DEHN SURGERY ON KNOTS

BY MARC CULLER, C. McA. GORDON, J. LUECKE AND PETER B. SHALEN

Let M be a compact, connected, orientable, irreducible 3-manifold such that ∂M is a torus. An isotopy class c of unoriented simple closed curves in ∂M will be called a slope. A closed 3-manifold $M(c)$ may be constructed by attaching a solid torus J to M so that c bounds a disk in J.

If c and d are two slopes, we denote their (minimal) geometric intersection number by $\Delta(c, d)$.

Theorem. Suppose that M is not a Seifert fibered space. If $\pi_{1}(M(c))$ and $\pi_{1}(M(d))$ are cyclic, then $\Delta(c, d) \leqslant 1$. In particular, there are at most three slopes c such that $\pi_{1}(M(c))$ is cyclic.

This result is sharp; Fintushel-Stern and Berge have given examples of hyperbolic knots in S^{3} for which two Dehn surgeries give lens spaces.

In the statements of the following corollaries we use rational numbers as in $[\mathbf{R}]$ to parametrize the nontrivial Dehn surgeries on a knot K in S^{3}. We will denote by $K(r)$ the result of r-surgery on K.

Corollary 1. If K is not a torus knot and $r \in \mathbf{Q}$, then $\pi_{1}(K(r))$ can be cyclic only if r is an integer. Moreover, there are at most two such integers r, and if there are two then they must be successive.

Corollary 2. If K is a nontrivial knot and $r \in \mathbf{Q}$ is not equal to 1 or -1 then $K(r)$ is not simply-connected. Moreover, $K(1)$ and $K(-1)$ cannot both be simply-connected.

Corollary 3. Up to unoriented equivalence, there are at most two knots whose complements are of a given topological type.

Corollary 4. If K is a nontrivial amphicheiral knot and $r \in \mathbf{Q}-\{0\}$, then $\pi_{1}(K(r))$ is not cyclic. In particular, K has Property P.

Corollary 5. Knots of Arf invariant 1 are determined up to unoriented equivalence by their complements.

Whitten [W], using work of Johannson [Jo1], shows that Corollary 1 implies the following result.

Corollary 6. Prime knots with isomorphic groups have homeomorphic complements.

[^0]The theorem states that, with a very small set of exceptions, the group $\pi_{1}(M(c))$ is not cyclic. We prove this by showing that either
(*) there exists an incompressible surface in $M(c)$; or
(**) there exists a representation of $\pi_{1}(M(c))$ into $P S L_{2}(\mathrm{C})$ with noncyclic image.
The proof reduces to the case where M is atoroidal, using part (a) of
Proposition 1. (a) If M contains an incompressible nonperipheral torus which compresses in $M(c)$ and $M(d)$, then either $\Delta(c, d) \leqslant 1$ or $(M, \partial M)$ is cabled in the sense of [GL].
(b) Suppose that $\operatorname{dim} H_{1}(M ; \mathbf{Q})>1$. If $M(c)$ and $M(d)$ have cyclic first homology groups and are not Haken manifolds then $\Delta(c, d) \leqslant 1$.

The proof of Proposition 1 is a combinatorial analysis of the intersection of the two planar surfaces in M corresponding, in (a), to the compressing disks for the torus in $M(c)$ and $M(d)$, and, in (b), to the nonseparating 2 -spheres in $M(c)$ and $M(d)$ which would exist if $M(c)$ and $M(d)$ were not Haken.

We define a slope c to be a boundary slope if M contains an incompressible nonperipheral surface F with $\partial F \neq \varnothing$ such that each component of ∂F has slope c. The next proposition, together with Proposition 1 (b), establishes the inequality in the conclusion of the theorem when one of the slopes is a boundary slope.

Proposition 2. If cis a boundary slope and $\operatorname{dim} H_{1}(M ; \mathbf{Q})=1$, then either
(i) $M(c)$ is a Haken manifold; or
(ii) $M(c)$ is a connected sum of two (nontrivial) lens spaces; or
(iii) M contains a closed incompressible surface which remains incompressible in $M(d)$ whenever $\Delta(c, d)>1$.

For the proof of Proposition 2, let F be an incompressible nonperipheral surface in M with $\partial F \neq \varnothing$ having boundary slope c and with the minimal number of boundary components. Consider the manifold X obtained by cutting M along F. If there are enough compressing disks for ∂X in X, one shows either that the capped-off surface \hat{F} in $M(c)$ is an incompressible surface of positive genus and (i) holds, or that \hat{F} is an essential 2 -sphere and (ii) holds. (The proof uses an extension of a result of Jaco [Ja] and Johannson [Jo2] giving conditions under which the addition of a 2 -handle to a 3 -manifold will yield a boundary-irreducible manifold.) Otherwise X, and hence M, contains a closed incompressible surface which is shown, by a refinement of the combinatorial analysis used in the proof of Proposition 1, to remain incompressible in $M(d)$ if $\Delta(c, d)>1$. This gives conclusion (iii).

Finally, we consider the case that M is atoroidal and that c and d are nonboundary slopes. Thurston's Geometrization Theorem implies that the interior of M has a hyperbolic structure of finite volume. We define, as in [CS], a complex affine curve X in the space of characters of representations of $\pi_{1}(M)$ in $S L_{2}(\mathbf{C})$. We identify $L=H_{1}(\partial M ; \mathbf{Z})$ with a lattice in the vector $V=H_{1}(\partial M ; \mathbf{R})$. Let $e: L \rightarrow \pi_{1}(M)$ denote the inverse of the Hurewicz isomorphism followed by the inclusion $\pi_{1}(\partial M) \rightarrow \pi_{1}(M)$. Each $\gamma \in L$ defines a regular function $I_{\gamma}: X \rightarrow \mathrm{C}$ by $I_{\gamma}(\chi)=\chi(e(\gamma))$ (cf. [CS]). One shows that
there is a piecewise linear norm $\|\|$ on V such that for each γ in the lattice $L \subset V$, degree $I_{\gamma}=\|\gamma\|$. Then the ball of radius $m=\min _{0 \neq \gamma \in L}(\|\gamma\|)$ is a convex polygon B such that $B=-B$, and the interior of B contains no points of L. One concludes that, in terms of the natural area element on V, B has area at most 4.

We shall identify a slope with a pair $\{ \pm \gamma\}$ of primitive elements of L. The following result is proved by the techniques of [CS].

Proposition 3. (a) Each vertex of B is a rational multiple of $\gamma \in L$, where $\{ \pm \gamma\}$ is a boundary slope.
(b) If c is a nonboundary slope then either $c=\{ \pm \gamma\}$, with $\gamma \in B$, or else one of the conclusions (*) or (**) holds for M(c).

Suppose now that $c=\{ \pm \gamma\}$ and $d=\{ \pm \delta\}$ are nonboundary slopes and that $M(c)$ and $M(d)$ satisfy neither (*) nor (**). Consider the parallelogram $P \subset V$ with vertices $\pm \gamma$ and $\pm \delta$. By (a) we have

$$
\Delta(c, d)=\frac{1}{2} \text { Area } P \leqslant \frac{1}{2} \text { Area } B \leqslant 2
$$

and equality would imply that γ and δ are vertices of B. By (b) we would have that c and d were boundary slopes, a contradiction. This completes the proof of the theorem.

References

[CS] M. Culler and P. B. Shalen, Varieties of group representations and splittings of 3-manifolds, Ann. of Math. (2) 117 (1983), 109-146.
[GL] C. McA. Gordon and R. A. Litherland, Incompressible planar surfaces in 3-manifolds, Topology Appl. 18 (1984), 121-144.
[Ja] W. Jaco, Adding a 2-handle to a 3-manifold: An application to Property R, Proc. Amer. Math. Soc. 92 (1984), 288-292.
[Jo1] K. Johannson, Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in Math., vol. 761, Springer-Verlag, Berlin, Heidelberg, New York, 1979.
[Jo2] \qquad , On surfaces in one-relator 3-manifolds, preprint.
[R] D. Rolfsen, Knots and links, Publish or Perish, Inc., 1979.
[W] W. Whitten, Knot complements and groups, preprint.
Mathematical Sciences Research Institute, 2223 Fulton Street, Berkeley, California 94720

[^0]: Received by the editors February 7, 1985.
 1980 Mathematics Subject Classification. Primary 57M25, 57R65.

