A TORELLI THEOREM FOR SIMPLY CONNECTED ELLIPTIC SURFACES WITH A SECTION AND $p_a \ge 2$

RY K. CHAKIRIS

- 0. The purpose of this note is to announce some recent results on the period mapping for simply connected elliptic surfaces with a section and $p_g \ge 2$. Among other things, we are able to prove the period mapping for such surfaces has degree one, that is to say, it is generically injective. In the terminology of [C, G], this is called the weak global Torelli theorem. In order to make a precise statement of our results, we must introduce some notation.
- 1. Let V be a surface with at most rational double points, $\overline{V} \stackrel{\sigma}{\longrightarrow} V$ its minimal resolution; let $\psi \colon V \longrightarrow \mathbb{P}_1$ be a proper analytic map, whose generic fibre is a smooth elliptic curve. Let $C_u = \psi^{-1}(u)$, $\overline{\psi} = \psi \circ \sigma$, and $\overline{C}_u = \overline{\psi}^{-1}(u)$. Assume $\exists s \ni s \colon \mathbb{P}_1 \longrightarrow V$ is a section of $V \stackrel{\psi}{\longrightarrow} \mathbb{P}_1$, and that V is smooth along $s(\mathbb{P}_1)$; let \overline{s} be the corresponding section of $\overline{V} \stackrel{\psi}{\longrightarrow} \mathbb{P}_1$. Now assume $p_g(\overline{V}) = n \geqslant 1$, and \overline{V} is a minimal surface; $\overline{s} \cdot \overline{C}_u = 1$, $\overline{s}^2 = -(n+1)$, $\overline{C}_u^2 = 0$. $V \stackrel{\psi}{\longrightarrow} \mathbb{P}_1$ is called an elliptic fibration with a section (see [K]). We also require that $\sigma(D) = a$ point for all irreducible curves $D \subseteq \overline{V}$, with $\overline{s} \cdot D = 0 = \overline{C}_u \cdot D$.

Let $H^2(\overline{V}; \mathbf{Z})_0 = (\mathbf{Z}c_1(\overline{C}_u) + \mathbf{Z} \cdot c_1(\overline{s}))^{\perp}$, where $c_1(D)$ denotes the 1st Chern class of a divisor; this is an orthogonal direct summand of $H^2(\overline{V}; \mathbf{Z})$ and hence must be a unimodular lattice. It is uniquely characterized by the integer n; fix a copy and call it H; set $\Lambda = H \oplus (\mathbf{Z}c + \mathbf{Z}s)$, where $c \cdot H = s \cdot H = 0$, $c^2 = 0$, $s \cdot c = 1$. $s^2 = -(n+1)$.

Let $\varphi \colon H^2(\overline{V}; \mathbb{Z}) \to \Lambda$ be an isomorphism of unimodular lattices $\varphi(c_1(\overline{C}_u)) = c$, $\varphi(c_1(\overline{s})) = s$, $\varphi(c_1(K_{\overline{V}})) = (n-1) \cdot c$ where $K_{\overline{V}}$ is the canonical divisor, and hence $\varphi(H^2(\overline{V}; \mathbb{Z})_0) = H$. Following [P-S, Săf], we will call φ a marking, and the pair (V, φ) a marked surface of type (H, Λ, c, s) . Let $L_V \subset H^2(\overline{V}; \mathbb{Z})_0$ be the euclidean sublattice generated by all elements of the form $c_1(D), D > 0$, $\sigma(D) = a$ point; and let $H_V = (L_V)^{\perp}$; L_V is negative definite. For any euclidean lattice E, we let O(E) be the orthogonal group of E. This is a linear algebraic group defined over \mathbb{Q} ; let $O(E)_{\mathbb{Z}} = \{g \in O(E)_{\mathbb{R}} \mid gE = E\}$. For any $\alpha \in E$, $\alpha^2 = -2$, let

Received by the editors November 10, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 32G20.

¹ The pairing on E may be indefinite.

 $S_{\alpha} \in O(E)_{\mathbb{Z}}$ be the reflection defined by $S_{\alpha}(\beta) = \beta + (\alpha \cdot \beta)\alpha$, $\forall \beta \in E$; and let $\Re(E) \subset O(E)_{\mathbb{Z}}$ be the subgroup generated by the reflections.

Let (V_i, φ_i) , i=1, 2, be two marked surfaces, $f: V_1 \to V_2$ an isomorphism, \overline{f} its unique lift to $\overline{V}_1 \to \overline{V}_2$. Assume that $\exists g \in \Re(L), \exists \varphi_1 \circ \overline{f}^* = \overline{g} \circ \varphi_2$, where \overline{g} is the obvious extension of g to Λ ; then we say that the marked surfaces are equivalent, $(V_1, \varphi_1) \sim (V_2, \varphi_2)$.

Let $J = J(H, \Lambda, c, s)$ be the set of marked surfaces of type (H, Λ, c, s) , modulo this equivalence. Let $\Gamma = O(H)_{\mathbb{Z}}$, we define an action of Γ on J by: $\gamma \cdot (V, \varphi) = (V, \overline{\gamma} \circ \varphi)$, where $\gamma \in \Gamma$, and $\overline{\gamma}$ is its extension to Λ , defined by $\overline{\gamma}(c) = c$, $\overline{\gamma}(s) = s$.

It can be shown that \mathcal{J} is a smooth analytic space, Γ acts properly discontinuously on \mathcal{J} , and $\mathcal{J}/\Gamma=\mathcal{M}$ is irreducible. Moreover, if $n\geqslant 2$ then for marked surfaces $(V_i,\varphi_i), i=1,2:\exists f,\ V_1\xrightarrow{f}V_2,\ni f$ is a birational isomorphism with $f(s_1)=s_2$ iff $\exists \gamma\in \Gamma$, such that $\gamma\cdot (V_1,\varphi_1)\sim (V_2,\varphi_2)$.

2. Let $\operatorname{Gr}(n,H_{\mathbb C})$ be the Grassmannian of n-planes in $H_{\mathbb C}$; $\xi\in\operatorname{Gr}(n,H_{\mathbb C})$ corresponding to the n-plane $F(\xi)\subset H_{\mathbb C}$. Following Griffiths [G], let $\check D(H)=\{\xi\in\operatorname{Gr}(n,H_{\mathbb C})|u\cdot v=0,\ \forall u,v\in F(\xi)\}$; let $D(H)=\{\xi\in\check D(H)|\bar u\cdot u>0,\ \forall u\in F(\xi)-\{0\}\}$. D(H) is an open subset of $\check D(H)$, homogeneous under the action of $O(H)_{\mathbb R}$; Γ acts properly discontinuously on D(H). Let $z=(V,\varphi)\in\mathcal J$ be a marked surface; and $H^{2,0}(V)\subset H^2(\bar V,\mathbb C)$ be the subspace corresponding to holomorphic (2,0) forms. Let $\varphi\colon H^2(V,\mathbb C)\to \Lambda_{\mathbb C}$ also denote the extension of φ to $H^2(V,\mathbb C)$; clearly $\varphi(H^{2,0}(V))\subset H_{\mathbb C}$, since $\varphi^{-1}(c),\varphi^{-1}(s)$ both correspond to algebraic cycles. Define $\Phi(z)=\xi\in D(H)$ by $\varphi(H^{2,0}(V))=F(\xi)$; clearly $\Phi(\gamma\cdot z)=\gamma\cdot\Phi(z)$.

By fundamental results of Griffiths, Φ is holomorphic. Let us assume $n \ge 2$.

MAIN THEOREM. There is a Γ -invariant dense open subset of J on which Φ is injective.

REMARK. This is equivalent to a "degree one" statement.

Following the philosophy in $[P-S, S ilde{a} f]$, the essential idea is to reduce the problem to a "special" sublocus of J.

3. Let $(V, \varphi) \in J$, assume $n \ge 2$, then the elliptic fibration $\psi \colon V \longrightarrow \mathbb{P}_1$ is uniquely determined. Let C_{a_1}, \ldots, C_{a_r} be the singular fibres of ψ , so that C_u is smooth $\forall u \in \mathbb{P}'_1 = \mathbb{P}_1 - \{a_1, \ldots, a_r\}$; choose $a \in \mathbb{P}'_1$, and $e_1, e_2 \in H_1(C_a, \mathbb{Z})$, $e_1 \cdot e_2 = 1$. Let τ_i be a local parameter at a_i , the loop $\gamma \colon [0, 1] \longrightarrow \mathbb{P}'_1$ defined by $\tau_i(\gamma(t)) = \epsilon \exp\{2\pi i t\}$ defines a conjugacy class in $\pi_1(\mathbb{P}'_1, a)$, any member of

² It follows from the work of Kas that M is irreducible.

which will be referred to as a positive loop about a_i . Let $T: \pi_1(P'_1, a) \longrightarrow SL(2, \mathbb{Z})$ be the monodromy of $V \longrightarrow P_1$, corresponding to the choice of a, and e_1, e_2 . For $w \in SL(2, \mathbb{Z})$, we let [w] denote its conjugacy class; C_{a_i} is said to be of type [w] if: $T(\gamma) = [w]$ for any positive loop γ about a_i (see [M]).

We will call (V, φ) a special elliptic surface if $T(\pi_1(P_1', a)) \subset \{\pm 1_2\}$, $1_2 = \binom{10}{01}$. Let $J_1 = \{z \in J | z = (V, \varphi) \text{ is a special elliptic surface}\}$. One can show that J_1 is a smooth analytic subvariety of J, invariant under Γ , and J_1/Γ is irreducible. These surfaces will play a role similar to the one played by special Kummer surfaces in [P-S, Saf]; with one major exception: they will not be a dense subset.

4. Let $\Phi_1\colon J/\Gamma \to D/\Gamma$ be the map induced by $J \xrightarrow{\Phi} D$, D = D(H), $\pi\colon D \to D/\Gamma$ the qt. map. Assume there is a compact projective variety Y, divisors, E', $E'' \subset Y$, a proper surjective map $g\colon Y-E'-E''\to M=J/\Gamma$; the map $f=\Phi_1\circ g$ extends to a proper holomorphic map $f_1,f_1\colon Y-E''\to D/\Gamma$. Moreover, assume $f^{-1}(J_1/\Gamma)$ is quasi-projective. This will all hold in our situation, due to the construction of M as a quotient of an open subset of a suitable Hilbert scheme; together with the results of [G]. Let $Z\subset J_1$ be an irreducible component, then we may write

$$\overline{\Phi(\mathcal{J})} \supset \Phi(\mathcal{J}) \supset \overline{\Phi(\mathcal{J})} - N, \qquad \overline{\Phi(Z)} \supset \Phi(Z) \supset \overline{\Phi(Z)} - N_1$$

where $\overline{\Phi(\mathcal{J})}$, $\overline{\Phi(Z)}$, N, N_1 are all closed analytic subvarieties of D (see [G]). Consider the following statements:

- (a) $(d\Phi)_z$ is injective at each $z \in Z$,
- (b) $\Phi^{-1}(\Phi(Z)) \subseteq \bigcup_{\gamma \in \Gamma} \gamma \cdot Z$,
- (c) $\Phi/Z: Z \to \Phi(Z)$ is injective,
- (d) $\{\gamma \in \Gamma | \gamma(Z) = Z\} = \{\gamma \in \Gamma | \gamma \overline{\Phi(Z)} \cap \overline{\Phi(Z)} = \overline{\Phi(Z)}\},$
- (e) $\Phi(Z) \subseteq \pi^{-1}(f_1(E' E'')).$

The following is not difficult to prove:

LEMMA. (a)-(e) imply the main theorem.

Let us make some remarks concerning the proofs of (a)-(d).

- (a) This may be proven by using the techniques of [Kii].
- (b) This is proven by the same methods used by [P-S, Săf] to characterize special Kummer surfaces, by means of their lattice of algebraic cycles.
- (c) and (d) are reduced to the Torelli theorem for hyperelliptic curves, by means of the results contained in [B]. The idea of using the results in [B] may also be found in [P-S, Săf], however we use them somewhat differently. In order to understand our method of dealing with statement (e), we need to introduce some definitions.

230 K. CHAKIRIS

By a degeneration of elliptic fibrations with section we will mean the following:

(i) connected analytic spaces V, \mathcal{D} , $\dim_{\mathbf{C}} V = 3$, $\dim_{\mathbf{C}} \mathcal{D} = 2$, proper maps, Ψ , ρ , p, making the following diagram commute.

$$V \xrightarrow{\Psi} \mathcal{D}$$

$$D_{\epsilon} = \{ \tau \in \mathbb{C}^1 | |\tau| < \epsilon \}$$

Set $V_t = \rho^{-1}(t)$, $\Delta_t = p^{-1}(t)$, Δ_t is assumed to be connected, $\forall t \neq 0$; the generic fibre of Ψ is a smooth elliptic curve.

- (ii) V_t , $\forall t \neq 0$, has at most rational double points; $\mathcal{D} \Delta_0$ is smooth.
- (iii) There is a holomorphic map $s\colon \mathcal{D} \to \mathcal{V}$ with $\Psi \circ s = \mathrm{id}_{\mathcal{D}}$, i.e. a section. We will restrict our attention to the case where $\Delta_t \cong P_1$, $\forall t \neq 0$. Let P denote the double covering of the Hirzebruch surface $\Sigma_2 \xrightarrow{P_1} P_1$ branched along $B \in |3S_\infty + S|$, where S_∞ is the unique section of P_2 with $S_\infty^2 = -2$, and $S \sim S_\infty + 2F$, $F \sim p_2^{-1}(u)$; we require S_∞ to be an isolated component of P_2 , thereby occurring with multiplicity 3. Let

$$\Psi_P: P \xrightarrow{s_P} \mathbf{P}_1,$$

be the fibration induced by p_2 , s_P the section defined by $S \subset B$. Each fibre of Ψ_P is a rational curve with a cusp, whose singularity has the form $z^2 = y^3$. P, together with its fibration, will be called a *connecting component*. The degeneration of elliptic fibrations with section

for which $V/D_{\epsilon} - \{0\}$ has trivial monodromy as a fibration of surfaces with rational double points, will be called *stable* if the following holds:

- (1) Δ_0 has only ordinary nodes, and p vanishes to multiplicity one on each component of Δ_0 . Set $\Delta_0 = \bigcup \Gamma_i$, each $\Gamma_i \cong \mathbf{P}_1$, and $X_i = \Psi^{-1}(\Gamma_i)$. Each X_i occurs with multiplicity one.
- (2) Each fibre of Ψ , when reduced, is an irreducible curve. Set $C_u = \Psi^{-1}(u), \forall u \in \mathcal{D}; V$ is smooth along $s(\mathcal{D})$.
- (3) If the generic fibres of $X_i \to \Gamma_i$ and $X_j \to \Gamma_j$ are smooth then $\Gamma_i \cap \Gamma_j = \varnothing$.

- (4) If the generic fibre of $X_i \to \Gamma_i$ is smooth, $\overline{\Delta_0 \Gamma_i} \cap \Gamma_i = \{q_1, \ldots, q_l\}$, we let μ_i be the number of singular fibres of $X_i|_{\Gamma_i \{q_1, \ldots, q_l\}}$, properly counted. If the generic fibre of $X_i \to \Gamma_i$ is singular, set $\mu_i = 0$. We require that $\Sigma_i \mu_i = 12(n+1)$, where $p_g(V_{t_0}) = n$, $t_0 \neq 0$.
- (5) If the generic fibre of $X_i \to \Gamma_i$ is smooth, and $p_g(X_i) = 0$ then Γ_i meets at least two other components of Δ_0 ; if Γ_i meets exactly two other components, then $\mu_i > 0$.
- (6) If the generic fibre of $X_k \longrightarrow \Gamma_k$ is singular, then X_k is a connecting component and Γ_k meets exactly two other components of Δ_0 , $\Gamma_{k'}$, $\Gamma_{k''}$. Set $\{q'\} = \Gamma_{k'} \cap \Gamma_k$, $\{q''\} = \Gamma_{k''} \cap \Gamma_k$, then the generic fibres of $X_{k'} \longrightarrow \Gamma_{k'}$, $X_{k''} \longrightarrow \Gamma_{k''}$ are smooth; and let $C_{q'}$ be of type $[w_1]$, $C_{q''}$ of type $[w_2]$. Let $w_i = s_i u_i$, i = 1, 2 be their Jordan decomposition into semisimple and unipotent elements, s_i semisimple, u_i unipotent. Then, $u_1 \neq 1$ iff $u_2 \neq 1$; and $[s_1^{-1}] = [s_2] \neq [1]$.

THEOREM (STABLE REDUCTION). Let V, \mathcal{D} etc. be a degeneration of elliptic fibrations with section, such that $V|_{D'_{\epsilon}}$, $D'_{\epsilon} = D_{\epsilon} - \{0\}$ has trivial monodromy as a fibration of surfaces with rational double points, then after a base extension $\varphi \colon D_{\epsilon_1} \to D_{\epsilon}$, $V \times_{\omega} D_{\epsilon_1}$ is D_{ϵ_1} -birationally equivalent to a stable degeneration.

This theorem is the key element in obtaining a proof of statement (e), above. To use it, we let the Y, used to dominate M, be obtained from a certain Hilbert scheme, $X \longrightarrow Y$ the universal surface over Y, the fibres of X|Y-E'-E'' being elliptic surfaces with at most rational double points $E'-E''=E_1\cup\cdots\cup E_m\cup\widetilde{E}$, where $X|_{E_i}$ has only fibres which fulfill properties (1)—(6) above, and $f_1(\widetilde{E})\subset\bigcup_j f_1(E_j)$. Due to properties (1)—(6), if we let E be any one of the E_i , \exists euclidean sublattices $H_j\subset H$, $1\le j\le r$ each H_j having a nonzero even number of positive eigenvalues, $(H_1+\cdots+H_r)^{\perp}$ being negative definite, $H_j\subset H_i^{\perp}$ $\forall i\ne j$; and a holomorphic map of $\widetilde{D}/\widetilde{\Gamma}\xrightarrow{\widetilde{F}}D/\Gamma$, where $\widetilde{D}=\prod_i D(H_i)$, $\widetilde{\Gamma}=\prod O(H_i)_Z$, \widetilde{F} induced by the inclusion $(H_1+\cdots+H_r)\subset H$. Moreover, $\widetilde{F}(\widetilde{D}/\Gamma)\supset f_1(E)$.

Let $\Gamma_Z=\{\gamma\in\Gamma|\gamma(Z)=Z\}$; $A_R(\Gamma_Z)$ its Zariski closure in $O(H)_R$; then $\Phi(Z)\subset\pi^{-1}(f_1(E))$ implies that some conjugate of $A_R(\Gamma_Z)$ must leave an orthogonal decomposition $H_R=H'+H''$, invariant, each H',H'' having a nonzero number of positive eigenvalues. It may be verified that this is impossible.

REFERENCES

[C, G] J. Carlson and P. Griffiths, Infinitesimal variations of Hodge structure and the global Torelli problem (A. Beauville, ed.), Journées de Géométrie Algebrique d'Angers juillet 1979.

[Kii] K. I. Kii, The local Torelli theorem for varieties with divisible canonical class, Izv. Akad. Nauk 42 (1978). English transl. Math. USSR Izv. 12 (1978), No. 1.

 $[\]overline{}$ It follows from this, and condition (6), that $\Sigma_i p_g(X_i) = n$.

232 K. CHAKIRIS

- [P-S, Săf] I. I. Pyateckii-Shapiro and I. R. Safarevič, A Torelli theorem for algebraic surfaces of type K3, Izv. Akad. Nauk SSSR 35 (1971), No. 3. English transl. Math. USSR Izv. 5 (1971), No. 3.
- [G] P. Griffiths, Periods of integrals on algebraic manifolds. III (Some global differential-geometric properties of the period mapping), Inst. Hautes Études Sci. Publ. Math. 38 (1970), 125-180.
- [B] A. Borel, Density and maximality of arithmetic groups, J. Reine Angew. Math. 224 (1966), 78-89.
- [K] K. Kodaira, On compact complex analytic surfaces. I, Ann. of Math. (2) 71 (1960), 111-152; On compact analytic surfaces. II, III, Ann. of Math. (2) 77 (1963), 563-626; 78 (1963), 1-40.
- [M] B. Moishezon, Complex surfaces and connected sums of projective planes, Lecture Notes in Math., Vol. 603, Springer-Verlag, Berlin and New York, 1977.

DEPARTMENT OF MATHEMATICS, HARVARD UNIVERSITY, CAMBRIDGE, MASSACHUSETTS 02138