
BOOK REVIEWS 289 

reviewer and S. Saeki [1983]. Both of these latter papers were apparently of too 
recent origin to be included in this book. Actually, this book had apparently 
been in gestation for some time and was adumbrated by the paper of L. A. 
Rubel and B. A. Taylor [1969], which the reader can profitably consult for a 
short excursion into some of the ideas discussed here, as well as some 
variations on the proofs in the book. 

In conclusion, I feel the authors completely achieved their goal and have 
presented their case in a very lively, concise manner. The density of errors is 
very low (but regrettably there is no index). The chapters are short, and each is 
followed by a number of relevant, accessible exercises. The book is rewarding 
reading for cognoscenti and students alike. 
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The earliest results of the spectral reduction theory for bounded and 
unbounded selfadjoint operators can be found in works by D. Hubert, F. Riesz 
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and J. von Neumann. The spectral theorem for bounded selfadjoint operators 
is essentially due to Hubert, although he stated his results in terms of quadratic 
forms. The terminology which is in use today is closer to that of F. Riesz. 
Influenced by the development of quantum mechanics, von Neumann initiated 
the systematic study of unbounded selfadjoint operators. The interested reader 
can find other facts from this exciting history in the pertinent sections of the 
second volume of the treatise [3]. 

The spectral reduction theory for selfadjoint and normal operators has 
numerous applications in diverse fields of mathematics, such as topological 
groups, harmonic analysis, selfadjoint boundary value problems, almost peri­
odic functions, etc. However, in some important problems there occur nonnor-
mal operators for which, of course, the above-mentioned spectral reduction 
theory does not suffice. A precise formulation and a solution of the spectral 
reduction problem for bounded linear operators in Banach spaces are due to 
N. Dunford. Unlike the normal operators in Hubert spaces, for which the 
existence of a resolution of the identity is a consequence of the normality, the 
so-called spectral operators, introduced by N. Dunford, are a priori associated 
with resolutions of the identity. A resolution of the identity is a homomor­
phism from the Boolean algebra of Borel sets in the complex plane into a 
Boolean algebra of projections on the given Banach space, which is countably 
additive in the strong operator topology. In addition, there exists an operator 
which commutes with the values of this homomorphism and satisfies some 
natural spectral inclusions. Such an operator is said to be spectral, and it 
determines uniquely a resolution of the identity. Details about spectral opera­
tors can be found in the third volume of [3], 

There are many interesting operators, both bounded and unbounded, that 
have a resolution of the identity. And yet, by requiring the existence of an 
associated resolution of the identity, many elementary and often remarkable 
operators are ruled out. For instance, as U. Fixman has shown (see [2, p. 223]), 
even the usual shift operator on lp(~oo9 + oo) fails to have a countably additive 
resolution of the identity unless p = 2. Another simple example of an operator 
that is not spectral is the multiplication operator with the independent variable 
on C[a, /?]. A more elaborate example of a differential operator that has no 
resolution of the identity is presented in [5]. But, as frequently happens in 
mathematics, more comprehensive concepts have been sought and eventually 
found. This time the main idea was to derive the spectral properties of an 
operator as consequences of an associated operational calculus rather than 
building the operational calculus from other spectral properties. The holomor-
phic functional calculus for arbitrary operators and the operational calculus 
with continuous (or bounded Borel) functions for a selfadjoint operator in a 
Hubert space have been known for a long time. Therefore, it seemed natural to 
replace the algebra of bounded Borel functions by a smaller one, as done by 
some authors. However, it was C. Foia§ who systematically used the opera­
tional calculus as a tool in the study of spectral properties of operators [4] (see 
also [3, Part III] for other references). Later, I. Colojoarâ and C. Foia§ 
introduced a more general concept of an operational calculus by means of the 
so-called admissible algebras of functions [1]. 
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From his earliest works, the author of the book under review has used the 
concept of an operational calculus as an approach to the spectral properties of 
operators. His results, published in various journals since 1964, are now 
brought together and presented in a unified and simplified manner. Although 
he works with operational calculi, his methods and objectives are essentially 
different from those in [1]. Let us briefly describe some topics dealt with in the 
present book. 

Let K be a compact subset of the real Une R. Let ^ R (K) be the algebra of 
complex functions that are real analytic in a neighbourhood of K. A topologi­
cal algebra J&(K) of complex functions defined in a neighbourhood of K, with 
pointwise operations, such that J ^ ( K ) D ^ R ( K ) topologically, is called a basic 
algebra. If j ^ i s a unital complex Banach algebra, an j^(K)-operational calculus 
for an element a e j^is a continuous representation T: J / ( K ) -> j/carried by K 
such that r(t) = <z, where / -> fis the identity in K. In this case the element a is 
said to be of class s/(K). Under a certain homogeneity condition on a 
normable basic algebra J / ( K ) , the author proves that there exists an integer 
n > 2 such that the element a as above is of class Cn(K). This is what the 
author calls the "first reduction", showing that the abstract setting can be 
brought to a more concrete one. 

Let Tn be equal to M + nJ on the space C[a, ft] (a < 0 < /*), where M is 
the multiplication operator with the independent variable and J is the Volterra 
operator. This is an operator of class Cn[a, /?], but not of class Cn~l[a, ft]. 
The " second reduction" theorem asserts that an element a e j / i s of class 
Cn[a, ft] if and only if there exists a continuous linear map U: C[a, /?] -> s/ 
normalized by the condition U(l) = an/n\, such that LJJ = UTn, where 
La(b) = ab for all Ô G J / . Moreover, U is uniquely determined and related to 
the C [ a , /^-operational calculus in a way similar to the Taylor formula. In 
other words, Tn can be regarded as a universal model for elements of class Cn, 
providing a "weak representation" for them. This weak representation is the 
motivation of the author's effort to penetrate the intimate structure that turns 
Tn into an operator of class Cn. On this line, the author proves the following 
general result. Let S, V be two operators on a Banach space, satisfying what is 
designated as the "Standing Hypothesis" (in particular, S, V satisfy the 
Volterra relation [S, V] = V2). Set 7} = S + f F, where f is a complex num­
ber. If S has real spectrum and is of class Cm, then o(T^) = o(S) for all f, and 
7} is of class Cm+k in the strip |Re£| < k. For m = 0 the condition |Ref| < k 
is necessary and sufficient. Such classification results are then refined to the 
case S + / ( F ) , where ƒ belongs to a certain class of analytic functions. 

Another type of problem is to determine the values of f such that Ts = S -f 
f V is spectral. For instance, if S, V satisfy the Standing Hypothesis and S is a 
spectral operator of scalar type (i.e., S is the integral of the identical function 
with respect to its resolution of the identity) with real spectrum, then 7} is 
spectral if and only if Re f = 0. This result (combined with one mentioned 
above) illustrates the scarcity of the family of spectral operators in the family 
of operators of class Cn (n > 0). (It will be further shown that, conversely, the 
"singular" C"-operators are spectral.) The author then extends some of the 
above results to the case when S is an unbounded operator. Assuming that iS 
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generates a strongly continuous group of operators, he can use methods from 
the theory of semigroups, instead of those of Banach algebras no longer 
available. Versions of the operational calculus and spectral decompositions, 
localized to some linear manifolds, for operators with real spectrum conclude 
this exposition. 

The material is well written, the style is alert and attractive, despite the 
unavoidable technical portions. Many proofs are nice pieces of fine analysis. 
The author presents an original, interesting and consistent point of view 
concerning the spectral theory of linear operators, especially of those having 
real spectrum. The reviewer has several reasons to believe that the spectral 
theory of linear operators has much to gain from the systematic study of 
operators with " thin" spectrum, in particular of those with real spectrum. The 
present work is a remarkable illustration of this assertion. 
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About three hundred years ago Isaac Newton taught us that the motion of a 
physical system is governed by an initial value problem or Cauchy problem for 
a differential equation, and the notion of Cauchy problem has been developing 
ever since. Here the phrase differential equation should be interpreted broadly 
so as to include systems of partial differential equations, integrodifferential 
equations, delay differential equations, and other kinds of equations. Most, but 
not all, of the Cauchy problems that arise "naturally" are well-posed problems 
—that is, problems for which a solution exists, is unique, and depends 
continuously on the ingredients of the problem. These requirements often 
necessitate imposing auxiliary conditions, such as boundary conditions, on a 
given Cauchy problem. 

Of special interest are linear equations. There are two reasons for this. 
Firstly, many equations, such as the Schrödinger equation of nonrelativistic 


