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Among all mathematical disciplines the theory of 
differential equations is the most important. 

S. Lie (1895) 

[The work of] Smale... shows that the problem 
of the complete topological classification of 

differential equations with high dimensional 
phase space is hopeless... 

V. Arnold (p. 87) 

One picture is worth a thousand symbols. 
Old proverb 

Poincaré drew an analogy between algebraic and differential equations. In 
solving an algebraic equation one first does a qualitative investigation, de­
termining the number of real roots by Sturm's theorem; then one carries out 
the quantitative step of numerically evaluating the roots. Similarly with the 
study of algebraic curves: only after the qualitative step of determining which 
branches are closed or infinite does one numerically find a certain number of 
points on the curve. It is the same with differential equations; before numeri­
cally evaluating the solution, first one should perform a qualitative investi­
gation into the general form of the solution. Is it bounded or unbounded? Does 
it oscillate, or converge, or neither? Is it stable or unstable? This last question 
involves looking at not just a single solution, but all the solutions. In connec­
tion with this, Hadamard suggests another parallel with algebraic equations: 
great progress was made only after Galois and others began to look at the 
relations between all the roots of a polynomial. 

The essence of Poincaré's "qualitative" investigations, according to Hada­
mard, is to regard the values of the unknown function not as a function of the 
independent variable (usually interpreted as time), but rather as a function of 
the initial data. The more recent notion of "dynamical system" is an abstract 
formulation of this point of view. 
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The initial data (of an autonomous ordinary differential equation) he in the 
space of all possible initial data, called the phase or state space, usually a 
differentiable manifold. The solutions to the equation form a system of smooth 
parametrized curves, one through each point of the phase space. For each real 
number / we obtain, by following these curves, a map from the phase space 
into itself. Thus we are in the geometric realm of spaces and maps, or topology. 
Qualitative methods are inherently geometric in character. 

Arnold's book is an introductory survey, by one of the masters of the 
subject, to some of the most important recent work in geometrically oriented 
dynamical systems theory. 

What are "geometrical methods"? To attain some perspective on this 
question let us go back to the founder of Arnold's subject. In a provocative 
essay in La valeur de la science, Poincaré averred that "one is born a 
mathematician, one doesn't become one, and it seems also that one is born 
either a geometer or an analyst." Neither subject matter nor education is the 
determining factor, but "l'esprit". Analysts, concerned with logic and rigor, 
proceed carefully step by step; geometers, guided by intuition, make rapid but 
precarious progress. Hermite, Weierstrass, Kowalewski and Euclid were 
analysts; Bertrand, Riemann, Klein and Lie were geometers. Both are neces­
sary, but analysts are less common. The analyst seeks his vision from within, 
the geometer sees pictures in space. 

This suggests that a geometrical method is a way of thinking about mathe­
matics in which visual intuition and analogy play a predominant part. Its chief 
role is to supply images which instantly recall the defining relations between 
the main concepts, and which portray new relations—thus we can literally see a 
theorem. 

Consider for example "a tangent vector to the unit sphere in «-space". Do 
you see a ball with a little arrow lying on it? Then (for the moment) you are a 
geometer. You are an analyst if you prefer instead to think about "a one-jet of 
a differentiable function from the real numbers into the set {x e Rn: \x\ — 1)". 
Now think about a vector field on the 2-sphere: the geometer sees the ball 
covered with arrows, their directions varying continuously. Actually the geome­
ter has trouble with this picture—one can't quite imagine the whole ball 
covered with arrows. There must be a spot where... Aha! Theorem. Every 
vector field on the 2-sphere has a singularity. (If you are a very good geometer—if 
you are Poincaré—you will see similar pictures for other surfaces, and if you 
are also an analyst you may assign numbers to the singularities and relate the 
sum to the genus of the surface.) 

The importance of geometrical thinking—and the existence of other kinds of 
thinking—was brought home to me as a graduate student. I complained to a 
fellow student in a course on algebra that I disliked the subject because there 
were no pictures I could associate with the mathematics. "But that's just what I 
like about this class," I was told. "I can never understand those darn pictures 
the topologists are always drawing." It was astonishing to learn that there were 
other ways of thinking about mathematics. Upon being asked what went 
through his mind when he studied algebra, my friend said something like, "Oh, 
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we want to push this term to the other side of that one, but then we need to 
add a correction term over here " 

My colleague Murray Protter once said that a topologist accepts a proof if 
and only if when reading it, he sees the same picture that the author saw when 
writing it. I think this also applies to geometric methods in other fields. 

A geometrical method is one that uses the language and methods of 
geometry, including that of topology: manifold, fibre bundle, transversality, 
etc. Topology is the study of maps between spaces. When the two spaces are 
the same there is the possibility of iteration of the map. Analysis is largely 
about iteration of a process with emphasis on the limit of the process—and 
limits are also in the domain of topology. A geometric method in analysis 
creates new spaces in which the process can be interpreted—seen!—as maps. 

Consider the following example, whose elaboration is at the heart of much 
of Arnold's book. A vector field on a manifold M is, in geometrical language, a 
cross-section of the tangent vector bundle TM. (It is hard to remember that 
there is also an older, less geometrical definition: a contravariant tensor of 
order one.) A singularity of the field means a point where the value of the 
cross-section is zero (or all the components of the tensor vanish). The singu­
larity is simple if it occurs at a place where the cross section is transverse to the 
set of zero vectors (or in local coordinates, where the Jacobian determinant is 
nonzero). It is a basic theorem that every vector field can be approximated, in 
any reasonable sense, by one having only simple singularities. This result 
becomes totally obvious if one sees the standard picture of the cross section: 
TM is the plane, the zero set is the horizontal axis, the cross section is a curve 
which is the graph of a function, a singularity is a point where the curve meets 
the horizontal axis. To make all singularities simple, raise the graph slightly so 
that wherever it meets the horizontal axis it crosses it at a nonzero angle. 

This of course is not a proof, but it is a powerfully convincing argument. 
The proof requires a form of the Brown-Dubovicki-Morse-Sard theorem. But 
for one who knows that theorem it is easy to produce a proof—// one sees 
vector fields as cross-sections. 

Topological language is indispensable for global problems in analysis (and 
in fact topology came directly from such problems). But it is also very useful in 
local questions. 

Arnold's book is mainly about local questions, although some topics deal 
with differential equations on n-dimensional tori and other manifolds. But 
global considerations enter in another way. Just about everything in the book 
has to do, directly or indirectly, not with individual equations but with large 
families of equations. Thus one of the important spaces is the function space S 
of all appropriate vector fields (or diffeomorphisms) on a manifold, under a 
suitable topology. Certain of these vector fields are considered degenerate in 
some way—for example those that have a nonsimple singular point. These 
form a subset V c S. The intrinsic geometry of V and its extrinsic geometry in 
S are the key to many investigations. Suppose for instance that V consists of 
all vectors fields having a nonsimple zero. The statement that V is nowhere 
dense in S is just a rephrasing of the approximation theorem stated above. 
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Suppose we are interested not in single vector fields, but in A:-parameter 
families of fields. It is natural to represent such a family by a continuous map 
F: Rk -* S. Can we approximate the whole map F so that its image avoids the 
set V of degenerate fields? Not if k > 0, because it can be shown that V has 
codimension one in S. For various values of k, what can we say about the 
fields represented by points in F~\V) for a "generic" map Fl For which 
values of k can we perturb F so that none of the degenerate fields have zeros 
making second-order contact with the zero set? These questions can be 
attacked by forming further subspaces of V which represent various other 
kinds of degeneracies, and studying their geometry together with the geometry 
of their inverse images under F. 

All this is explained clearly in the introduction to Chapter 6, followed by the 
development of the necessary technical tools—jet spaces, transversality, strati­
fied varieties, Newton polygons, etc. These are then applied to several topics: 
matrix families, bifurcations of singular points of vector fields, loss of stabihty 
of equilibria and self-sustained oscillations, and others. One of the most 
interesting discussions concerns the "construction of an elliptic curve [over the 

complex numbers] from a resonant invariant manifold". The complex geome­
try of these curves and their holomorphic normal bundles yields invariants 
which are applied to the problem of linearizing a local diffeomorphism of C2 

by an analytic change of variables—a powerful use of geometry, and a 
surprising one (to me) since the linearization problem is purely local, yet an 
elliptic curve is a global object. 

I have discussed this last chapter first because it gives a clear instance of 
what the author means by geometrical methods, and because I think it is the 
high point of the book. Not only are the explanations very clear, even though 
(or perhaps because) many things are only sketched, but much of this im­
portant material is available only in the Russian literature. 

The contents and point of view of the book are well described by the author 
in his preface, from which I quote: 

In the selection of material for this book the author intended to expound 
basic methods applicable to the study of differential equations. Special efforts 
were made to keep the basic ideas (which are, as a rule, simple and intuitive) 
free from technical details. The most fundamental and simple questions are 
considered in the greatest detail, whereas the exposition of the more special 
and difficult parts has been given the character of a survey. 

The book begins with the study of some special differential equations 
integrable by quadrature 

The theory of partial differential equations of the first order is considered 
by means of the natural contact structure in the manifold of 1-jets of 
functions. The necessary elements of the geometry of contact structures are 
developed 

A significant portion of the book is concerned with methods which are 
usually called qualitative.... The book discusses the analysis of differential 
equations from the point of view of structural stability, that is, the stability of 
the qualitative picture with respect to a small change in the differential 
equation 
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The most powerful and frequently applicable methods of study of differen­
tial equations are the various asymptotic methods. We develop the basic ideas 
of the averaging method going back to the work of the founders of celestial 
mechanics and widely usable in all those areas of applications, where a slow 
evolution has to be separated from fast oscillations 

.. . In this book we describe the main results of the method of Poincaré 
normal forms, including a proof of Siegel's fundamental theorem on the 
linearization of a holomorphic mappping.... 

This book concludes with a chapter on bifurcation theory, in which the 
methods developed in the preceding chapters are applied, and the main 
results obtained in this field, beginning with the fundamental work of 
Poincaré and Andronov, are described. 

In discussing all these subjects, the author attempts to avoid the 
axiomatic-deductive style, with its unmotivated definitions concealing the 
fundamental ideas and methods; similar to parables, they are explained only 
to the disciples in private. 

. . . The author attempts to write in such a way that this book can be read 
not only by-mathematicians, but also all users of the theory of differential 
equations. 

We only assume a little general mathematical knowledge on the part of the 
reader... for example familiarity with the textbook V. I. Arnold, Ordinary? 
Differential Equations... is sufficient (but not necessary). 

In this as in his other writings, Arnold exhibits a thorough mastery of the 
material and great gifts for exposition. These have combined with his strongly 
expressed opinions to make a most informative, useful and stimulating book, 
from which I learned a lot. It is not, however, without flaws. 

The most exasperating fault, inexcusable in the computer age, is that there is 
no indexl Nor is there a bibliography—references are scattered throughout the 
book. This is made worse by the author's policy to "avoid references from one 
chapter to another, and even from one paragraph to another." 

There are few misprints, but the translation has occasional awkwardnesses, 
e.g. "continuous fractions", "Tarsky", and a reference on p. 330 to a book on 
matrices, apparently published solely in Moscow, by one "F. R. Gantmaher". 

There is a substantive weakness as well. The author's laudable intention of 
emphasizing ideas rather than technicalities requires that many proofs and 
even definitions be merely sketched. In many places this is done with great 
skill; but in others it results in such vagueness that the nonexpert reader will 
probably not understand, and may even be misled. I found several examples in 
the last three sections of Chapter 3, devoted to hyperbolic theory (the topic in 
this book that I know best). 

These difficulties are curiously related: they all have to do with the stable 
and unstable manifolds of hyperbolic fixed points and of Anosov diffeomor-
phisms—the very heart of hyperboUc theory. For example, the invariant 
manifolds associated to a hyperboUc fixed point are never defined—they are 
only referred to, in small type on p. 128, as a "special case" of the construction 
of the expanding and contracting invariant foUations of Anosov diffeomor-
phisms. The definition of "foUation" is given, in a footnote on p. 127, only for 
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smooth foliations; but those associated to an Anosov diffeomorphism are not 
necessarily smooth. Just after this footnote it is pointed out that the fields of 
tangent planes to the foliations are not smooth. 

Another difficulty is in the application of the Hartman-Grobman theorem 
theorem (p. 141) to prove that unstable manifolds of a fixed point vary C1 

continuously with the diffeomorphism. Since the theorem yields only a topo­
logical conjugacy between a hyperbolic local diffeomorphism and its linear 
part, it is hard to see how it justifies C1 continuity. 

A further confusion about stable and unstable manifolds occurs on p. 175 in 
the section on averaging. An unexplained picture shows (presumably) two 
fixed points, with the stable manifold of one crossing several times the unstable 
manifold of the other. This configuration is what Poincaré and all later writers 
have called heteroclinic, the term homoclinic being reserved for the case where 
the fixed points coincide. Yet the reference to the diagram refers to a 
"homoclinic picture". This is followed by a footnote defining homoclinic 
point, adding to the confusion by requiring, against standard (and Poincare's) 
usage, that the stable and unstable manifolds be distinct. 

Great importance attaches to homoclinic points and their orbits. Poincaré 
discovered them and showed in certain cases (now known to be generic), that 
where there is one there are infinitely many having totally different dynamic 
behavior. This was the first inkling of the chaos lurking behind simple-looking 
differential equations. Homoclinic orbits were further studied by Birkhoff, who 
showed that (in some situations) they are limits of periodic orbits of un­
bounded periods. Smale showed they exist in structurally stable situations (his 
famous "horseshoe" system), and more recently they have been found in many 
natural dynamical systems. They are the best understood source of chaotic 
dynamics. While that is not one of the main topics of this book, it is alluded to. 
A more careful treatment would be desirable. 

There are other difficulties of a similar nature. It may be, however, that the 
nonexpert reader would not in fact be bothered by them! For I must admit 
that I found few in the sections on topics that I am less familiar with. 

In any case these flaws are minor compared to the great virtues of the book: 
It is a very illuminating and highly readable exposition of interesting topics, 
which are of great relevance both to theory and applications. It has an even 
rarer virtue: Arnold includes many discussions of the history and significance 
of the mathematics, including its relationship to physics and experimental 
observation and the relative usefulness of different approaches. His own point 
of view is clearly expressed. Some of his judgments are controversial, which 
will have the good result of stimulating discussion. These digressions provide a 
larger intellectual framework for the mathematics, adding coherence and 
meaning to the abstract theory. For the reader who does not know the 
historical and scientific background, this is very valuable: it provides motiva­
tion and a way of thinking about the mathematics. 

A most informative, stimulating, and refreshing book! 

MORRIS W. HIRSCH 


