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This book is an attempt by an applied mathematician to come to terms with 
Sophus Lie's legacy: The use of group theory and differential geometry to 
study differential equations. Lie's work was almost forgotten after 1914: It has 
only begun to be revived in recent years, and there is much in the turn-of-the 
century literature which has still to be incorporated into contemporary 
mathematics. It is also remarkable that this renaissance in the topic which 
constitutes the very historical foundation of Lie group theory has come about 
largely because a few applied mathematicians, physicists, chemists and en­
gineers have realized that there is a common group-theoretic and geometric 
structure to what they do, and that Lie and some of his immediate successors 
(above all, E. Vessiot and E. Cartan) developed, in terms of the mathematics of 
their day, a program which has major implications for their own science. 
Before I comment on the book itself, I want to present some remarks about the 
mathematical context of Lie's work on differential equations and group theory. 

His starting point was Galois' work on the relation between group theory 
and the solution of polynomial equations in one variable. Indeed, Lie saw 
himself, in a romantic 19th century style, as the successor to Abel and Galois 
who would extend their ideas to differential equations. Let us then begin with 
Galois theory. Consider a polynomial 

P(x) = anx
n + ••• +a0 

in one complex variable JC, whose coefficients lie in a subfield K of the complex 
numbers C. Let S(P) be the set of jcGC such that P(x) = 0. Let K(P) be the 
subfield of C generated by K and S(P), and let G(K, P) be the group of 
automorphisms of K(P) which leave each element of K fixed. Nowadays, 
"Galois theory" is considered to be the study of the relation between the 
properties of K(P) and G(K, P). The classical questions of "solvability by 
radicals" of the equation P(x) = 0 is related to the solvability, in the group-
theoretic sense, of G(K, P). However, there is another point of view which is 
fundamental for understanding Lie's approach. Consider G(K, P) as a trans­
formation group on K(P). It leaves S(P) invariant, hence, induces a trans­
formation group action on S(P). How does one characterize this transforma­
tion group intrinsically? It can be done in the following way: 

For each integer r > 0, let S(P)r and Cr be the Cartesian 
product of r copies of S(P) and C. G(K, P) extends as a 
transformation group on these Cartesian product spaces. There 
is a set / of polynomial maps Cr -> C (the integer r and the 
construction of I depending on K and P) such that G(K, P), 
as a transformation group on S(P), is identified with the set 
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of all invertible maps g: S(P) -> S(P) which leave invariant 
these polynomials. 

Lie's fundamental idea was to consider a differential equation DE replacing 
P; the set of all solutions S(DE) of the differential equation replacing S(P); 
transformation groups of mappings on S(DE) replacing G(K, P); I was 
replaced by what he called differential invariants attached to DE. However, it is 
not clear in my mind whether he meant these differential invariants to be 
canonically attached and/or calculated in terms of DE, or prescribed sep­
arately. Perhaps he meant different interpretations in different contexts! 

Some of this material can now be stated most clearly in the language of 
Ehresmann's jet calculus. (Lie himself used a concept, which in my commen­
tary [1] on his work I called "mapping element spaces", but which is geometri­
cally identical to that of the jet spaces.) Let X and Y be finite-dimensional, 
paracompact, C°° manifolds, and let Jm(X, Y) be the space of m-jets of 
mappings X -» Y. DE, if given in the classical style as an mth order differential 
equation to be solved for maps with domains in X and range in Y, can be 
considered as a submanifold of Jm(X, Y). A mapping a: U -» Y between an 
open subset U of X and 7 is a solution of DE if 

ƒ•(«)(!/) C DE. 

Thus, S(DE) can be considered as a collection of sufficiently smooth 
mappings between open subsets of X to Y. The jet prolongation process 
enables one to realize these maps also as maps from open subsets of X to 
Jn(X9Y)9n = 0,1,. ..,oo. 

The Galois group of the DE is now to be considered as a certain group of 
transformations acting on S(DE), and preserving certain "differential in­
variant" relations. The theory is simplest if one restricts attention to transfor­
mations on S(DE) arising from pseudogroups, in the sense of Ehresmann and 
Spencer [2], which act on the jet spaces. However, making all this precise and 
workable inevitably involves compHcated machinery and formalism, and has 
not yet been done in any setting which is sufficiently complete and accessible 
to encompass most of the possible applications. What one must do at the 
present time is to pick out a relatively small domain of application and develop 
Lie's ideas in a form especially tailored for the problem at hand. What would 
be very desirable, and useful for many purposes in both pure and applied 
mathematics, would be a codification of this material in terms of standard 
mathematics in a form general enough to be used in a wide variety of 
situations. 

Of course the work of Lie, Vessiot and Cartan took place before the 
development of abstract group theory. (From the modern point of view, their 
work is a theory of transformation groups, or their " sheaf-theoretic" version, 
the pseudogroups.) There have since then been many attempts at a codification 
in terms of such an abstract group theory. What has of course been very 
successful is the development of the theory of what are now called "Lie 
Groups", and their associated Lie Algebras and geometric actions as transfor­
mations on finite-dimensional manifolds. These are groups modelled on the 
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finite-dimensional differentiable manifolds; the success of this theory is basi­
cally due to the perfection of the necessary tools of analysis and algebra, 
especially the availablity with sufficiently useful hypotheses of the Implicit 
Function Theorem and the Existence-Uniqueness of Ordinary Differential 
Equations. Now these two theorems extend to Banach spaces if the hypotheses 
are chosen correctly: Thus there is a possibility (perhaps first recognized 
clearly by Garrett Birkhoff [3]) of developing a useful theory of groups 
modelled on Banach spaces. However, it is known that many groups which are 
very natural from the geometric/Lie/Cartan/Ehresmann/Spencer point of 
view cannot be given such a Banach structure. They can often be modelled on 
Fréchet spaces—the next step in the functional analysis hierarchy beyond 
Banach spaces—but the two basic existence theorems break down for such 
spaces. 

This book, a translation from Russian of one first published in 1978, has 
already been a seminal influence on the development and propagation of the 
Lie-theoretic tools in the applied mathematics community. It has three compo­
nents: 

(A) A development, with partial proofs, of a theory of abstract groups and 
transformation groups modelled on Banach spaces, following the lead of G. 
Birkhoff. 

(B) A restatement in reasonably accessible form of much material from the 
classical papers of Lie, Backhand, Tresse and Vessiot. 

(C) A program, partially carried out for certain differential equations of 
interest in physics and applied mathematics, of calculation of at least part of 
the differential equations of the Galois group mentioned above. 

However, the reader who has some familiarity with developments in contem­
porary geometry—and this knowledge is now becoming widespread among the 
more mathematically oriented researchers in the physical sciences—will be 
disappointed that the manifold-theoretic ideas are expressed and used in such 
a rudimentary form. A formalism which is a primitive version of Ehresmann's 
theory of jets and prolongations of mappings is developed and used. Differen­
tial geometers will notice that the powerful techniques of Cartan—the theory 
of Exterior Differential Systems, Infinite Lie Groups, and the Equivalence 
Problem, which Cartan developed in the period 1895-1915 precisely to carry 
out Lie's program—plays no role. The author acknowledges this gap in the 
Preface, and suggests that his book can serve as an introductory account which 
can stimulate further work. In this he has succeeded: The ball is now in the 
court of the community of differential geometers to finally codify our mag­
nificent heritage in the geometric-Lie theory of differential equations and its 
applied ramifications, which the author has brought to our attention in this 
useful book. 
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