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INVARIANT THEORY OF G2 

BY GERALD W. SCHWARZ1 

Introduction. Let V denote Cn, and let G C SL(V) be a classical subgroup. 
Then Classical Invariant Theory (CIT) describes the generators and relations 
of the algebra of invariant polynomial functions C[raV]G, where m G Z+ and 
mV denotes the direct sum of m copies of V. Using the symbolic method (see 
[7]), one can then obtain a handle on the invariants of arbitrary representations 
of G. These classical methods and results have been very useful in many areas 
of mathematics. 

Let G be a connected, simple, and simply connected complex algebraic 
group. Then G is classical except when G = Spinn, n > 7, or in case G is 
an exceptional group G2, F4, EQ, £7, or Eg. It would be useful to have an 
analogue of CIT for nonclassical G. We have succeeded in establishing an 
analogue for G2 (described below). We also have a conjectured analogue for 
Spin7, but a complete proof requires a computation we are as yet unable to 
perform. 

The Cayley algebra, G2, and the Main Theorem. Let Cay denote the 
usual (complex) Cayley algebra (see [3]). Then Cay is a nonassociative, 
noncommutative algebra of dimension 8 over C. Let Cay' denote the (7-
dimensional) span of all commutators of elements of Cay. Let tr : Cay -> C 
denote the linear map with kernel Cay' which sends 1 G Cay to 1 G C. Define 
x = — x H- 2 tr(x) • 1, x G Cay. Then x \-+ x is an involution such that xx = 
n(x) • 1 G C • 1 for all x G Cay. Moreover, 

(1) x(xy) = x2y; (yx)x = yx2, x, y G Cay. 

(2) x2 - 2 tr(x)x + n(x) -1 = 0, x G Cay. 

(3) x »-> n(x) is a nondegenerate quadratic form on Cay. 

The identities in (1), called the alternative laws, are a weak form of as­
sociativity. Equation (2) is called the standard quadratic identity. 

G2 is the group of algebra automorphisms of Cay. Thus G 2 acts trivially 
on C • 1 and faithfully (and orthogonally) on Cay'. From now on, let G denote 
G2 and let V denote Cay'. By (3), V is G-isomorphic to its dual V*. 

The following is our main result. 
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THEOREM 4. Let m G Z+, and let Xj denote a typical element in the jth 
copy ofV inmV, l<j<m. 

(4.1) C[m7]G is generated by elements t r ^ ^ x ^ - • -Xir)- • •), r < 4. 
(4.2) The relations of these generators are consequences of identities (1) and 

(2). Moreover, the relations are generated by ones of degrees 6,7, and 8 in the 

In (4.1) the elements of V = Cay' are multiplied in Cay; the traces of 
such products are clearly G-invariant. The relations of (4.2) are obtained by 
replacing x and y in (1) and (2) by products of elements of Cay', multiplying 
the resulting equations by other products, and then taking traces. 

Our results are analogous to those of Kostant-Procesi-Rasmyslev (see [2]) 
for the adjoint representation of SLn. In their case (1) is replaced by as­
sociativity, and (2) by the Cayley-Hamilton identity. 

As outlined below, we determined generators and relations for C[m7]G 

using techniques of invariant theory and commutative algebra. We then 
showed, a posteriori, that the generators and relations are as in (4.1) and 
(4.2). J. Ferrar has informed us that he also has a proof of (4.1). 

Generators. We sketch a proof of (4.1): Let X\,..., xm be as in the Theorem. 
Set 

(5.1) aij = —trfaiXj), 1 < i,j < TO, 

(5.2) Pijk = - tT{xi{xjXk)), 1 < i, j , k < TO, 
(5.3) iijM = skew tT(xi(xj(xkXi))), 1 < z, j , k,l<m, 

where in (5.3) we skew symmetrize in the indices. The invariant a^ is 
symmetric in its indices, while fajk and ^%jki are skew symmetric in theirs 
(hence are zero if the same index appears twice). 

Let u) denote a nonzero element of (/\ V)G corresponding to the /? type 
invariants. One can show that wedge multiplication by u) gives an isomorphism 
of f\ V with /\ V, and it follows that generators of C[mT^]G can be obtained 
by polarization from those in the case m — 4. A theorem of Weyl [7, p. 154] 
says that, when m = 4, it suffices to consider generators whose degree d in the 
fourth copy of V is at most 1. These generators correspond to invariants in 
C[3V] (if d = 0), and copies of V* = V in C[3V] (if d = 1). Using [4] and [5] 
one can show that C[3V]G is generated by a and /3 type invariants, and that 
the covariants in C[3V] corresponding to the representation V form a free 
C[3y]G-module with three generators in degree 1, three in degree 2, and one 
in degree 3. The degree 3 generator corresponds to an invariant of type 7; the 
other generators give nothing new. Thus C[m7]G is generated by invariants 
of types a, (3, and 7; establishing (4.1). 

Relations (Proof of (4.2)). Since V ~ V*, we can just as well consider 
computing the G-invariants of the symmetric algebra S*(mV). Note that 
GLm acts naturally on S*{mV)G - S*{V <g> Cm)G . 

Let <t>i denote the standard representation of GLm on f\lCm (so fa — 0 
if i > m). If ai,...,o/c G Z+, let 0 = 0J1 • "<t>%k denote the highest weight 
component of Sai(<j)\) ® • • • ® £°fc(</>*;). If a^ > 0, we say that <j> has height k. 



INVARIANT THEORY OF G2 337 

The generators of S*(V <g)Cm)G of (5.1), (5.2), and (5.3) transform by the 
representations (j>\, 03, and </>4, respectively. Thus there is a GLm-equivariant 
surjection ?r from R = S*(<^ + </>3 + <£4) to S = S*(V 0 Cm)G , and ƒ = Ker TT 
is GLm-invariant and homogeneous (grade R and S in the obvious way). 
Comparing R and S in degrees < 8, one finds the following elements of I (see 
explanation below). 

(6.1) 

(6.2) 

(6.3) 
(6.4) 

(6.5) 

(6.6) 

<Al<&> Q S24>3) 

0205 S 03 ® 04! 

0106 S 03 ® 04, 
08 £ S'204, 

0206 £ S'204; 
01 ç S204; 

0105 Ç0 i®04 , 

0205Ç<S20j. ®03, 

0206 C 520f <g> 04, 

02ÇS40Ï; 0!£0 2 ®S 2 0 3 . 
Each relation consists of a nontrivial "linear combination" of the given rep­
resentations in R whose image is zero in S. For example, in (6.1), a highest 
weight vector of the space of relations is a + r, where 

0" = /?123/3l45 — /?124/?135 + /?1250134 

is a highest weight vector of </>i</>5 Ç S203, and 

T = «H72345 ~ «1271345 + «1371245 - «1471235 + «1571234 

is a highest weight vector of </>î 5 Ç </>i ® </>4. 
It is not difficult to show that relations (6.1)-(6.6) generate I for any m 

if they generate in the case ra = 6 (this has a lot to do with the fact that 
dim V = 7!), so we may assume ra = 6. Using techniques of [5] one can show 
that S has a regular sequence / i , . . . , ƒ28 consisting of 18 forms of degree 2 
and 10 forms of degree 3. Since S is Cohen-Macaulay (even Gorenstein [1, 
p. 124]) of dimension 28, we find that S ~ C[/i, . . . , /2s] ® S° (as graded 
C[/i,...,/28]-n*odule), where S° = 5/( / i , . . . , /2s) is an artin algebra. Thus 
the Poincaré series P(t) of 5 equals (1 -^2)~1 8(1 - t3)-10P°(t), where P°(t) = 
l>2i=oaitl *s ^ e P°mcaré series for S°. Since S is Gorenstein, a* = aj_i, 0 < 
i < I, and using a result of Stanley [6] one can show that 1 = 24. Since S has 
generators of degree < 4, it follows that I is generated by elements of degree 
< I + 4 = 28. Thus we have to show that (6.1)-(6.6) generate J in degrees 
< 28. This computation was not easy to do, but was made manageable by 
the GL.6 symmetry and certain estimates arising out of (6.1)-(6.6). 

Details are to appear. 
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