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SMOOTH EXTEND ABILITY 

OF PROPER HOLOMORPHIC MAPPINGS 

BY KLAS DIEDERICH AND JOHN ERIK FORNAESS 

In [9] Ch. Fefferman proved that any biholomorphic mapping ƒ: 12x —• 122 

between strictly pseudoconvex C°°-smooth domains in Cn extends smoothly to 
the boundary. Subsequently, the proof of this result has been simplified con­
siderably by S. Webster [14, 15], E. Ligocka [12], St. Bell [1, 2] . And it was 
St. Bell who realized the importance of the following regularity condition of the 
Bergman projection for the proof of such extendability results: 

DEFINITION . A domain £2 CC C" is said to satisfy condition R for its 
Bergman projection operator P if for any positive integer s there is an integer N 
such that P is a bounded linear operator from WSQ~N(P) to HS(£L). 

(Here WQ(£1) denotes as usual the closure of CJ°(12) in the Sobolev s-Norm 
|| • \\s with respect to the volume Lebesgue-measure on 12 and //^(Œ) is the space 
of holomorphic functions on 12 with finite || • ||5-norm.) 

Since condition R is a consequence of subelliptic estimates for the 3-
Neumann problem, it is known to be satisfied for instance in the following cases: 

(1) 12 strictly pseudoconvex, C°°-smooth (J. J. Kohn [10]); 
(2) 12 pseudoconvex, C^-smooth (J. J. Kohn [11], K. Diederich, J. E. 

Fornaess [6]). 
The new methods allowed to generalize Fefferman's result. It is now known 

that a biholomorphic mapping ƒ: 12j —• 122 extends smoothly up to the boundary 
if 12j and 122 are C°°-smooth and, in addition, both satisfy condition R [1] or 
both are pseudoconvex and at least one satisfies condition R [2]. 

The result which we wish to announce deals with the case of proper holo­
morphic mappings and is contained in the 

THEOREM. Let 12j, 122 CC C" be C°°-smooth pseudoconvex domains and 
suppose that 121 satisfies condition R. Then any proper holomorphic mapping 
ƒ: 12j —• 122 extends smoothly up to the boundary. 

For unbranched mappings ƒ this result is contained in K. Diederich and J. E. 
Fornaess [7]. This also includes the case of !2j, 122 being strictly pseudoconvex 
and ƒ proper holomorphic since any such ƒ is necessarily unbranched, S. Pincuk 
[13]. Under different, more restrictive assumptions on 12j and 122 the result 
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was obtained by S. Bell in [4 and 5]. More detailed information about the 
history will be given in the paper containing also all the proofs. 

Our proof is based on the following transformation formula for the Bergman 
projection proved by S. Bell [3] : 

PROPOSITION 1. Let ƒ: Slx —• £l2 be a proper holomorphic mapping 
between bounded domains in Cn and let Pt denote the Bergman projection on 
£2f.. Then one has 

i>1(w((/Io/)) = W . (?2(/ î)o/) 

for all h G L2(p,2). Here u = det ƒ'. 

As a consequence of this, S. Bell [3] obtains 

PROPOSITION 2. Under the assumptions of the theorem one has u • h ° ƒ G 
A^iSl^for all h G A°°(Sl2), in particular u G A00^). 

The difficulty in deriving the theorem from this statement is to show that 
the functions u • h o fEA00^^ can be divided by u in A00^^ even close to 
the cluster points of the branching locus X of ƒ at b^. This, certainly, would 
be hopeless if the Jacobian determinant u could vanish to infinite order at such 
points. But we can show 

LEMMA 1. In the situation of the theorem the Jacobian determinant u of 
f does not vanish to infinite order at any point of Q,x. 

For the proof we assume that u does vanish to infinite order at q G b£l1 

and take an arbitrary nontangential cone K in Cl1 with vertex at q. The function 

ut(z):= J ] "(f) for r e O ^ 

extends to a bounded holomorphic function on Clt which vanishes in Q1 exactly 
on Xt := f~lf{X) and at q goes to zero with infinite order. There is a bounded 
holomorphic function u2 on £22 with ux = u2 o ƒ and {u2 = 0} = f(Xt) = X2. 
Notice, that on £l2\X2 there are locally defined inverse mappings Ft, . . . , Fm 

of f the Jacobian determinants of which are denoted by Uk. One has 
m 

o) u2- n uk = \. 
Furthermore, it is well known that there are an r\ > 0 and positive constants c, 
C such that 

(2) cdist1/TÎ(z; bSlJ < dist(/(z), b£l2) < Cdistn(z, bSlJ 

on £2j. By considering for each fixed k— 1 , . . . , « , the elementary symmetric 
functions of the fcth coordinate functions of Ff, j = 1, . . . , m, which are globally 
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defined and bounded on £22, applying the Schwarz lemma to them and studying 
the zeros of the polynomial in one variable with these coefficients we can show 
using (2) that for large positive integers N the preimage of a polynomial neigh­
borhood of X2 of the form 

F^ :={H/Ef t 2 : dist(w, X2) < dist^(w, bSl2)} 

is contained in a polynomial neighborhood V]^ oîXx in £2j of the same form. 
Here M <Nt but M goes to infinity if N does. Next by using the Blaschke con­
dition for the zero set Xx of ux one proves that for large M 

A(Vl
M nKDBr) 

(3) J?, A(KnBr) =° 
where A( ) means euclidean volume and Br is the ball of radius r around q 
Therefore, there is a sequence (zk) C K, zk —• q, such that £l2\X2 contains for 
each k, a relatively "large" ball around f(zk). This allows us to show that all 
Uj(f(zk)) have to be small compared to a fixed negative power of 

dist(/(z*), bSl2). 

Because of (1) and (2) we obtain that ux(z
k) stays above a certain fixed power 

of dist(z*, ££2j). This contradicts our assumption. D 
The next step is the division by u. We show 

LEMMA 2. Let h be a bounded holomorphic function on Çlt such that 
u • h1* G A^ip.^for all positive integers N, then h G A00^^). 

This is proved by a rather technical inductive procedure. We will, there­
fore indicate here only how the continuity of h follows. We fix a point q G b£l1 

and a generic transverse complex line H through q such that u \ H n £2X vanishes 
at q only to finite order k. We can assume that q = 0 and 

For p G bClt near 0 we denote by H(p) the complex line through p parallel 

to H. It is easy to see that h \ fy n Hp is C°° up to b£lx n # p near 0. This 

gives us an extension of h to bSl1 near 0. We may assume that h(0) = 0. We 

denote 
g(s) := dsg/bz\ 

and use the following observation. 

LEMMA 3. For each k there exists a sequence of polynomials P>, ƒ = 1,2, 
3, . . . , / « u and h and their derivatives, such that for all N> k 

(4) (uhN)W = uik)hN + / £ ^ / p \ ; ,*-* 
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The proof goes by induction over k and is straightforward. Let us now 
assume that there is a sequence S = (ps) C £lv ps —• 0, such that h(ps) —-• 
y ¥* 0. For N > k we have 

(5) (uhN)(k)-+0 on 5, 

since this function is in ,4°° and its restriction to H(0) n 12x goes to zero at 0. 
Therefore, we get from (4) 

(6) w<*>A* + ( £ N'PA —• 0 on S. 

Next we prove inductively for 0 < K <k: 
(AK) There are coefficients aj*J, ƒ = 1,... ,K,S= 1,2,3 such that 

for all N > k 

u(k)hk(ps) + £ Nty? -* 0 as s —• °°. 

For K = k the choice affi := //(p^) satisfies (Ak) because of (6). If (AK) 
for some 1 < K < k has been reached, one may put 

That this satisfies (AK_1) follows from the fact that 

(1 - 2 " K r l[u(k)hk(ps) + £ tf'*£> - 2"*( !*<*>**(/>,) 4- £ (2tf) '#>)]--> 0 

as s —• «o. The statement (A0) now gives u^hk - ^ 0 on 5, a contradiction to 
fc —+ 7 =É 0 on S. D 

An easy consequence of our theorem is the following statement. An inde­
pendent and simpler proof of it has been given in [8]. 

COROLLARY. Let f: Q,l —• £22 be proper holomorphic, £2^ £22 C°°-
smooth and pseudoconvex. Suppose that £lt satisfies condition R (e.g. fi,t 
strictly pseudoconvex). Then the branching locus of f does not cluster at any 
strictly pseudoconvex boundary point. In particular, f is unbranched if the 
(In - ^-dimensional Hausdorff measure of the set of weakly pseudoconvex 
boundary points of £lx is zero. 
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