DEHN SURGERY ON KNOTS

BY MARC CULLER, C. McA. GORDON, J. LUECKE AND PETER B. SHALEN

Let M be a compact, connected, orientable, irreducible 3-manifold such that ∂M is a torus. An isotopy class c of unoriented simple closed curves in ∂M will be called a *slope*. A closed 3-manifold M(c) may be constructed by attaching a solid torus J to M so that c bounds a disk in J.

If c and d are two slopes, we denote their (minimal) geometric intersection number by $\Delta(c, d)$.

THEOREM. Suppose that M is not a Seifert fibered space. If $\pi_1(M(c))$ and $\pi_1(M(d))$ are cyclic, then $\Delta(c, d) \leq 1$. In particular, there are at most three slopes c such that $\pi_1(M(c))$ is cyclic.

This result is sharp; Fintushel-Stern and Berge have given examples of hyperbolic knots in S^3 for which two Dehn surgeries give lens spaces.

In the statements of the following corollaries we use rational numbers as in **[R]** to parametrize the nontrivial Dehn surgeries on a knot K in S^3 . We will denote by K(r) the result of *r*-surgery on K.

COROLLARY 1. If K is not a torus knot and $r \in \mathbf{Q}$, then $\pi_1(K(r))$ can be cyclic only if r is an integer. Moreover, there are at most two such integers r, and if there are two then they must be successive.

COROLLARY 2. If K is a nontrivial knot and $r \in \mathbf{Q}$ is not equal to 1 or -1 then K(r) is not simply-connected. Moreover, K(1) and K(-1) cannot both be simply-connected.

COROLLARY 3. Up to unoriented equivalence, there are at most two knots whose complements are of a given topological type.

COROLLARY 4. If K is a nontrivial amphicheiral knot and $r \in \mathbf{Q} - \{0\}$, then $\pi_1(K(r))$ is not cyclic. In particular, K has Property P.

COROLLARY 5. Knots of Arf invariant 1 are determined up to unoriented equivalence by their complements.

Whitten [W], using work of Johannson [Jo1], shows that Corollary 1 implies the following result.

COROLLARY 6. Prime knots with isomorphic groups have homeomorphic complements.

©1985 American Mathematical Society, 0273-0979/85 \$1.00 + \$.25 per page

Received by the editors February 7, 1985.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 57M25, 57R65.

The theorem states that, with a very small set of exceptions, the group $\pi_1(M(c))$ is not cyclic. We prove this by showing that either

- (*) there exists an incompressible surface in M(c); or
- (**) there exists a representation of $\pi_1(M(c))$ into $PSL_2(\mathbb{C})$ with non-cyclic image.

The proof reduces to the case where M is atoroidal, using part (a) of

PROPOSITION 1. (a) If M contains an incompressible nonperipheral torus which compresses in M(c) and M(d), then either $\Delta(c, d) \leq 1$ or $(M, \partial M)$ is cabled in the sense of [GL].

(b) Suppose that dim $H_1(M; \mathbf{Q}) > 1$. If M(c) and M(d) have cyclic first homology groups and are not Haken manifolds then $\Delta(c, d) \leq 1$.

The proof of Proposition 1 is a combinatorial analysis of the intersection of the two planar surfaces in M corresponding, in (a), to the compressing disks for the torus in M(c) and M(d), and, in (b), to the nonseparating 2-spheres in M(c) and M(d) which would exist if M(c) and M(d) were not Haken.

We define a slope c to be a *boundary slope* if M contains an incompressible nonperipheral surface F with $\partial F \neq \emptyset$ such that each component of ∂F has slope c. The next proposition, together with Proposition 1 (b), establishes the inequality in the conclusion of the theorem when one of the slopes is a boundary slope.

PROPOSITION 2. If c is a boundary slope and dim $H_1(M; \mathbf{Q}) = 1$, then either

- (i) M(c) is a Haken manifold; or
- (ii) M(c) is a connected sum of two (nontrivial) lens spaces; or
- (iii) M contains a closed incompressible surface which remains incompressible in M(d) whenever $\Delta(c, d) > 1$.

For the proof of Proposition 2, let F be an incompressible nonperipheral surface in M with $\partial F \neq \emptyset$ having boundary slope c and with the minimal number of boundary components. Consider the manifold X obtained by cutting M along F. If there are enough compressing disks for ∂X in X, one shows either that the capped-off surface \hat{F} in M(c) is an incompressible surface of positive genus and (i) holds, or that \hat{F} is an essential 2-sphere and (ii) holds. (The proof uses an extension of a result of Jaco [Ja] and Johannson [Jo2] giving conditions under which the addition of a 2-handle to a 3-manifold will yield a boundary-irreducible manifold.) Otherwise X, and hence M, contains a closed incompressible surface which is shown, by a refinement of the combinatorial analysis used in the proof of Proposition 1, to remain incompressible in M(d) if $\Delta(c, d) > 1$. This gives conclusion (iii).

Finally, we consider the case that M is atoroidal and that c and d are nonboundary slopes. Thurston's Geometrization Theorem implies that the interior of M has a hyperbolic structure of finite volume. We define, as in [CS], a complex affine curve X in the space of characters of representations of $\pi_1(M)$ in $SL_2(\mathbb{C})$. We identify $L = H_1(\partial M; \mathbb{Z})$ with a lattice in the vector $V = H_1(\partial M; \mathbb{R})$. Let $e: L \to \pi_1(M)$ denote the inverse of the Hurewicz isomorphism followed by the inclusion $\pi_1(\partial M) \to \pi_1(M)$. Each $\gamma \in L$ defines a regular function $I_{\gamma}: X \to \mathbb{C}$ by $I_{\gamma}(\chi) = \chi(e(\gamma))$ (cf. [CS]). One shows that there is a piecewise linear norm || || on V such that for each γ in the lattice $L \subset V$, degree $I_{\gamma} = ||\gamma||$. Then the ball of radius $m = \min_{0 \neq \gamma \in L}(||\gamma||)$ is a convex polygon B such that B = -B, and the interior of B contains no points of L. One concludes that, in terms of the natural area element on V, B has area at most 4.

We shall identify a slope with a pair $\{\pm\gamma\}$ of primitive elements of L. The following result is proved by the techniques of **[CS]**.

PROPOSITION 3. (a) Each vertex of B is a rational multiple of $\gamma \in L$, where $\{\pm\gamma\}$ is a boundary slope.

(b) If c is a nonboundary slope then either $c = \{\pm \gamma\}$, with $\gamma \in B$, or else one of the conclusions (*) or (**) holds for M(c).

Suppose now that $c = \{\pm \gamma\}$ and $d = \{\pm \delta\}$ are nonboundary slopes and that M(c) and M(d) satisfy neither (*) nor (**). Consider the parallelogram $P \subset V$ with vertices $\pm \gamma$ and $\pm \delta$. By (a) we have

$$\Delta(c, d) = \frac{1}{2}$$
Area $P \leq \frac{1}{2}$ Area $B \leq 2$

and equality would imply that γ and δ are vertices of *B*. By (b) we would have that *c* and *d* were boundary slopes, a contradiction. This completes the proof of the theorem.

References

[CS] M. Culler and P. B. Shalen, Varieties of group representations and splittings of 3-manifolds, Ann. of Math. (2) 117 (1983), 109–146.

[GL] C. McA. Gordon and R. A. Litherland, Incompressible planar surfaces in 3-manifolds, Topology Appl. 18 (1984), 121-144.

[Ja] W. Jaco, Adding a 2-handle to a 3-manifold: An application to Property R, Proc. Amer. Math. Soc. 92 (1984), 288-292.

[Jo1] K. Johannson, *Homotopy equivalences of 3-manifolds with boundaries*, Lecture Notes in Math., vol. 761, Springer-Verlag, Berlin, Heidelberg, New York, 1979.

[Jo2] _____, On surfaces in one-relator 3-manifolds, preprint.

[R] D. Rolfsen, Knots and links, Publish or Perish, Inc., 1979.

[W] W. Whitten, Knot complements and groups, preprint.

MATHEMATICAL SCIENCES RESEARCH INSTITUTE, 2223 FULTON STREET, BERKELEY, CALIFORNIA 94720