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ON THE VANISHING OF POINCARÉ SERIES 
OF RATIONAL FUNCTIONS 

BY IRWIN KRA1 

1. Let r be a finitely generated nonelementary Kleinian group with region 
of discontinuity fi and limit set A. Let X(^)|d^| be the Poincaré metric on fi 
(normalized to have constant negative curvature —1). Let q G Z, q > 2. A 
cusp form for T of weight (—2q) is a holomorphic function <p on fi satisfying 

(1) <p{iz)l'(z)q = <P(4 for all 7 € T, for all z <E fi, 

and either (hence both) of the following equivalent conditions: 

(2) ƒ ƒ \(z)2-q\<p{z)dz Adz\ < oo; 
/n/r 

(3) suv{\(z)-«\(p(z)\}<oo. 

The equivalence of (2) and (3) shows that the Peterson scalar product 

(4) (<p, </>> = i f f \(z)2-2"<p(z)W)dzAdi 

induces a Hubert space structure on the space of cusp forms. 
Let A be a T-invariant union of components of fi, and define Aq(A) to be 

the space of cusp forms for T of weight (—2q) that vanish on fi\A. Abbreviate 
Aq(fi) by A,.2 

Define Rq to be the space of rational functions ƒ such that 
(5) ƒ is holomorphic on fi, 
(6) ƒ has only simple poles (on A), and 

f{z) = 0(\z\-2(*), *-»ooifooefi , and 
( 7 ) f{z) = Ofl*!-*2*-1)), z -> oo if oo e A. 

If ƒ G Rq, then the Poincaré series 

(8) E/MiW *efi, 

converges absolutely and uniformly on compact subsets of fi and defines a 
cusp form Qq ƒ G Aq. Bers [3] has shown that 
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is a surjective linear operator. The starting point of this investigation was the 
following theorem that quantitatively strengthens Bers' result. 

T H E O R E M 1. Let ai,. . . ,a2<?_i be [2q — 1) distinct points in A, and let 
lif'ilN generate T (define 70 = -0- Then &q\Rq is surjective, where R® = 
{ƒ G Rq\f is holomorphic except possibly at ij{ak), k = l , . . . ,2ç — 1, j = 

In certain cases ©gl̂ Rj? is an isomorphism. Spanning sets for T Puchsian 
were obtained by Hejhal [4]. For q = 2, and T Fuchsian, Wolpert [11] obtained 
bases, as did Kra and Maskit [7] for T geometrically finite function groups. 

2. We turn now to the more interesting vanishing problem raised by Poincaré 
[10, p. 249] (see also Petersson [9] and Hejhal [4]. Find necessary and sufficient 
conditions for Qq ƒ to vanish identically on Q (or A) for ƒ G Rq. 

For ip G Aq(A), the unique Bers potential F = F^p for the canonical general
ized Beltrami coefficient \x = \2~2qi/j that vanishes at a^, k = 1, . . . , 2q — 1, is 
given by 

(9) F(,) = (»-°')"-(»-«»«-i) f f M*»* , 6 c. 
2m J Jn{ç- z)(( - a> • .(f - a2q-i) 

For z G A \ { a i , . . . , G ^ - I } , we have (see Kra [5, Chapter V]) 

(10) F*{z) = (<p(z,.),il>), 

where 

(i i) <p(z,.) = eqf(z,-), 
and 

_ i i 2q-iz — ai 

(12) /(^) = ^ r b l l 2TT Ç - * / J i f - aj 

Note that for z G A\{oi, . . . , a2<?-i}, f{z, •) G flg. We let 

Ji_q(A) = {restrictions toAof potentialsF^with^ G Aq(A)}. 

As usual Ji_g = ,?i_q(n). Observe that 7i_g(A) is a finite-dimensional space 
of continuous functions on A. Also Ji_q(A) c 7\-q, for all A. 

If ƒ G jRq, then we can find m > 1 distinct points &i,..., bm in A\{ai , . . . , a2q-i} 
and complex numbers /?i, . . . , /3m so that 

m 

(13) /(f) = £ & ƒ ( * * A f € C . 

The points &i,..., bm and the constants /?i,. . . , /3m are uniquely determined 
by ƒ. We now define a surjective linear map 

K: Rq^> 7\-q 

3If 'Yj(ofc) = oo, then holomorphicity at this point means f(z) = 0(|;z| 2<3), z 
Conventions regarding oo will henceforth be ignored. 
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from Rq to the dual space of 7\-q by the formula 

m 

(14) if(/)W=EftW F€ft-q, 

where ƒ G Rq is given by (13). 

T H E O R E M 2. Given ƒ G Rq, then 

(15) 6 J | A = 0 ^ K ( / ) | f i - g ( A ) = 0. 

The proof uses the duality given by the Petersson scalar product (4) and 
the identity (10). 

Since K is a very simple operator, Theorem 2 shows that the vanishing 
problem is completely solved if we can construct a basis for Ji_q(A). 

3. Let PH1
A(U.2q-2) denote the Eichler cohomology group of A-parabolic 

cohomology classes (see Kra [5, Chapter V]), where Ü2q-2 is the space of poly
nomials of degree < 2q — 2, and let PH1 (II2Ç-2) denote the space cohomology 
classes that are parabolic with respect to all parabolic elements of T. Given 
ip e A9(A), then 

(16) 7 ^ ^ ( 7 ) ( Y ) 1 ~ g - ^ , 7GT, 

defines a cohomology class /?*(t/>) 6 PH1(n.2q-2)> known as the Bers class of 

T H E O R E M 3. If the Bers map 

FiAq-^PH1^^) 

is surjective, then 7\-q can be determined algebraically from the parabolic 
Ü2q-2-cocycles for the group T. 

We must explain what we mean by determining 7\~q algebraically. Let 
us assume that a i , . - . , a 2q-i are fixed points of loxo-
dromic elements of I \ Theorem 3 means that we can construct algebraically 
the values at the loxodromic fixed points of functions i<\,..., i ^ that form a 
basis for 7\-q. In the proof, we use the fact that if the continuous function 
F on A represents the cocycle XÎ that is, if 

(17) F(1z)1'(z)1-"-F(z) = X(l)(z), zeA, 

then for 6 E A, a fixed point of a loxodromic element g G T, we must have 

(18) F(b) = X(g)(b)[g'(b?-«-l}-1. 

4. The map /?* of Theorem 3 is surjective for many geometrically finite 
function groups (Nakada [8]); in particular, for Fuchsian, quasi-Fuchsian, and 
Schottky groups. In principle, there is an algorithm for each such group 
to decide when Qqf = 0 for a given f e Rq. We state our most explicit 
construction of such an algorithm in 
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T H E O R E M 4. Let T be a Schottky group or a finitely generated Fuchsian 
or quasi-Fuchsian group of the first kind given by a standard presentation on 
a canonical set of generators. Let ƒ G Rq have poles only at loxodromic fixed 
points. Then we can write down a (finite) algorithm that determines whether 
or not @qf = 0. 

5. Let T be a finitely generated Fuchsian group of the first kind acting on 
the unit disk A. Then A = 3A =the unit circle, and Q = {z G C| \z\ # l}u{oo}. 
To determine when a Poincaré series ®qf, ƒ G Rq, vanishes identically only 
on A, we need to select ^_ q (A) from 7\~q. A not entirely satisfactory answer 
is contained in 

THEOREM 5. Let V be a finitely generated Fuchsian group of the first kind 
acting on the unit disk A. Then there exists an integer n = n(q) such that for 
F G 7\-q, we have 

Fe7i-q{A)o f 7 re^1- f c-2^F(e i ö)dÖ = 0 fork = 0,1,. . . ,n. 
J o 

The debt of this paper to the fundamental contributions of Ahlfors [1] and 
Bers [2] is obvious, and I am delighted to acknowledge it. Hejhal's paper [4], 
which contains a somewhat less explicit solution to the vanishing problem for 
a more limited class of groups, was a useful reminder that this problem should 
have an algebraic solution. Our solution differs radically from Hejhal's. We 
rely in very basic ways on the Eichler cohomology machinery [1, 2, 5]. I am 
happy to thank M. Sheingorn for his insistence that the vanishing problem 
is important and interesting. Complete proofs and applications will appear 
elsewhere [6]. 
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