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IMAGINARY QUADRATIC FIELDS 

BY DORIAN GOLDFELD1 

1. Early history. In 1772 Euler [11] thought it noteworthy to remark that 

x2 - x + 41 = prime, x = 1,2,...,40. 

This subject was again touched upon by Legendre [28] in 1798 when he 
announced 

x2 + x + 41 = prime, x = 0 , 1 , . . . , 39. 

These remarkable polynomials, which take on prime values for many values 
of JC, are one of the earliest recorded instances of a phenomenon related to 
what is now commonly referred to as Gauss' class number one problem. In 
fact, at the Fifth International Congress of Mathematicians, Rabinovitch [34] 
stated the following 

THEOREM (RABINOVITCH). D < 0, D = 1 (mod 4), 

2 • 1+1^1 • , 0 1^1-3 
x — x H -r—- = prime, x = 1,2,..., -———, 

if and only if every integer of the field Q(jD) has unique factorization into 
primes. 

A similar theorem holds for the polynomial x2 + x + (1 + \D\)/4. It is 
known that 0 ( ^ - 1 6 3 ) has the unique factorization property, and this accounts 
for the remarkable polynomials above. 

Gauss' class number problem has a long, curious, and interesting history. 
Perhaps the subject really goes back to Fermât, who in 1654 stated theorems 
like (here p = prime) 

p = 6n + l=>p = x2 + 3y2, 

p = Sn + l=*p = x2 + 2y2, 

which were first proved by Euler in 1761 and 1763. Many other representation 
theorems of integers as sums of squares were proved in the eighteenth century, 
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24 DORIAN GOLDFELD 

and in 1773 Lagrange [27], for the first time, developed a general theory of 
binary quadratic forms 

(1) ax2 + bxy + cy2, 

with discriminant D = b2 — 4ac, to handle the general problem of when an 
integer m is representable by the form 

(2) m = ax2 + bxy + cy2. 

It is clear that under a linear change of variables 

(3) (>)"(" ?)( / ) ' «»-*Y-+l. «.*.*.'* Z, 

we have 

fljc2 + bxy + cy2 = 4̂JC'2 + Bx'y' + Cy/2, 

where 

A = 0a2 + Z>ay + cy2, 

5 = 2aa0 + b(aÔ + py) + 2cyÔ, 

C = ap2 + bp8 4- cÔ2, 

and, therefore, the two binary quadratic forms 

ax2 + focy + cy2, Ax/2 + Bx'y' + Cy'2 

represent the same set of integers. Denoting these two forms as (a, b, c), 
(A, B, C), respectively, Lagrange defined them to be equivalent since he was 
primarily interested in the representation problem (2). 

We shall also write (a, b9 c) ~ (A, B, C) if the binary quadratic form 
(A9 B, C) can be obtained from (a, b9 c) by a linear change in variables (3); 
and we reiterate Lagrange's basic principle that equivalent forms represent the 
same integers. 

Lagrange developed a reduction theory for binary quadratic forms and 
showed that every form is equivalent to a certain canonically chosen reduced 
form. This idea was also further developed by Gauss. A modern account of 
reduction theory goes as follows. 

Given two equivalent forms (a, b, c) ~ (A, 2?, C) with discriminant 

D = b2 - 4ac = B2 - 4AC < 0, 

we can associate two complex numbers, 

w = (-b + }/D)/2a, W = (-B + {D)/2A, 
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lying, say, in upper half-plane $. Then w is equivalent to w' (w ~ w') in the 
sense that 

w = (aw' + p)/(yw' + ô), 

where (" £) is the unimodular transformation given by (3). 
A form is called reduced if its associated complex number w lies in the 

fundamental domain for the modular group SL(2, Z), i.e., 

w e S L ( 2 , Z ) \ $ . 

It is then easy to check that a reduced form satisfies - û < è < û < c o r 
0 < b < a = c. Every form is equivalent to a canonical unique reduced form. 

DEFINITION 1. Let h(D) denote the number of inequivalent binary quadratic 
forms ax1 + bxy + cy2 of discriminant D = b2 — 4ac. 

In his book of 1798 Legendre simplified Lagrange's work, proved the law of 
quadratic reciprocity assuming there exist infinitely many primes in an arith­
metic progression, introduced a composition of two forms, and defined the 
Legendre symbol 

!

+ l , n = x2 (mod /?), 

- 1 , n*x2{modp), 

0, p\n. 

His book [28] became almost immediately obsolete, however, with the publica­
tion in 1801 of Gauss' Disquisitiones arithmeticae [12]. 

Perhaps one of the most remarkable parts of the Disquisitiones is the section 
where Gauss defines the composition of two binary quadratic forms and 
(without knowing what a group is) proves that the classes of binary quadratic 

w = -
b +y/D~ 

2a 

FIGURE 1 
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forms with given discriminant form a finite group with composition as a group 
law. In fact, he even proves that this group is a direct product of cyclic groups, 
and, as I understand from Mackey, Gauss' proof can be generalized to prove 
that any finite abelian group is a direct product of cyclic groups! 

In article 303 of the Disquisitiones, Gauss enunciated the 

CONJECTURE. The number of negative discriminants D < 0 which have a given 
class number h is finite. 

It is important to point out that Gauss' definition of binary quadratic form 
is slightly different from Lagrange's in that he considers the form 

(4) ax2 + 2bxy + cy2 

with even middle coefficient and defines the discriminant as 

(5) D = b2 - ac. 
In article 303 he gives tables of discriminants having a given class number and 
conjectures that his tables are complete. 

For the moment we shall stick to Gauss' notation (4), (5) and let h(D) be 
the number of inequivalent forms of type (4). It is not well known that Gauss' 
class number one table was first shown to be complete by Landau [25] in 1902. 

THEOREM (LANDAU). ForD = b2 - ac < - 7 , h(D) > 1. 

This is due to the fact that Gauss' definitions (4), (5) really pertain to even 
discriminants, and, therefore, correspond to a much simpler problem. 

Let us now state the modern version of the class number problem. It is 
convenient to return to the Lagrangian notation 

(6) ax2 + bxy + cy2, D = b2 - 4ac < 0. 

Gauss9 class number problem: To find an effective algorithm for determining 
all negative discriminants with given class number h. 

Lagrange's notation (6) is really better suited to the modern reinterpretation 
of the theory of binary quadratic forms in terms of the theory of quadratic 
fields. To each binary quadratic form 

(7) ax2 + bxy + cy2 

of discriminant D we can associate an ideal (see [7]) 

(8) [a, (-b + y[D)/l\ Z-module 

in the ring of integers of Q(}fD). TWO ideals a, h are equivalent (a ~ 6) if 
there exist principal ideals (X^, (X2) such that a(X1) = b(X2). It can then be 
shown that equivalent ideals of type (8) correspond to equivalent forms (in the 
Lagrangian sense) of type (7). 

The ideal classes of Q{JD) form a group; we let h(D) denote the order of 
this group. When h(D) = 1, every ideal in Q(JÏ>) is principal, and the 
integers of Q(jD) have unique factorization. 

Gauss' class number one problem: h(D) = 1 for D = - 3 , - 4 , 
- 7 , - 8 , - 1 1 , -19 , -43 , -67, -163 and f or no other D < -163. 
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2. Dirichlet's class number formula. The problem of the arithmetic progres­
sion, that there exist infinitely many primes in the arithmetic progression a, 
a + q, a + 2q, a + 3q,..., where (a,q) = 1, first fell in 1837 for the case 
q = prime, and for arbitrary q in 1839 [10], in the now classic papers of 
Dirichlet. It was well known at the time that Euler's proof (1748), 

- E i - n K ) - . 
of the infinitude of primes did not work for primes in an arithmetic progres­
sion since there is no natural series representation for the product 

n HT-
pssa (mod q)\ F I 

Dirichlet remedied this situation by introducing, for the first time, group 
characters 

x: Z /#Z -> roots of unity 

which satisfy 
X(n + q) = x("), V* e Z, 
x(mn) = x(™)x(>0> Vw,n e Z, 
X ( / i ) = 0, ( « , * ) > 1. 

There are <l>(q) such characters x (mod#), and they satisfy the orthogonal­
ity relation 

/o\ 1 v -( \ ( \ I 1 ' « = û(modtf), 
W T77V L X ( 0 ) x ( « ) = n ^ ( A \ 

*(*) x(mod )̂ l°> « * t f (mod?). 
Dirichlet defined the L-function 

L(s,x) = n{l-^1]j1 (Re(^)>l) 

from which it follows, by logarithmic differentiation and (9), that 

(10) ~^h z *(«)£('.x)- 1 (iog )̂̂ -"'. 
^W' X(mod<jr) /?w = a (mod <y) 

He considered the limit as $ -> 1. Since 

I E (log/Or- < 00, 

the existence of infinitely many primes in an arithmetic progression is reduced 
to showing that the left side of (10) blows up as s -> 1. The trivial character 
(x(n) = 1 f° r ( W >#) = 1) occurs in (10) and contributes the logarithmic 
derivative of the Riemann zeta function which has a pole at s = 1. Since all 
other Dirichlet L-functions L(s, x) are holomorphic at s = 1, it is enough to 
show that L(l , x) ^ 0. This Dirichlet did in a most remarkable way. We 
illustrate his argument for real characters, since the case of complex x is much 
easier. 
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Let D < 0, D a fundamental discriminant; % (mod D) a real, odd, primitive 
Dirichlet character. Let h(D) denote the class number of Q(jD) and set 

(2, D< - 4 , 
u> = 4, Z>= - 4 , 

U 2>=-3, 
to be the number of roots of unity in the field. 

THEOREM (DIRICHLET). L(l, X) = 27rh(D)/wy/\D\. 

This is Dirichlet's famous class number formula, which was conjectured in 
simpler form by Jacobi [24, 7] in 1832 and proved in full by Dirichlet [10] in 
1839. It is remarkable how the class number and special value L(l, x) relate in 
this way. 

Since h(D)^ 1, this implies L(l, x) ^ 0, from which Dirichlet deduced the 
infinitude of primes in an arithmetic progression. 

A brief sketch of Dirichlet's proof in modern notation goes as follows. For 
z = x + iy9 x e R, y > 0, let 

(11) E{z,s)=l ^ r 
2 (m,n)=i \mz + n\2s 

be the Eisenstein series which satisfies the functional equation 

E*(z9s) = ir-sT(s)t(2s)E(z,s) = £*(z,l - s) 

and has simple poles at s = 0,1 with residue independent of z. 
Although Eisenstein series hadn't been invented yet, Dirichlet did introduce 

zeta functions 

m,«--oo (am2 + bmn + cn2)s 

(m,n)#(0,0) 

associated with a binary quadratic form (a, b9 c) of discriminant b2 — 4ac = D 
< 0. These, however, are just special cases of the Eisenstein series (11) when 
z = (~b+ y/D)/2a. 

Dirichlet showed that 

(.2) (fL)'r(,KWl(„) = i £ *'{=*£*-.•). 
X } b2-4ac=D V ' 

or0<&<tf = c 

from which he deduced the class number formula by comparing residues at 
s = 1. Formula (12) is simply stating that the zeta function of an imaginary 
quadratic field Q(y/D), D < 0, is just the sum of the zeta functions of the 
h(D) ideal classes. 
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3. The Deuring-Heilbronn phenomenon and Siegel's zero. Very little progress 
on Gauss' original class number conjecture was made until the twentieth 
century. In 1918 Landau [26] published the following theorem, which he 
attributed to a lecture given by Hecke. 

THEOREM (HECKE). Let D < 0, x (modD) odd, real, and primitive. If 
L(s, x) * 0 for s real and s > 1 - c/log|D|, then 

h(D)>cl{\D\/log\D\9 

where c,cl> 0 are fixed absolute constants. 

Now, the generalized Riemann hypothesis asserts that the only nontrivial 
zeros of L(s, x) are on the Une Re(s) = 1/2. So Hecke showed that the 
generalized Riemann hypothesis implies Gauss' conjecture, since the class 
number h(D) would then grow with \D\. 

In 1933, Deuring [8] proved the following unexpected and surprising result. 

THEOREM (DEURING). If the classical Riemann hypothesis is false, then 
h(D)> 2 for — D sufficiently large. 

This was improved upon by Mordell [30] in 1934. 

THEOREM (MORDELL). If the classical Riemann hypothesis is false, then 
h(D) -» oo as D -» — oo. 

Again in 1934, Heilbronn [21] went a step further. 

THEOREM (HEILBRONN). The falsity of the generalized Riemann hypothesis 
implies h(D) -> oo as D -» — oo. 

When combined with Hecke's theorem, this gave an unconditional proof of 
Gauss' conjecture. 

THEOREM (HECKE-DEURING-HEILBRONN). h(D) -> oo as D -» -oo . 

Here was the first known instance of a proof which first assumed that the 
generalized Riemann hypothesis was true and then that it was false, giving the 
right answer in both cases! Unfortunately, the method of proof was not 
effective, since if the generalized Riemann hypothesis were false, all constants 
would depend on an unknown zero of L(s, x) located off the line Re(^) = 1/2. 
This presumably nonexistent zero is now known as Siegel's zero. 

Heilbronn and Linfoot [22] refined the proof to deal with Gauss' class 
number one problem. They showed 

THEOREM (HEILBRONN-LINFOOT). There are at most ten negative fundamental 
discriminants D < 0 for which h(D) = 1: namely, D = - 3 , - 4 , 
- 7 , - 8 , - 1 1 , - 1 9 , - 4 3 , - 6 7 , - 1 6 3 , ? 

The possible existence of a tenth imaginary quadratic unique factorization 
field reflected the ineffectivity in the Deuring-Heilbronn proof. If such a field 
existed, the generalized Riemann hypothesis could not be true! This led to 
intense, fervent, and sometimes heated research on this problem. 
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In 1935, Siegel [35] practically squeezed the last drop out of the classical 
Hecke-Deuring-Heilbronn phenomenon. 

THEOREM (SIEGEL). For every e > 0, there exists a constant c > 0 which 
cannot be effectively computed such that 

h(D)>c\D\l/2~\ 

Tatuzawa [41] went a step further and showed that SiegePs theorem is true 
with an effectively computable constant c > 0 for all D < 0, except for at 
most one exceptional discriminant D. 

Perhaps the simplest proof of Siegel's theorem is in Goldfeld's [15] half-page 
note. This method was further developed by Hoffstein [23] to yield a simple 
proof of Tatuzawa's theorem. 

Due to its ineffectivity, the whole Une of attack outlined in this section still 
did not solve Gauss' class number problem as stated in §1. Except for some 
simple cases, Gauss' tables of class numbers were not known to be complete. 
All that was known was that if Gauss was wrong then the generalized Riemann 
hypothesis had to be false. One can well imagine how this topic generated 
many a discussion in the coffee houses of Europe in the late 1940s and 1950s. 

At the time, a high school teacher named Kurt Heegner was going around 
telling people he had solved the Gauss class number one problem. His paper 
[20], Diophantische Analysis und Modulfunktionen, was published in 1952. It is 
fitting to quote from the referee's report for Mathematical Reviews. 

"The author proves in addition, by extending certain results of Weber on 
complex multiplication, that the only quadratic fields with negative discriminant 
and class number unity are the known classical cases." 

Heegner's paper contained some mistakes and was generally discounted at 
the time. He died before anyone really understood what he had done. 

4. The Birch-Swinnerton-Dyer Conjecture. Let 

(13) E: y2 = 4x3 - ax - b 

be an elliptic curve over Q with discriminant A = a3 — 21b2 =£ 0. If (x, y) e E, 
with x and y both rational numbers, we say (x, y) is a rational point on E. 
Let E(Q) denote the set of rational points on E, including the point at oo. 
Then E(Q) is a finitely generated abehan group [31]. The group law is given as 
follows. The 0 element is the point at infinity. If P = (x, y), then —P — 
(x, —y), and the sum of three collinear points is 0. 

If we graph E in the x-y plane, we have (Figure 2) Px + P2 = Q, where 
Q = ~Py 

Let g denote the number of independent generators of infinite order of 
E(Q). Then 

(14) E(Q) s Z g ® {torsionsubgroup}, 

where the torsion subgroup is also finitely generated and consists of points of 
finite order. A deep and beautiful theorem of Mazur [29] asserts that a torsion 
point can have order at most twelve. 
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FIGURE 2 

The decomposition (14) was essentially conjectured by Poincaré, first proved 
by Mordell [31], and generalized by Weil [42]. It was known to Diophantus 
that the line connecting two rational points on E must intersect at a third 
rational point. Then Poincaré's conjecture is equivalent to the fact that all the 
rational points on E can be obtained from a finite number of generators by 
drawing all possible chords and tangents between these points, generating new 
points, again drawing all possible chords and tangents, and continuing on ad 
infinitum. 

Associated to the curve E given by (13) there is an integer N called the 
conductor of E. Here N is divisible only by primes dividing the discriminant A 
and the power of the prime that occurs depends only on the reduction of E by 
that prime. 

We can now define the Hasse-Weil L-function associated with E. 

as) LE(S) *= n (i - t,P-')-x n (i - tpP-°+pi-2*y\ 
p\N p\N 

where 

tp \ ± l o r O , p\N, 

and 

Np = Card{(x, v) (mod/?): y2 = 4x3 - ax - b (mod/?)}. 



32 DORIAN GOLDFELD 

By the Riemann hypothesis for curves over finite fields (Hasse [19] 1933, 
Weil [43]), 

l ' , l<2 l /P-

It follows that the Euler product given by (15) converges absolutely for 
Rc(s) > 3/2. 

Now, Tanayama and Weil [44] have conjectured that LE(s) has a holomor-
phic continuation to the entire complex s-plane and satisfies the functional 
equation 

(16) i[^T(s)LE(s)=±(^)2~ST(2-s)LE(2-s). 

Moreover, the inverse Mellin transform of LE(s) should correspond to a 
holomorphic cusp form of weight two for the congruence subgroup of the 
modular group of level N. If this is the case, then E is called a modular curve 
and (16) is true. 

We can now state 

CONJECTURE (BIRCH-SWINNERTON-DYER [5]). If rank(£(g)) = g, then 

LE(s)~cE(s-l)g, 

where the constant cE can also be explicitly conjectured in terms of the order of 
the Tate-Safarevic group and the determinant of the height pairing of the g 
generators ofE(Q). 

5. The solution of Gauss9 class number problem. In this final part of our saga, 
I should like to describe, in chronological order, the series of papers that 
ultimately solved the class number problems. 

1966 Baker [1] \ There is no tenth imaginary quadratic field 
1967 Stark [37] ƒ with class number one. 

REMARKS. Baker used an idea of Gelfond and Linnik [13], who showed that 
the class number one problem could be solved if one had linear independence 
of three logarithms. He reduced the problem to a finite amount of computa­
tion. Stark's proof was totally different from Baker's but very similar to 
Heegner's. He actually proved that a tenth field did not exist. 

1968 Deuring [9] : Fills in gap in Heegner 9s proof. 

1968 Siegel [36] : Gives another proof of class number one. 
1969 Stark [39] : On the "gap " in a theorem of Heegner. 

1969 Stark [38] : He shows that Gauss ' class number one conjecture 
could have been solved in 1949 by Gelfond and Linnik 
by showing that linear independence in only two 
logarithms is needed. 
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1970 Chowla [6] : Wrote the paper, " The Heegner-Stark-Baker-Deuring-
Siegel theorem." 

1971 Baker [2] ) There are exactly eighteen imaginary quadratic fields 
1971 Stark [40] / with class number two. 

REMARKS. In these papers, Stark and Baker solve the class number two 
problem and show that the possible nineteenth field does not exist. They use 
the method of linear independence of logarithms. 

1975 Goldfeld [16]: If h(D) < e]f\D\/log|D\ with e > 0 suffi­
ciently small, then there exists a real number f$ < 1 such that, 
for x (mod-D) real, odd, primitive, L(fi, x) = 0, and fi is 
given asymptotically as D -» — oo by 

1 - p - —2L{\,x) I \. 
m i a 
71 b2-4ac = D 

orO^b^a — c 

REMARK. This violently contradicts the generalized Riemann hypothesis. The 
number fl is called the Siegel zero. 

1976 Goldfeld [16, 17]: Let E be an elliptic curve over Q with 
Hasse-Weil L-function LE(s). Let g = rank(£(Ô)), N = 
conductor(2T). Fix D < 0 a fundamental discriminant and 
Q(jD) an imaginary quadratic field. Let x (mod/)) be the 
real, odd, primitive Dirichlet character associated to Q(jD). 

THEOREM (GOLDFELD). Choose JU = 1,2 so that x(~N) = ( - l ) g ~ ' i . If 
LE(s) - cE(s - lythen, for (D, N) = 1, 

h ^ > --ï^Tj(log|/>|)^' i~1exp{-21^1oglog|i)|}, 

where c is an absolute constant independent of E. 

REMARKS. There is a similar theorem if (D, N) > 1. If the Birch-
Swinnerton-Dyer conjecture is true for a suitable fixed elliptic curve of rank 
g = 3, then this theorem effectively solves the general Gauss class number 
problem; i.e., the Gauss conjecture is reduced to showing that there exists an 
elliptic curve whose Hasse-Weil L-function has a triple zero at s = 1! 

1981 Birch-Stephens [4]: 
Birch [3], already in 1968, utilized the remarkable method of Heegner 

[20] for constructing canonical points of infinite order on certain classes of 
elliptic curves. 
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Let 

r ° ( i S 0 = { ( c J ) e S L ( 2 , Z ) : c ^ 0 ( m o d A 0 } , 

w = f(z) dz be invariant for T0(N), 

so that 

/ ( S T ! ) - ( - ' M o . v(: ^r«<">-
Forz G r 0 ( J V ) \ $ set 

/•OO 

TT(Z) = / w & E 

for a certain elliptic curve is which occurs as an abehan subvariety of the 
Jacobian variety of T0(N) \ $ . 

Now, fix d < 0 and choose (a, b, c) and z e $ satisfying Z>2 - 4ac = J, 
a s 0 (JV), 6 s r (2N), r2 = d (4JV), az2 + bz + c = 0. There will be h(d) 
such points z = z1? z 2 , . . . , zA. The Heegner point Pd is defined as the trace 

P < / = ^ ( Z 1 ) + . . . + 7 T ( Z J G £ ( Ô ( V ^ " ) ) . 

We quote from Birch and Stephens' paper [4], where they conjecture: 
If £ is an elliptic curve over Q which is parametrised by modular 
functions, and K is a complex quadratic field such that the 
Mordell-Weil group E(K) of ^-rational points of E has odd rank, 
then the "canonical" X-rational point of E which is given by 
Heegner's construction has Tate height measured by LE/K(1). 

Unhappily, it is a consequence of this conjecture that the Heegner 
point turns out to be trivial whenever the rank is more than one. 

1983 Gross-Zagier [18]: 
Let E: my2 = x3 + ax2 + bx + c be an elliptic curve over Q with conduc­

tor N and odd rank g. For d < 0, d = D (mod4iV), let 

Ew: mdy2 = x3 + ax2 + be + c. 

THEOREM (GROSS-ZAGIER). If LE(s) has an odd order zero at s = 1, then 
there exists a Heegner point Pd^ E(Q) such that 

L'E(I)LEW(I) = (^W/T/WXP^PJ), 

where w is a certain period of E and ( , ) is the height pairing. 

REMARKS. This theorem solves the conjectures of Birch-Stephens [4]. For the 
special example 

E0: -139y2 = x3 + 4x2 - 48* + 80 

with N = 37 • (139)2, g = 3, it can be shown that the Heegner point P_139 is 
trivial. The Gross-Zagier theorem then gives 

COROLLARY (GROSS-ZAGIER). LEO(S) has a triple zero ats = \. 
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Combined with Goldfeld's theorem [16], this yields 

THEOREM (GOLDFELD-GROSS-ZAGIER). For every e > 0 there exists an effec­
tively computable constant c > 0 such that h(D) > cOoglDI)1"8. 

REMARK. This theorem solves (up to a finite amount of computation) the 
general Gauss class number problem. 

1984 Oesterlé[33]: 

*u» > ^5(iog|0|)n(i-|^). 
p*D 

REMARKS. Oesterlé obtained this result by computing the constant in Gold-
feld's theorem [16] for the special curve E0 mentioned above. His method of 
proof is also simpler than [16] at various points. Using instead the elliptic curve 
of conductor 5077 found by Brumer and Kramer, Oesterlé computed 1/55 
instead of 1/7000. It was only very recently shown by Mestre, Oesterlé and 
Serre that this curve is modular. Combined with the bounds of Montgomery-
Weinberger [32] (that h(D) # 3 for 907 < -D < 102500), this gives the com­
plete list of all imaginary quadratic fields with class number three. The 
complete list of all imaginary quadratic fields with class number 1, 2, or 4 
would determine the complete finite Hst of all integers n which have a unique 
representation as a sum of three squares: 

n = x2 + y2 + z2 (x>y>z>0). 

We conclude with a few remarks to elucidate some of the deep inherent 
difficulties underlying Gauss' class number conjectures. For fixed integers a, 
b, c with b2 — 4ac = D < 0 and \D\ sufficiently large, the zeta function 

OO OO -i 

Ë Ë 7 
m--oo „--oo (am2 + bmn + cn2)s 

(m,w)*(0,0) 

has a functional equation similar to the zeta function of Q(^D) but, neverthe­
less, has a real zero near one. It does not have an Euler product, however. 
Associated to an Eisenstein series for a suitable noncongruence subgroup of 
SL(2, Z), there will be a zeta function (associated to the constant term in the 
Fourier expansion) which has a functional equation similar to the Riemann 
zeta function but has a real zero near one. Finally, there exist Selberg zeta 
functions of order two associated to discrete subgroups of SL(2,R) which 
satisfy the Riemann hypothesis and have functional equations, Euler products, 
and real zeros near one. 
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