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ARITHMETIC CHARACTERIZATIONS OF SIDON SETS 

GILLES PISIER 

ABSTRACT. Let G be any discrete Abelian group. We give several 
arithmetic characterizations of Sidon sets in G. In particular, we show 
that a set A is a Sidon set iff there is a number 6 > 0 such that any finite 
subset A of A contains a subset B Q A with |B| > 6\A\ which is quasi-
independent, i.e. such that the only relation of the form ]C\eB e x ^ = '̂ 
with e\ equal to + 1 or 0, is the trivial one. 

Let G be a compact Abelian group and let G be the dual group. For any 
ƒ in L2(G), we denote by ƒ the Fourier transform of ƒ. A subset A of G is 
called a Sidon set if there is a constant K with the following property: all the 
trigonometric polynomials ƒ, such that ƒ is supported by A, satisfy 

Ei/(7)i<^imic(G). 
We will denote by 5(A) the smallest constant K with this property. In the 

theory of Sidon sets (cf. e.g. [2]), there has always been considerable interest in 
the relations between this analytical definition and the arithmetic properties 
of the set A (in particular, in the case G = T and A c Z). The aim of this 
note is to announce several arithmetic characterizations of Sidon sets. 

Let us make more precise what we mean here by "arithmetic". We will 
denote by RA the set of relations (with coefficients in {—1,0,1}) satisfied by 
A, i.e. the set of all finitely supported families (e\)\eA in {—1,0,1}A such that 

EXGA € X X = 0 -
By an "arithmetic" characterization is usually meant one which depends 

only on the set RA- In [1], Drury1 proved that such a characterization exists, 
but he could not produce any explicit one. Precisely, he proved the following: 
let A and A' be two sets for which there is a bijection <j>: A' —• A such that the 
map <i>: RA -> RA', defined by 0((ex)\eA) = (e^,(x'))\'€A', is also a bijection. 
Then, A is a Sidon set iff the same is true for A'. In other words, the property 
of "being a Sidon set" is determined by RA- We give below several explicit 
arithmetic characterizations, from which the preceding result of Drury follows 
as a corollary. 

To state our results, we will need some notation and terminology. We will 
denote by IA the set of all finitely supported families (e\)xeA in {—1,0,1}A. 
For any 7 in G, we will denote by H(^,A) the number of ways to write 7 as 
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a finite sum of the form 7 = Ex€Ae>^ w ^ n
 (^X)XGA

 m
 /A.- For any integer 

s > 0, we will denote by Rs(i,A) the cardinal of the set of those (e\)x€A 
in /A such that S lex| = -s and 7 = X A G A ^ - (Note that we have obviously 
#(7, A) = X)s>o -Rsi/Y» A).) Let A be a finite subset of A. We have the following 
identity, for all S > 0. 

(1) n [1 + «(X + X)]= £ 4ZS'R.(%A)). 
\eA ieö \s>o J 

We can now state our main theorem (we will denote by \A\ the cardinality of 
a set A). 

T H E O R E M 1. Let A be a subset of G not containing 0. The following are 
equivalent. 

(i) A is a Sidon set. 
(ii) There is a number 6 < 1 such that, for all finite subsets A of A, we have 

s>0 L 

(iii) There is a number 9 < 1 such that, for all finite subsets A of A, we have 

supi?(7,A)<3*lAL 

(iv) There is a number 0 < 1 such that, for all finite subsets A of A, we have 

Kieô ) 

The details of the proof can be found in [5]. The equivalence (iii)o-(iv) 
is easy using the observation that J2ô^(l^) ~ ^'A'- The Pro°f °f (i)=>(ii) 
uses (1) for 8 = 1/2 and the integrability properties of 2 x € A ^ e ^ - The Prool> 

relies very much on the previous paper [4] and on the following result which 
is proved in [5]. 

P R O P O S I T I O N . The conditions of Theorem 1 are also equivalent to the 
following. 

(v) There are numbers a > 0 and p < 1 such that, for any finite subset A of 
A. we have 

(it e Glint Re\{t)>pX\ < 2 ~ a | A | . 

(vi) There is a number a > 0 such that, for any finite subset A of A, we can 
find points £1 , . . . , tjv in G, with N > 2alA' such that supX€A |X(t̂ ) — \{tj)\ > a 
for alli^j. 

The equivalence of (v) and (vi) is formal. The implication (v)=>(i) yields 
an affirmative answer to Problem 8.3 in [4]. 

D E F I N I T I O N . We will say that a set A is a Rider set if there is some 6 > 0 
such that Y^3>o^s^s(0iA) < 00. We will say that A is quasi-independent if 
R(0, A) = 1, ofequivalently if JRa(0, A) = 0 for all s > 1. 
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Such sets—and finite unions of such sets—are the only known examples of 
Sidon sets, and the main open problem in this theory is the converse: 

PROBLEM. IS every Sidon set a finite union of Rider sets? Is it a finite 
union of quasi-independent sets? 

In the particular case G = Z(p)N, with p a prime number, a positive 
answer (as well as a complete arithmetic characterization) was given in [3]; 
very recently, J. Bourgain obtained a positive solution to the above problem, 
assuming more generally that p is a product of distinct prime numbers (private 
communication). 

Actually, it is rather easy to check (see [5]) that any Rider set is a finite 
union of quasi-independent sets; therefore, the above problem reduces to the 
second question. 

Assume that a set A is the union of k quasi-independent sets. In that case, 
any finite subset A of A, of cardinality n, must contain a quasi-independent 
subset B c A with \B\>n/k. Therefore, if the above problem had a positive 
solution, any Sidon set should verify the above property for some k. It turns 
out that this is true. 

T H E O R E M 2. A subset A of G is a Sidon set iff 
(vii) there is an integer k such that any finite subset A of A contains a quasi-

independent subset B c A with \B\ > \A\/k. 

The proof that Sidon sets satisfy (vii) is given in [5]. The converse follows 
from Theorem 2.3 in [4], since any quasi-independent set B is a Sidon set with 
S(B) majorized by some absolute constant. In some sense, Theorem 2 reduces 
the above problem to a purely combinatorial question: Is every set satisfying 
(vii) a finite union of quasi-independent sets? 
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