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rapidly than exponentially, thereby accounting for the uniqueness of solu­
tions. 

In short, Professor Arnold is one of the truly great stars of mathematics, 
and in this outstanding text, he shares his knowledge and understanding with 
us. 
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1. With a knowledge of the equations of physics and with sufficient 
mathematical insight, one should be able to derive the physical properties of 
the world we see around us. The program would be to classify the elementary 
particles and analyze the various forces between them. Their motions should 
then follow from the laws of quantum mechanics. 

The difficulty, of course, is that the classification is not complete and the 
forces are not known. There is a traditional division of forces into strong, 
electromagnetic, weak, and gravitational interactions. The first three of these 
play a role on the submicroscopic level and are presumably described by 
quantum fields. The present is a period of intense speculation about the 
nature of the fields responsible for the strong and weak forces. There is 
already a detailed theory of the electromagnetic field, but even that is not on 
a completely rigorous footing. So a complete mathematical description of 
nature is for the future. 

It is possible, however, to come rather close to this ideal even now. 
Consider a world consisting of electrons and nuclei. Ignore most of the 
quantum mechanical features of the electromagnetic field; in fact, direct 
attention to the part of the electric field given by Coulomb's inverse square 
law. Treat this system with quantum mechanics, in the nonrelativistic ap­
proximation in which there is no particle creation. Add a few refinements, 
such as spin and the exclusion principle. The result should be a fairly good 
description of our world. This model should describe most physical and 
chemical properties of materials. It should explain why tables are solid and 
fire is hot, why the sky is blue and grass is green. It should not explain 
nuclear energy, radioactivity, or why apples fall, since these involve the other 
forces. 

The task remains of carrying out this derivation. Is there anything interest­
ing to say before going to the computer? There had better be, if we want to be 
able to make much sense out of physics. The series Methods of modern 
mathematical physics is an ambitious attempt to survey recent progress toward 
a rigorous qualitative description of quantum mechanical motion. (The series 
also contains considerable material on related mathematical problems, but 
the central theme is quantum mechanics.) The first two volumes [5] [6] in the 
series dealt with some preliminary functional analysis and with the de­
termination of the time evolution. Volumes III and IV under review are 
companion volumes dealing with scattering and spectral theory. They de­
scribe the different possible kinds of motions of the individual particles or 
atoms or molecules. 

Of course, in order to make full contact with the world of experience, one 
also needs models of bulk matter. Thus far in the series the closest approach 
to a description of these models is a discussion of independent electrons in a 
crystalline solid in volume IV. (The discrete translational symmetry is respon­
sible for the energy gaps that lie behind the distinction between insulator and 
metal.) There is nothing so far on probabilistic models involving the tempera-
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ture concept (statistical mechanics), but that would come logically in later 
volumes. 

2. It is difficult or impossible to give a fully intuitive account of quantum 
mechanics. The theory has features which are paradoxical or subjectivist, 
depending on how you choose to look at it. Nevertheless, its equations have 
stood repeated experimental test. It is possible to doubt quantum mechanics, 
but one then needs to replace it with some other theory that gives similar 
equations of motion. This can be done [4],. but most physicists, having once 
passed through the crisis of a first encounter with quantum mechanics, are 
content with the orthodox account. Certainly there is no alternative in sight 
that would produce simpler calculations. 

In quantum mechanics states of a physical system are given by one-dimen­
sional subspaces of a Hubert space X . Thus a nonzero vector i// in X 
determines a state, and two such vectors determine the same state precisely 
when they are multiples of each other. Physical quantities correspond to 
selfadjoint linear operators A acting in the Hubert space. In a state given by a 
unit vector \p each of these quantities becomes a random variable, with 
expectation given by <i//, A\p}9 where the bracket denotes the inner product. If 
the operator happens to be of the form W* Wy where W* is the adjoint of W, 
then this expectation is actually the square of a Hubert space norm 

<i/s w*Wxpy = <wty, Wxpy = \\Wxp\\2 ( i ) 
and so it is positive. Many estimates in the theory involve expectations of this 
form. One special case occurs when the operator W is of the form Wxp = 
</><X, ^ ) f° r fixed vectors </> and x- Then the quantity to be estimated is 
II ^ l l 2 = H0ll2Kx> ^ ) | 2 - A compact operator is one that can be approximated 
in norm by sums of operators of this form, and estimates on |<x> ^ ) | 2 often 
transfer to estimates on || J^ | | 2 for general compact operators W. 

Quantum mechanical motion is determined by the selfadjoint operator H 
that corresponds to the total energy of the system. (It is customary to use the 
letter H in this context. Here it stands for Hamilton instead of Hubert. There 
'is yet another h in the theory, due to Planck, but I have suppressed that.) The 
unitary operator exp(-itH) acts on vectors (hence on states) and describes 
their evolution in a time interval of length t. Thus if \p gives the state at time 
zero, then exp( — itH)\p gives the state at time t. The expectation of W* W in 
this state is then || W exp(- it H )i//||2. 

Let E(X) be the projection onto the subspace where H < X and P(X) be the 
projection onto the subspace where H = À. (Thus P(X) ¥= 0 if and only if X is 
an eigenvalue of H, and then P(X) is the projection onto the corresponding 
eigenspace.) For all vectors x and \p in X , 

<X, exp( - itH)^> = f °° exp(- //X)<X, dE(X)^ (2) 

It follows that the time average of |<x> exp(— itH)\l/}\2 is 

- r r ^4^<^^.)x)<x>^^>. (3) 
• ' - o o ^ - o o A ' S - A 2 ) 
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Let T —» oo and apply the dominated convergence theorem. The only contrib­
ution to the limit is from the diagonal \x=\2. The calculation gives 

i r r | < X , e x p ( - / / / / ) ^ > | 2 ^ ^ 2 l < X , / > ( ^ > | 2 (4) 
2.1 J-T x 

as T-* oo, where the sum is over the eigenvalues of H. The generalization of 
this result to compact operators W is 

y= [T\\Wexp(-itHU\\2dt^^\\WP(\)M\2 (5) 
l l J-T x 

as T —> oo. 
This identity lies behind the correspondence between different kinds of 

spectrum and different kinds of motion. The eigenvalues of H are called the 
point spectrum and the space spanned by the eigenvectors is called the point 
subspace. A state given by a vector \p in the point subspace is called a bound 
state, in analogy to a bound orbit in classical mechanics. Such a vector xp has 
the decomposition \p = *2xP(X)\p. Whenever P(X)\p ¥= 0, it determines a state 
which is time invariant. The identity (5) says that the time average of the 
expectations in the states exp(— itH)\p approaches a sum of expectations in 
time invariant states P(\)\p. 

Since the Hubert space of a quantum mechanical particle is infinite 
dimensional (countably infinite), there is also the possibility that H has 
continuous spectrum. The continuous subspace is defined as the orthogonal 
complement of the eigenvectors, and the continuous spectrum is the spectrum 
of H restricted to this subspace. If the state is given by a vector \p in the 
continuous subspace, then the time average in (5) approaches zero. This 
corresponds to a situation where the particle wanders away from its starting 
point and returns infrequently, if at all. 

There is a further distinction between absolutely continuous and singular 
continuous spectrum. A vector \p is in the absolutely continuous (or singular 
continuous) subspace if the measure <i//, dE(X)\p} is absolutely continuous (or 
singular continuous) with respect to Lebesgue measure. If \p is in the ab­
solutely continuous subspace, then we may write its measure in terms of a 
density as <*//, dE(X)\p} = <*//, 8(H — X)\p}d\. The expression 8(H — X) does 
not define an operator with values in the Hubert space, but makes sense as a 
positive quadratic form with values denoted by <ip, 8(H — X)\p}. 

If x and \p are vectors in the absolutely continuous subspace, then the 
matrix element in (2) approaches zero as t -* oo, by the Riemann-Lebesgue 
lemma. Again this fact may be generalized to compact operators W, giving 

| | ^ e x p ( - / / / / ) ^ | | 2 - > 0 (6) 

as t -> oo for \p in the absolutely continuous subspace. In practice the 
expectation in (6) is a measure of how likely the particle is to be in a fixed 
region. The fact that this expectation becomes and remains small show that \p 
has the behavior of a scattering state, in which the particle eventually leaves 
every fixed region and never returns. (With singular continuous spectrum, on 
the other hand, the particle may wander back from time to time. One hopes 
this complicated misbehavior is rare in physics.) 
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The task is thus to find out which kind of behavior occurs in a specific 
physical situation. The most useful approach is perturbation theory, and 
indeed the main mathematical topic of Volumes III and IV is perturbation of 
spectra. We have an operator H0 with known spectral properties. It describes 
motion without interaction, or with only part of the interaction. The operator 
of interest is H = H0 + V, where V is the interaction. We have some kind of 
estimate on V and wish to find the spectral properties of / / . For instance, if 
H0 has eigenvalues, we want to find corresponding eigenvalues of H. If H0 

has absolutely continuous spectrum, we want to find at least part of the space 
on which H has absolutely continuous spectrum. (It turns out that the 
singular continuous spectrum is highly unstable, and there is no good theory 
in the third case. This is another reason for wishing that it would go away.) 

3. Volume III is organized about the long time approach to the problem, 
that is, scattering theory. The operator H0 has absolutely continuous 
spectrum. One wants to show that for every vector <j> in % there is a vector xf/ 
in %, such that 

||exp( - itH)<// - exp( - itH0)<p\\ -> 0 (7) 

as t -> oo. This would show that the states exp( — itH)\p have a simple time 
evolution, at least in the distant future. One also wants to prove completeness 
of the \p, in the sense that they span the absolutely continuous subspace for 
ƒ/, and to prove that the singular continuous spectrum is empty. Then one 
would know that the only states are bound states and scattering states. 

The norm convergence in (7) is equivalent to requiring that 

<exp( - itH)\p - exp( - itH0)<t>, exp( - itH0)x> 

= i f '<exp(-* '#)*, Vexpi-itHjxydt - <<t> - *, X> (8) Jo 

approaches zero as t —> oo, uniformly on sets of x with bounded norm. (The 
last line in (8) comes from the fundamental theorem of calculus; the factor 
V = H — H0 arises from differentiating the inner product of exponentials. I 
am using the physicist's convention that inner products are linear on the 
right.) To prove completeness, we can start with \p and try to recover <J> from 
the formula 

/ r < e x p ( - * 7 / 0 ^ , Vcxp(-itH0)X>dt « < * - * , XX (9) 

One approach to proving convergence of the integral is to decompose 
V = Wf W2 into two factors of roughly the same size and estimate 

r°°|<exp(-/7//)i//, Vexp(-itH0)X>\dt 

f || Wx exp(- itH)n || W2 exp( - itHQ)X\\dt 
o 

U
00 ^ \1/2/ r°° ~ \i/2 

^ | |W,exp(- ,WM| 2<ft) (Jf \\W2exp(-itH0)x\\
2dt) .(10) 

This inequality (10) shows that the scattering problem is closely related to 



BOOK REVIEWS 527 

time decay estimates on expectations of the form \\W exp( — itH)\p\\2. One 
needs ways of getting such estimates. 

In Volume III the Kato-Birman method gets the most extensive treatment. 
This is a particularly nice method, because the estimates are in terms of 
Hubert space invariants such as traces. The starting point is the observation 
that if i// is a vector in the absolutely continuous subspace with the additional 
property that <^, 8(H — X)\p} as a function of X is bounded by a constant M, 
then 

f00 |<x, exp(- itH)xp)\2 dt = 2ir f°° |<X, S(H - X)^>|2 d\ 
• / -oo • ' -oo 

ƒ 00 -

<X, 8(H - X)xX4', S(H - X)^> d\ < IvMWxW2. (11) 
- 0 0 

This has a generalization to operators W with tr W* W < oo : 
f°° \\W Qxp(-itH)xp\\2 dt = 27rf°° \\W8(H - \)xp\\2 d\ 

• ' - o o • ' - o o 

<2<nM\iW*W. (12) 

Such an inequality is just what is needed for scattering theory. However, the 
Kato-Birman method has the weakness that \p must be assumed at the outset 
to be in the absolutely continuous subspace. 

Volume III applies this method and others to scattering in a large variety of 
situations. It begins with classical mechanics, two-body quantum mechanics, 
and TV-body quantum mechanics. There is a detailed treatment of central 
forces. One irritation in the subject is that the unshielded Coulomb force 
doesn't fall under the general theory. It has such a slow decrease at infinity 
that the particle never fully escapes its influence. There is an extensive 
discussion of the modifications of the theory that are necessary to take care of 
such a long range force. Once the authors had covered quantum mechanics it 
was surely tempting to look for other areas of physics where the same ideas 
apply. Thus optical and acoustical scattering are treated by trace estimates 
and by the Lax-Phillips theory, based on finite propagation speed. There are 
also sections on the linear Boltzmann equation, nonlinear wave equations, 
spin waves, and even on quantum fields. 

The phase space approach to two-body quantum scattering due to Enss 
appeared just in time to be included in a final section of Volume III. The 
starting point is to assume that the particle is not bound. If one waits long 
enough, the particle will eventually wander far from the scattering center (as 
a consequence of the fact that the time average in (5) approaches zero). Then 
a phase space decomposition can be used to prove that the particle has good 
scattering behavior. 

Volume IV is organized around the division into different kinds of spectra. 
There is more on the absolutely continuous spectrum, and most of this 
material is also relevant to scattering theory. One major topic is the smooth 
operator theory of Kato. Its basic abstract estimate is a bound on the time 
integral or the energy integral in (12) by a multiple of ||vp||2. Thus there is no 
special assumption on \p and the burden falls on the operator W. 

Such an estimate may be obtained if one has sufficient information on 
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spectral properties of H. For instance, assume that vectors W*<j> in the range 
of W* are in the absolutely continuous subspace for H and satisfy 
(W*$, 8{H - X)W*<t>} < C\\<t>\\2 for some constant C. This is equivalent to a 
bound \\W8{H - X)W*\\ < C on the operator norm of W8(H - \)W*. If 
this holds, then the energy integral satisfies 

f°° \\W8{H - \)^\\2 d\ 
J -co 

< r || W(d(H - \))1/2f\\(8(H - \))i/2n2 d\ 

\\W8(H - A)»*||<*, 8(H - A)^> d\ < C||^||2. (13) 

Once we have this bound on the energy integral, the same bound on the time 
integral follows automatically. (A reader who is suspicious of my use of 8 
functions may consult Volume IV. The reasoning is made precise there by 
obtaining estimates that are uniform for a family of approximate 8 functions.) 

How does one get such estimates in quantum mechanics? One method is 
based on ideas of Putnam, Kato and Lavine. In this approach one looks for 
an increasing operator A such that 

— <exp(- itH)xp, A exp(- itH)^ 

= <exp(-*7#)i//, i(HA - AH)exp(-itH)xp> 

> \\Wexp(-itH)xp\\2> 0. (14) 

If A is bounded, then the time integral in (12) satisfies 

f°° \\Wexp(-itH)n2dt < 2\\A\\ IÎ H2. (15) 
^ - o o 

Lavine extended this reasoning to certain unbounded operators and applied it 
to a variety of situations. In his work the problem often reduces to verifying 
an algebraic condition: the commutator i{HA —AH) occurring in the time 
derivative must be positive. 

As we have seen, the authors present a number of different approaches to 
scattering theory. Volume III contains the Kato-Birman trace theory and the 
Enss phase space analysis, and Volume IV has the Kato-Putnam-Lavine 
approach and still another set of estimates due to Agmon. How are we to 
compare these approaches? The Kato-Birman theory is elegant but does not 
provide complete spectral information. The method of Enss is perhaps the 
simplest way to prove the absence of singular continuous spectrum. However 
the more explicit decay estimates in Volume IV are interesting in their own 
right, since they also tell us how fast the particle is escaping the scattering 
center. A particularly nice feature of both the Enss and Lavine methods is 
that the estimates have a direct intuitive content. 

4. Volume IV contains considerable material on perturbation of the point 
spectrum. There is an account of the regular case when the perturbation series 
for an eigenvalue converges to the correct answer. But the authors also want 
to push perturbation theory to its limits. Thus when the series diverges, they 
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look to see if a summability method will give the correct answer. Or when the 
perturbed eigenvalue does not even exist, they look for a resonance. A 
resonance is interpreted here as a pole of an analytic continuation of certain 
matrix elements <i//, (H — z)~ty>. The proper mathematical setting for reso­
nances has always been somewhat mysterious, but it would seem that this 
definition is not as closely linked to scattering theory as one would like. Still, 
it provides a framework in which the authors can present a nice application 
of dilation analyticity techiques. 

When the eigenvalues arise from a perturbation of the continuous 
spectrum, one is beyond the normal scope of perturbation theory. There is 
still much to say in the context of quantum mechanics. For example, there is 
the beautiful estimate of the number of bound state eigenvalues, due to 
Cwickel, Lieb, and Rosenbljum. The authors follow Lieb in giving a proof of 
this result that is based on Wiener measure. 

Let us look at this example in more detail, since it illustrates some typical 
features of mathematical physics. The setting is the Hubert space % = 
L2(R3) and selfadjoint operators H0 = -A and V = multiplication by v. Here 
v is a real function in L3/2(R3). Assume for simplicity that v < 0. The 
theorem states that the number n(v) of strictly negative eigenvalues of 
H = -A + V is bounded by a multiple of the L3/2 norm, 

n(v) <cf(-v(x))3/2d3x. (16) 

One's first reaction may be that this is just another obscure fact about 
eigenvalues of partial differential operators. But let us compute the volume in 
classical phase space of the set N(v) where p2 + v(x) < 0. For each fixed x 
the section of this set is the ball \p\ < ( - v(x))l/2, so the volume is 

f f d3pd3x = (4/3)ir f(-v(x))3/2d3x. (17) 

Thus the inequality is actually a beautiful illustration of the heuristic principle 
that the number of quantum mechanical bound states is proportional to the 
volume of the bound states in classical phase space. 

If this were the end of the story, it would be a striking vindication of the 
heuristic principle. However, the argument above does not depend in any way 
on the dimension of space. The authors point out that the corresponding 
inequality n(v) < cnf(-v(x))n/2d"x for n dimensional space is definitely false 
for n = 1 and n = 2. Thus it requires something more to see what is going on. 
In particular, any serious analysis of the effect must necessarily involve the 
fact that we live in three dimensional space. 

Volume IV continues with the dilation analyticity approach of Balslev and 
Combes, a seemingly miraculous method of uncovering hidden information 
about the spectrum when the forces have some homogeneity property. It 
concludes with a number of other topics, including estimation of eigenfunc-
tions, nondegeneracy of the ground state, absence of positive eigenvalues, and 
asymptotic distribution of eigenvalues. The two volumes together contain 
forty sections, each of which is in effect a chapter on a different subject. 
Every section has extensive notes with references to the original papers. There 
are 326 problems. A number of these outline the contents of research papers. 
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5. The method that is used throughout these volumes is to present abstract 
operator theory combined with substantial concrete application. (In this 
review I have been able to present only an outline of the operator theory, and 
almost nothing of the estimates that are the basis of the applications.) There 
is in addition an immense amount of physics lore along the way, and many 
nice mathematical counterexamples. It sometimes takes an effort to see the 
physics behind the estimates. For instance, certain scattering theory estimates 
break down near zero energy, and a reader could forget that this has a simple 
interpretation in terms of the fact that a slowly moving particle is going to 
have a comparatively hard time escaping from the region where the forces are 
strong. Other estimates fail in the classical limit. These have a deeper 
interpretation as showing that particles escape a region of strong attractive 
forces by barrier penetration, a uniquely quantum mechanical effect. 

The spectral classification and perturbation theory unify the abstract part 
of the theory. Is there a unifying idea for the estimates? One might point out 
the role of the dilation operator, which involves both of the phase space 
quantities, position and momentum. It seems to be useful in distinguishing 
between incoming and outgoing particles. The increasing operator A in 
Lavine's theory is closely related to the dilation operator. Similar ideas occur 
in the phase space analysis of Enss. The dilation operator is an essential part 
of the analyticity method of Balslev and Combes. It also helps O'Connor, 
Combes, and Thomas estimate eigenfunctions. Perhaps this points to a 
common algebraic structure behind many of the estimates. (There is now new 
evidence for this in a recent article of Mourre [3] on the role of the dilation 
operator in phase space analysis.) 

The value of the Reed and Simon volumes is that they provide a bridge 
between abstract functional analysis and concrete problems of physics. There 
are no other books with the same scope. The classic work of Kato [2] is 
organized along more strictly mathematical lines. Other recent works on 
rigorous quantum scattering theory, such as the text by Amrein, Jauch, and 
Sinha [1], have more limited objectives. The Reed and Simon series is the one 
place where the recent discoveries of mathematical physics are consolidated. 
Its volumes are for anyone who has encountered the frustration and fascina­
tion of quantum mechanics and wants to begin the serious task of learning 
the mathematics behind it. This will never be an easy task, but Methods of 
modern mathematical physics will make it less forbidding. 
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