
80 BOOK REVIEWS 

3. M. Frazier and B. Jawerth, Decompositions ofBesov spaces (to appear). 
4. S. M. Nikorskij, Approximation of functions of several variables and imbedding theorems, 

Grundlehren Math. Wiss., Band 205, Springer-Verlag, 1975. 
5. S. Krantz, Review of " Integral representations of functions and imbedding theorems" by Oleg V. 

Besov, Bull. Amer. Math. Soc. (N.S.) 2 (1980), 216-222. 
6. J. Peetre, New thoughts on Besov spaces, Duke Univ. Math. Ser., Durham, N. C , 1976. 
7. M. Taibleson, Review of "Approximation of functions of several variables and imbedding 

theorems" by S. M. Nikol'skil, Bull. Amer. Math. Soc. 83 (1977), 335-343. 
8. H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland, 1978. 

RAYMOND JOHNSON 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 13, Number 1, July 1985 
©1985 American Mathematical Society 
0273-0979/85 $1.00 + $.25 per page 

Probabilistic and statistical aspects of quantum theory, by A. S. Holevo, North-
Holland Series in Statistics and Probability, Vol. 1, North-Holland Publish­
ing Company, Amsterdam, 1982, xii + 312 pp., $85.00, Dfl. 225.00. ISBN 
0-444-86333-8 

It has been known for over sixty years that quantum mechanics is, by its 
very nature, a statistical theory. The predictions of quantum mechanics are 
probabilistic and cannot be exact. However, the probability theory underlying 
quantum mechanics is not classical probability theory. It is a different kind of 
probability theory, which is phrased in terms of operators on a Hubert space. 
Operators play the role of probability measures and random variables in 
quantum probability theory. Since these operators need not commute, quan­
tum probability is sometimes called a noncommutative probability theory. This 
noncommutativity is the main difference between the two theories. The present 
book gives an account of recent progress in the statistical theory of quantum 
measurement stimulated by new applications of quantum mechanics, particu­
larly in quantum optics. The main stress of the book is on the recently 
developed field of quantum estimation. 

Quantum probability theory is attracting the attention of an increasing 
number of researchers. It is located at a junction between physics (in particu­
lar, quantum mechanics) and mathematics. It combines a blend of the abstract 
and the practical. It has been investigated by philosphers, physicists, mathema­
ticians, electrical engineers, and computer scientists. There are interesting lines 
of research in this field for mathematicians who know little about quantum 
mechanics. For the mathematician there is a fascinating interplay between 
probability theory and functional analysis. There are also applications in this 
field involving group representations, operator algebras, partial differential 
equations, Schwartz distributions, functional integration, lattices, algebraic 
logic, and many others. This field was first presented in a rigorous operator-
theoretic setting by von Neumann [9]. Later books which emphasize its 
geometric and logical aspects are [1, 4, 5, 6, 8], and still more recent books in 
which probabilistic methods are treated are [2, 3, 7]. The present book is the 
first to emphasize the quantum estimation problem. 
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An example in which quantum estimation is required is in the field of optical 
communication, such as when laser beams are transmitted along glass fibers. In 
ordinary communication theory the signal of a radio wave, for example, is 
distorted by thermal noise in the air, and traditional statistical signal estima­
tion can be used. However, in the optical range "quantum noise" becomes 
more significant than thermal background radiation in distorting the signal. In 
this case quantum estimation theory must be used. In particular, so-called 
Gaussian states are used to describe radiation fields in optical communication 
theory. The book derives general inequalities for mean-square measurement 
errors which are quantum analogs of the well-known Cramer-Rao inequality in 
statistics. 

We shall now present some of the basic ingredients of quantum probability 
theory in the flavor of this book. In any experiment one can identify two main 
stages. The first stage is the preparation in which the initial conditions or input 
data of the experiment are established. In the second stage the prepared object 
is coupled to a measuring device, resulting in output data. We call the elements 
of the first stage states, and the elements of the second stage measurements. 
Denote the set of discernible states by Sf and the set of measurements by Jt'. 
Assume for simplicity that the values of a measurement M e Jt are real 
numbers, and let @(U) be the a-algebra of Borel subsets of U. Now, suppose 
the object is prepared in the state S many times, and each time a measurement 
M is made. We would then obtain a statistical distribution of values for M 
given by a probability measure fi^ on &(U). Thus, we can think of M as a map 
from S? to the set of probability measures on £%(M). 

If Sv S2 are states and 0 < X < 1, then it is usually not difficult to construct 
a state S3 = \S1 + (1 — X)S2. The state S3 would satisfy 

for every M e Jt'. These considerations motivate the following definition. A 
statistical model is a pair {Sf,Jt) where ^ i s a convex set and Jt is a set of 
affine maps from Sf into the convex set of probability measures on a fixed 
measurable space. 

The statistical model used for classical probability theory is straightforward. 
Let (Œ, 2) be a measurable space. Then y is the set of probability measures 
on 2 and Jt is the set of real-valued measurable functions (random variables) 
on £2. For S e ^ M e l w e obtain the probability distribution 

li%(B) = S[M~l(B)]9 B G a(R). 

In this way (S?9 Jt) gives the classical statistical model. 
The statistical model for quantum mechanics is quite a different story. In 

this case we have a complex Hubert space H, and the states S?= &*(H) are 
described by positive trace class operators of trace 1. (This can be "derived", 
more or less, from physical principles.) Such operators are called density 
operators on H. In order to describe quantum measurements we need a 
definition. A resolution of the identity on H is a set M = {M(B): B e &(U)} 
of bounded operators on H satisfying 

(1 )M(0) = O,M(R) = ƒ, 
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(2) M(B) >0,B(= #(R), 
(3) if Bt e ^(R), i = 1,2,..., are mutually disjoint, then Af(U£,) = I M(Bt) 

in the weak operator topology. 
We say that M is an orthogonal resolution of the identity if each M(B\ 

B e ^(R), is a projection. A resolution of the identity is sometimes called a 
POV {positive operator-valued) measure, and an orthogonal resolution of the 
identity is sometimes called a PV (projection-valued) measure. Now define a 
measurement to be an affine map from the convex set £f(H) to the convex set 
of probability measures on ^7(R). It is proved that S -* /xs is a measurement if 
and only if there exists a unique resolution of the identity M such that 
tis(B) = trSM(B) for all B e ^(R). We thus take for the statistical model of 
quantum mechanics a pair ( y , J(\ where Sf= &(H) for a Hubert space H 
and J( is the set of resolutions of the identity for H. Moreover, for S e y , 
M e Ji, we have fi^(B) = tr SM(B) for every B e #(R). 

Measurements described by PV measures are called simple. Simple measure­
ments are extreme points of the convex set J( of all measurements; the 
converse is not true. As is well known from the spectral theorem, simple 
measurements are uniquely described by selfadjoint operators. Such operators 
are frequently thought of as representing all the observables of a quantum 
system. However, it is stressed in this book that there are important measure­
ments (observables) which are not simple. For example, densely defined, 
symmetric (but not selfadjoint) operators are sometimes encountered in quan­
tum mechanics (a specific case is the time observable). As shown in the book, 
these operators correspond to (in general, nonunique) POV measures in much 
the same way as selfadjoint operators correspond to unique PV measures. 
Moreover, using Naimark's theorem, any measurement can be dilated to a 
simple measurement in a larger Hilbert space. 

The expectation and variance of a measurement M in the state S are defined 
by 

ES(M) = f\tf(d\), DS(M) - ƒ [X - ES(M)]2tf(d\). 

In particular, if S is a one-dimensional projection P^, onto a unit vector \p (pure 
state) and M is a POV measure for a densely defined symmetric operator X, 
withi// G 2(X), then 

ES(M) = E^X) = <**, *>, DS(M) = D+(X) = p t y f - E+(X)2. 

For a pair of observables Xl9 X2 and \p e ^(Xx) n £Ï)(X2), one easily obtains 
the uncertainty relation 

D^XX)D^X2) >\\m{X^9 X2^)\\ 

An important role in quantum mechanics is played by symmetry groups. Let 
G be a group of symmetries for a quantum system. For example, G might be 
the Galilean group of rotations and translations or the relativistic Poincaré 
group of space-time. If (S?9 Jt) is a statistical model, then G must act on Sf 
and Jt, and if G is really a symmetry of the system, we have /A|^ = ^ for 
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every S G y , M G J(, g e G. Moreover, it is natural to assume that S -* gS is 
an affine bijection (or automorphism) on S?. If S?= y{H\ then under mild 
continuity conditions it is proved that there exist unitary (or anti-unitary) 
operators Vg on H for each g e G such that 

V
gl

Vg2
 = w(Si> &)^fcf2» where «(g!, g2) e C, |<o(gl, g2)| = 1, 

and 

gS = Fg5Fg* for all g e G, S e ^ . 

Such a map g -> Kg is called a projective unitary representation. In a similar way 
we have 

gM(B)= V*M{B)Vg for all M e Jt, g e (?,£€=<#(§*). 

If M is a POV measure from a a-algebra s/(U) of subsets of (7, and G is a 
group of transformations acting transitively on U, we say that M is a covariant 
measurement if 

M(g~lB) = V*M(B)Vg for all g e G,BzLst{U). 

Now, suppose that 0 -* ^ is a projective unitary representation of the 
additive group R. It can be shown that V0 is equivalent to a unitary represen­
tation 0 -* f̂  on the same Hubert space # . By Stone's theorem there exists a 
selfadjoint operator A on H such that V0 = e'^, J G R . Hence, the action on 
the states becomes 

S - S0 = ei0ASe~i0A. 

Let S = i^ be a pure state with ^ G ̂ (,4). Then 

^ - ei§A* e ^ ( ^ ) , 

and we write EB(X) = (Aty^, \p0) for an observable Jf with *//# e ^(X) . Using 
the uncertainty relation, we obtain the Mandelstam-Tamm inequality 

D0{X)D0{A)>\\dE0{X)/d6\\ 

This inequahty is important for the quantum estimation problem. Suppose a 
quantum system is prepared in the initial state S which is completely known. 
Then the system is transformed according to a change of parameter 0, and the 
new state becomes Se. The value $ is supposed to be unknown, and the 
problem is to estimate this value statistically by making a measurement of the 
system. Suppose a measurement is made for the observable X. We then call X a 
statistical estimate of the parameter 0. (If the unknown parameter 6 has a finite 
number of values, one speaks of "hypothesis testing" in statistics.) The 
accuracy of the estimate can be measured by the mean-square deviation 

E,\(X-ef]-Dt{X)+[Et(X)-6\\ 

Then the Mandelstam-Tamm inequahty sets a lower bound 

E,[(X- Of] > b(0)2+[l + b'(6)]2/4De(A), 

where b(Q) = E0(X) - 6 is the bias of the estimate X. 
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The set of estimates we have just considered is much too general. We want a 
statistical estimate for the parameter 0, but the observable X which we used 
may have nothing to do with 6. We must require some properties for X which 
relate it to the parameter 0. One way of doing this is the following: An 
estimate X is called unbiased if b(0) = 0 or Ee(X) = 0, Ö G I R . This means 
that there is no systematic error in the measurement. For unbiased estimates 
the above inequality takes the simple form De(X) > [4D6(A)]~l. One can also 
look for optimal measurements having the best theoretically possible accuracy 
among all covariant measurements of 0. It turns out that such measurements 
correspond to "canonical" observables for the parameter 6. This is extensively 
treated in a rigorous fashion in the book. 

Let us return to quantum communication theory, which we mentioned early 
in this review. Armed with what we have just learned, we can now gain a 
deeper understanding of this theory. In a quantum communcation system one 
has a source T (say a laser beam), an information carrier or channel C (say a 
glass optical fiber), and a receiver R. In the absence of a signal, C is in a 
known state S (usually an equilibrium Gibbs state at a given temperature). 
Transmission of a signal is accomplished through an influence of T on C which 
forces a definite change in state for C. Usually there are parameters 6 of T 
which can be varied (such as frequency or amplitude), and the resulting state 
Se depends on 6. In classical communication theory (such as radio waves) the 
states S0 are given by probability distributions Pe on the phase space of C. This 
is the classical statistical model. However, at optical frequencies quantum 
fluctuations become significant, and a quantum statistical model is required. In 
this case the states Se become density operators in a Hubert space H. The 
signal obtained by the receiver is given by a state S"e which is a quantum 
distortion of the state Se. Thus, the receiver obtains an estimate 6 of the actual 
value 0 of the transmitted signal. In this way the receiver performs a measure­
ment of the parameter 6. Theoretical bounds for the accuracy of such measure­
ments are of principal importance in optimal signal reception. We have 
previously indicated examples of such bounds. 

In summary, this book presents a balanced blend of theory and applications. 
It moves smoothly from the basic concepts of quantum mechanics and 
operators on Hubert spaces to the abstract theory of quantum estimation and 
to important recent practical applications. Each chapter ends with an interest­
ing comments section which gives historical background and references. The 
book is motivated and readable. I recommend it. 
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