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INVARIANT THEORY OF G,

BY GERALD W. SCHWARZ!

Introduction. Let V denote C™, and let G C SL(V') be a classical subgroup.
Then Classical Invariant Theory (CIT) describes the generators and relations
of the algebra of invariant polynomial functions C[mV|®, where m € Z+ and
mV denotes the direct sum of m copies of V. Using the symbolic method (see
[7]), one can then obtain a handle on the invariants of arbitrary representations
of G. These classical methods and results have been very useful in many areas
of mathematics.

Let G be a connected, simple, and simply connected complex algebraic
group. Then G is classical except when G = Spin,,, n > 7, or in case G is
an exceptional group G, F4, Eg, E7, or Eg. It would be useful to have an
analogue of CIT for nonclassical G. We have succeeded in establishing an
analogue for G (described below). We also have a conjectured analogue for

Spiny, but a complete proof requires a computation we are as yet unable to
perform.

The Cayley algebra, G2, and the Main Theorem. Let Cay denote the
usual (complex) Cayley algebra (see [3]). Then Cay is a nonassociative,
noncommutative algebra of dimension 8 over C. Let Cay’ denote the (7-
dimensional) span of all commutators of elements of Cay. Let tr: Cay — C
denote the linear map with kernel Cay’ which sends 1 € Cay to 1 € C. Define
Z=—z+2tr(z)-1, z € Cay. Then z — Z is an involution such that zZ =
n(z)-1€ C-1 for all z € Cay. Moreover,

©) o(zy) =2y, (yz)z=yz*®, =,y€Cay.
(2) x? —2tr(zx)z +n(z)-1=0, z&Cay.
(3) z +— n(z)is a nondegenerate quadratic form on Cay.

The identities in (1), called the alternative laws, are a weak form of as-
sociativity. Equation (2) is called the standard quadratic identity.

G, is the group of algebra automorphisms of Cay. Thus G, acts trivially
on C-1 and faithfully (and orthogonally) on Cay’. From now on, let G denote
G2 and let V denote Cay’. By (3), V' is G-isomorphic to its dual V*.

The following is our main result.
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THEOREM 4. Let m € Z%, and let z; denote a typical element in the jth
copy of V.inmV,1<j<m.

(4.1) C[mV]€ is generated by elements tr(z;, (zsy- - x4, ) ++), 7 < 4.

(4.2) The relations of these generators are consequences of identities (1) and
(2). Moreover, the relations are generated by ones of degrees 6,7, and 8 in the
Z;.

In (4.1) the elements of V = Cay’' are multiplied in Cay; the traces of
such products are clearly G-invariant. The relations of (4.2) are obtained by
replacing z and y in (1) and (2) by products of elements of Cay’, multiplying
the resulting equations by other products, and then taking traces.

Our results are analogous to those of Kostant-Procesi-Rasmyslev (see [2])
for the adjoint representation of SL,. In their case (1) is replaced by as-
sociativity, and (2) by the Cayley-Hamilton identity.

As outlined below, we determined generators and relations for C[mV]®
using techniques of invariant theory and commutative algebra. We then
showed, a posteriori, that the generators and relations are as in (4.1) and
(4.2). J. Ferrar has informed us that he also has a proof of (4.1).

Generators. We sketch a proof of (4.1): Let 4, ..., Zy, be as in the Theorem.
Set

(51) Q5 = —tl‘(:liimj), 1<5,5<m,
(52) :Bijk = —tr(x,;(zjil?k)), 1<4, 5, k<m,
(5.3) Vijki = skew tr(z;(z;(zk21))), 1<14, 7, k,l<m,

where in (5.3) we skew symmetrize in the indices. The invariant oy; is
symmetric in its indices, while §;;x and ~;jx are skew symmetric in theirs
(hence are zero if the same index appears twice).

Let w denote a nonzero element of (/\3 V)@ corresponding to the 3 type
invariants. One can show that wedge multiplication by w gives an isomorphism
of A2V with A®V, and it follows that generators of C[mV]C can be obtained
by polarization from those in the case m = 4. A theorem of Weyl (7, p. 154]
says that, when m = 4, it suffices to consider generators whose degree d in the
fourth copy of V is at most 1. These generators correspond to invariants in
C[3V] (if d = 0), and copies of V* =V in C[3V] (if d =1). Using [4] and [5]
one can show that C[3V]€ is generated by a and 3 type invariants, and that
the covariants in C[3V] corresponding to the representation V form a free
C[3V]%-module with three generators in degree 1, three in degree 2, and one
in degree 3. The degree 3 generator corresponds to an invariant of type ~; the
other generators give nothing new. Thus C[mV]€ is generated by invariants
of types a, §, and +; establishing (4.1).

Relations (Proof of (4.2)). Since V ~ V*, we can just as well consider
computing the G-invariants of the symmetric algebra S*(mV’). Note that
GL,, acts naturally on S*(mV)® ~ S*(V @ C™)C. .

Let ¢; denote the standard representation of GL,, on A*C™ (so ¢; = 0
if + >m). If ay,...,ax € ZF, let ¢ = ¢$*---@%* denote the highest weight
component of $%(¢;)®--- ® S%(¢). If ax > 0, we say that ¢ has height k.
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The generators of S*(V ® C™)€ of (5.1), (5.2), and (5.3) transform by the
representations @2, ¢3, and ¢4, respectively. Thus there is a GL,,-equivariant
surjection 7 from R = S*(¢2 + ¢3 + ¢4) to S = S*(V®C™)®, and I =Ker
is GL,-invariant and homogeneous (grade R and S in the obvious way).

Comparing R and S in degrees < 8, one finds the following elements of I (see
explanation below).

(6.1) 165 C S%¢s; ¢105 C ¢3 ® ¢,

(6.2) G205 CP3 @ ba; P25 C S%I @ ¢,

(6.3) $106 C 63 ® ¢4,

(6.4) ¢s C S?%¢s4,

(6.5) P26 C S%¢s; P26 C S%pF ® ¢,

(6.6) ¢3 C S2¢4; ¢3C S¢% ¢ C ¢1®S%¢s.

Each relation consists of a nontrivial “linear combination” of the given rep-
resentations in R whose image is zero in S. For example, in (6.1), a highest
weight vector of the space of relations is o + 7, where

0 = B123P145 — B1246135 + B1250134
is a highest weight vector of ¢1¢5 C S2¢s, and

T = (1172345 — 12771345 + 1371245 — ®1471235 + 1571234

is a highest weight vector of ¢1¢5 C ¢? ® 4.

It is not difficult to show that relations (6.1)—(6.6) generate I for any m
if they generate in the case m = 6 (this has a lot to do with the fact that
dim V = T!), so we may assume m = 6. Using techniques of [5] one can show
that S has a regular sequence fi,..., fog consisting of 18 forms of degree 2
and 10 forms of degree 3. Since S is Cohen-Macaulay (even Gorenstein [1,
p. 124]) of dimension 28, we find that S ~ C|[fy,..., f2s] ® S° (as graded
Clf1,--., f28]-module), where S® = S/(fi,..., fag) is an artin algebra. Thus
the Poincaré series P(t) of S equals (1 —¢2)718(1—¢3)~10P0(t), where PO(t) =

i:o a;t* is the Poincaré series for SO. Since S is Gorenstein, a; = a;—;, 0 <
t <, and using a result of Stanley [6] one can show that ! = 24. Since S has
generators of degree < 4, it follows that I is generated by elements of degree
< 1+4 = 28. Thus we have to show that (6.1)(6.6) generate I in degrees
< 28. This computation was not easy to do, but was made manageable by
the GL¢ symmetry and certain estimates arising out of (6.1)—(6.6).

Details are to appear.
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