) is a consequence of Lemma 3 and the induction hypotheses as 
follows: 

r , _ 1 > ( s i n § ) ( 1 _ ^ + L ) k - / ( z , . _ 1 ) | - ( 1 _ ^ + L ) | W , . - / ( z , ._ 1 ) | 

> (l-M+L)(sinT2-Lh-f{z<-^-
Finally, (at)is proved as follows: 

\f(z,) - «,| <K - f{z,.x)f —^— -
1 - i - 4 K - / ( z , _ i ) | 

by Lemma 1. By (c,) we then obtain 

l/(^)-««l<(j47)k-/(^-i)l-
Then we use (ftf.) to get 

finishing the proof of the proposition. 
From the proposition one can see how small \f(zn)\ is after applying the 

algorithm n times. More precisely, 

COROLLARY. If (z0, ƒ ) .wtfwjjy (§) öwd 

^ log[(l + L) | / (z 0 ) | /e ] 

|logM| 

then\f(zn)\<e. 

To see the corollary, use Proposition 1 to obtain 

l/(*„)l < l/(*J - «J + kl < (*< + i)kl < ( i + i)Af"|/(̂ 0)l-
The corollary follows. 

Now the question becomes, to what extent can one expect (H) to be 
satisfied? Mike Shub and I have dealt with this question making the (unhappy) 
hypothesis |z0| = 3. 

Let 

Fr = { z| |z| = 3, (z, ƒ ) satisfy (g )} 

and impose the uniform (normalized Lebesgue) probability measure on S = 
{z| |z | = 3}. 

PROPOSITION 2. For any f, the measure of Vf is greater than 1/6. 

This is Proposition 2 of Shub-Smale II. 
Following this reference, let Ü be the countable product of S with itself so 

that if z e Ö, z = (zl9 z2, z3 , . . . ). Impose the product measure on Î2. 
Given a set V c S, let m: ti -> Z+ be the function defined by m(z) = the 

first m such that zt £ P f̂or i < w, but zm e K 
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PROPOSITION 3 (See Shub-Smale II). 
1 

L m(z) = measured' 

Next observe that if/(z) = LQ Û/^', Ö</ = 1, \at\ < 1, and |z0| = 3, then 

(•) l/(*o)l < Ç ^ p < f (3"+1). 
The proof of Theorem A is almost finished. Using the corollary of Proposi­

tion 1, Proposition 2, and Proposition 3, we need only translate the n as given 
in the corollary to the n of Theorem A, or 

log[(i + L) | / (Z 0 )1A] norii , 
— Î ^ M < 98l|loge| + </log3j. 

This is easily done using (*) and the estimates on M, L in Lemma 2. This 
finishes the proof of Theorem A. 

Note that the largest contribution to the number of steps in Theorem A is 
the linear factor d. This is necessary because |z0| = 3, rather than, say, |z0| < 1. 
But Proposition 2 is no longer at our disposal for small |z0|. Moreover, it is 
possible that |z0| < 1 gives a slower algorithm. Then/(z0) is more likely to be 
close to a ray containing a critical value, e.g. as/(z) = z J + l . This bears on 
Problem 2. In the same direction, the following result shows how fast this 
algorithm can go starting at z0 = 0 in case there is a good zone of analyticity 
for/0

-1, the branch of/"1 which takes/(0) to 0. 

PROPOSITION 4. Suppose f is a polynomial with f0
 l analytic on Ns(0f(Q)), the 

8 neighborhood of the segment from /(O) to 0. Choose n > 241 f(Q)\/$ and let 
*>, = (n - 0 / (0) /» , Î = 0,...,n. Then zt = G^z^) is well-defined, \f(zH_x)\ 
< 6/12, andzn_1 is an approximate zero. 

PROOF. Note first that 

k - ^ - i l = l/(o)lA<V24. 
By Lemma 1, 

4 | / ( * , - i ) - « , | 2 

|/(*,)-«J< « " 4|/(z,_1) - «,| 

It is sufficient to show (by induction) that 

| / ( 2 , ) - « , + 1 | < * / 1 2 . 
But using the Lemma 1 estimate, 

\f(Zi) ~ w/+il < k " w/+il + \f(zi) ~ «,-1 
< 8/24 + 8/24 < 8/12. Q.E.D. 

Proposition 4 suggests the following study. Let 8( ƒ ) be the maximum of the 
8 such that/0

_1 is analytic on Ns(0f(0)) and let rj(/) = 8(/) / | / (0) | . What are 
the measure-theoretic properties of i\ on various spaces of polynomials? For 
example, estimate the volumes o f { / | î j ( / ) > a } , as a function of a. 
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6. What is an algorithm? 
PROBLEM 11. What is the fastest way of finding a zero of a polynomial? 
This is a kind of super-problem. I would expect contributions by several 

mathematicians rather than a single solution. It will take a lot of thought even 
to find a good mathematical formulation. 

In some ways, one could compare this problem with showing the existence of 
a zero of a polynomial. The concept of complex numbers had to be developed 
first. For Problem 11, one must develop the concept of algorithm to deal with 
the kind of mathematics involved. Consistent with the von Neumann statement 
quoted in the introduction, my belief is that the Turing approach to algorithms 
is inadequate for these purposes. 

Although the definitions of such algorithms are not available at this time, 
my guess is that some kind of continuous or differentiate machine would be 
involved. In so much of the use of the digital computer, inputs are treated as 
real numbers and the output is a continuous function of the input. Of course a 
continuous machine would be an idealization of an actual machine, as is a 
Turing machine. 

The definition of an algorithm should relate well to an actual program or 
flow-chart of a numerical analyst. Perhaps one could use a Random Access 
Machine (RAM, see Aho-Hopcraft-Ullmari) and suppose that the registers 
could hold real numbers. Then one might with some care expand the Hst of 
permissible operations. There are pitfalls along the way and much thought is 
needed to do this right. 

To be able to discuss the fastest algorithm, one has to have a definition of 
algorithm. I have used the word algorithm throughout this paper, yet I have 
not said what an algorithm is. Certainly the algorithms discussed here are not 
Turing machines; and to force them into the Turing machine framework would 
be detrimental to their analysis. It must be added that the ideahzations I have 
suggested do not ehminate the study of round-off error. DeaHng with such loss 
of precision is a necessary part of the program. 

Problem 11 is not a clear-cut problem for various reasons. Factors which 
could affect the answer include dependence on the machine, whether one wants 
to solve one or many problems, time taken to write the program, whether 
polynomials have large or small degree, how the problem is presented, etc. 

Dejon-Henrici is a general reference to some aspects of Problem 11. 
The next problem, which was discussed in Smale HI and Shub-Smale II, is 

still open. I restate it simply. 
PROBLEM 12 (MEAN VALUE PROBLEM). Given any complex number z and 

polynomial/, is there a critical point S of ƒ such that 

CHAPTER III 
1. Proof of Theorem D. I first give some preHminaries for the proof of 

Theorem D. Suppose that a Hubert space H is given its Gaussian measure. 
(See Elworthy and Kuo for the meaning of this and the relationship to Wiener 
measure.) "Average" will refer to this measure. 
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PROPOSITION. Let L: H -* Rbe a bounded linear functional. Then the average 
satisfies 

(2\l/1 

A v | L x | - f ||L||. 

PROOF. Choose v e H so that Lx = (i;, x) all x e H. Then ||L|| = |M| and 

Av |LJC|= Av|<i;,x>| = ||L|| Av (e,x), 
xeH x x&H 

where e = u/||u||. Hence (see Elworthy) 

This yields the proposition. 
We will simplify the proof of Theorem D slightly by working with the 

subspaces 

jTo1- { / e ^ 1 | / ( 0 ) = 0} and ^ = { ƒ e ^ 2 | / ( 0 ) = /'(O) = 0}. 

Let / : ^o1 -> # be the integral, / ( ƒ ) = ƒƒ, and denote by / ( 1 ) e ^ the 
dual. Thus 

J(f) = (J«\f). 

Similarly, let J(2) e Jjf0
2 denote the dual of / : Jt£ ^> R. 

Next, for ƒ = 1,2, and 0 < t < 1, define £ƒ'>: ^ -> * by E}'\f)=f(t). 
Let 2?,(/) e j^o' be the corresponding duals of this evaluation map. 

LEMMA 1. 

(i) j-JV(s) = l-S, 

(Ü) 4w*)- ( l ' J<<' 
v ' ds ' v ' \0, f < j , 

(iii) £ / « ( , ) _ ! _,+ !,., 
(iv) -4É/2)(5) = / ' - 5 ' , < / ' _d_2 

<fc2 

The proof is easy calculus: For (i), it amounts to checking 

(J",f)jel=f1(l-s)f'(s)ds=j(f). 

For (ii), 

(Ê?\ f)^ = £ƒ'( ,) ds = f(t) - £«(ƒ). 

For (iii), 

<i<2\ y ) ^ = jf1 ( | - * +1, 2 ) /»( , ) * = ̂ / ( , ) & = y(/). 
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For (iv), 
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(£,«>, f)^ = jf' (/ - s)f"(s) ds = f(t) = £/2>( ƒ ). 

he proof of Theorem D, use the proposition to see that 
/ 9 \ l / 2 / ? \ 1 / 2 

1=1 1-1 

and it wiU be shown that 

\jv - A E £< (!) 
/ = 1 

By Lemma l(ii), for (j — \)h < s < y/i, 

i - i ^ 

Thus, using Lemma l(i), 

jv-hZÊiï\ 

But /w = 1, so this is 

• I f [l-s-h(n-j+l)]2ds 
\j = lJU-l)h 

1/2 

y - 1 3 ! s-(.j-l)h 

1/2 

3 j 73 ' 

which proves the first of four parts of Theorem D. 
Next I will carry out the same process for the "Trapezoidal Rule". Since 

Th{f) = - i * ( / ( l ) + / (0» + RhU) and /(O) = 0, 
1/2 

2^3 ' 

which proves the second part of Theorem D. 
A couple of more lemmas help pave the way for proving the third part of 

Theorem D. The first is well known. 

LEMMA 2. 

j , 0 . _ 1 ) a _ ( n - l ) » ( 2 B - l ) 
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LEMMA 3. Fors e [(j - l)h9 jh] 

PROOF OF LEMMA 3. Write out the sum using Lemma l(iv) to obtain it as 

(jh - s) + (j + \)h - s + --+nh-s. 

The rest follows. 
Let A stand for the quantity in Lemma 3. Then 

using Lemma 1. This quantity may be written as (using Lemma 3) 

( n \ 1 / 2 

\ E f [,a-2,(;-i)A+(y-i)V+(A'(y-i)-A)]2 • 

One can integrate it, using t = s — (j — l)h; then a little calculation using 
Lemma 2 yields 

-\' 
2/3 T ' 2 ' 10/ ' 

which is the formula for e\(h) in Theorem D. 
Next, 

s„U) = f 

«"2
 A / x * 

/(l) + 22£V(»A) + 2£/(2(.--l)A) 
1-1 1 

2 ,1 -1 , 2 

! as j as 

LEMMA 4.(i) On (2k - 2)A < s < (2fc - l)/t, 

2 - 1 ^ 2 

£ —2Ê$\s) = *(«(2» - 1) - ( 2 * - 1)(* - \))-s{2n - 2k + 1) 
! as 

and 

t 7^#-i)*(») = *(«2 "(* - if) - *(» - k + 1); 

(ii) on (2k - l)h < s < 2&A, 

£ £ÊV(S) = A(/i(2« - 1) - * (2* - 1)) - 2*(» - k) 

#«d 

! as 
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The proof is a straightforward calculation as before, keeping in mind 
1 + 3 + 5 4- ••• + ( 2 / - 1) = /2. 

Finally, a straightforward calculation using the above expression for Sh, and 
Lemma 4, yields the formula 

finishing the proof of Theorem D. 

2. Questions of precision. I will not attempt to give the proof of Theorem C, 
but instead refer the reader to Kostlan and Ocneanu. There are some aspects 
that I would like to comment on. 

Since the singular values of a matrix play an important role, it is worthwhile 
to say what they are and how they are used. If A is any matrix (say n X n f or 
simplicity), the singular values of A are the nonnegative square roots of the 
eigenvalues of AAT. This makes sense because the composition of a matrix with 
its transpose is positive semidefinite and the eigenvalues are positive or zero. 
Singular values are discussed at length in Forsyth-Moler and Wilkinson I. They 
measure the distortion of a linear map. 

Let A be an n X n real matrix and 0 < fix < /i2 < • • • < ftw denote its 
singular values. It is easily shown that ||^4|| = jut„ and WA'^l = l/nv Thus the 
condition number KA of A equals fi „/nv The number LA whose average is 
estimated in Theorem C therefore satisfies LA = log(^/1/]u1). Since LA is in fact 
a function of the singular values of A, the average over A is equal to an average 
over the space of singular values. More precisely, the following is true. 

PROPOSITION. 

L(n) - c„f l o g ( ^ ) n ( M J - M ? ) « p ( - j E M ? ) <*M, • • • dv.n, 

0 < / x 1 < ••• <Mn, where cn is the reciprocal of the same integral with the log 
factor deleted. 

The proof of the proposition uses the previous discussion together with a 
well-known result on the probability density for the Gaussian measure on 
matrices in terms of singular values. See Kostlan for reference and details. This 
proposition is the basis for the estimates given in Theorem C. 

The above analysis of the system Ax = b involves a worst-case hypothesis 
for the error in b. Kostlan studies the loss in precision for this system by 
averaging over b and the error in b. This yields zero for a given matrix A. So in 
this form, on the average, the amount of precision lost is the same as that 
gained. Thus the variance becomes crucial to estimate. Kostlan bounds this 
variance by a polynomial in n and conjectures that this quantity satisfies 

Var(^) < TT2/4. 

The above comments on precision are independent of algorithms. But the 
limitations of precision discussed above apply to any specific algorithm. For 
the analysis of algorithms, precision as well as speed must be taken into 
account. 
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One can also consider the problems of precision for nonlinear problems. If 
ƒ: Rw -» Rn is a continuously differentiable map then the equation f(x)=y 
may be looked at from two points of view: Given x find y (evaluation), or 
given y find x. For the first, the natural definition of condition number is 
ll̂ !/X*)ll> where Df(x) is the matrix of partial derivatives and, as usual, the 
norm is the operator norm. For the second problem, of solving f (x) = y for x, 
this is replaced by ||/y(x)_1||. See Wilkinson II for discussion of these things. 

Quantities reflecting the loss of precision for these two problems are thus 
log||I>/(x)|| and logHD/fa)"1!! respectively. For an interesting analysis of the 
average loss of precision in the evaluation of rational functions, see Blum-Shub. 

If f is a zero of a complex polynomial/, the loss of precision for the problem 
of finding it is 

For the case of a double root this is infinite (for an almost double root, 
arbitrarily large). One has the paradoxical situation of polynomials with 
double roots, but no algorithm (with the best machine even to be built) can 
affirm it. 
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