
514 BOOK REVIEWS 

Sém. de Probabilité XII, Lecture Notes in Math., vol. 649, Springer, Berlin-Heidelberg-New 
York, 1978, pp. 746-756. 

3. J. L. Doob, Stochastic processesy Wiley, New York, 1953. 
4. , Semimartingales and subharmonic functions, Trans. Amer. Math. Soc. 77 (1954), 

86-121. 
5. W. Feller, Zur Theorie der stochastischen Prozesse (Existenz und Eindeutigkeitssàtze), Math. 

Ann. 113(1936), 113-160. 
6. , On the integro-differential equations of purely discontinuous Markoff processes, 

Trans. Amer. Math. Soc. 48 (1940), 488-515. 
7. G. A. Hunt, Markoff processes and potentials. I, II, III, Illinois J. Math. 1 (1957), 44-93, 

316-369; 2 (1958), 151-213. 
8. M. Kac, On some connections between probability theory and differential and integral 

equations, Proc. 2nd Berkeley Sympos. Math. Statist, and Probability, Univ. California Press, 
Berkeley, Calif., 1951, pp. 189-215. 

9. A. Kolmogorov, Uber die analytischen Methoden in der Wahrscheinlichkeitsrechnung, Math. 
Ann. 104 (1931), 415-458. 

10. M. Loève, Paul Levy, 1886-1971, Ann. Probability 1 (1973), 1-18. 
11. P. A. Meyer, Probability and potentials, Ginn (Blaisdell), Boston, 1966. 

RONALD GETOOR 

BULLETIN (New Series) OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 2, Number 3, May 1980 
© 1980 American Mathematical Society 
0002-9904/80 /00OO-O223/$03.25 

Ordinary differential equations, by V. I. Arnold, translated from the Russian 
by Richard A. Silverman, MIT Press, Cambridge, Massachusetts, 1978, 
x + 280 pp., $8.95. 

The past twenty years have witnessed a revolution in the field of ordinary 
differential equations. It is not uncommon to attend a seminar on differential 
equations and not even hear the words differential equations, let alone see 
one written on the board. The "in phrase" these days is dynamical systems, 
and the language spoken is often the language of topology and differential 
geometry. Ordinary differential equations by the famed Soviet mathematician 
V. I. Arnold is a superb introduction to the modern theory of differential 
equations, and while reviewing this book, it is instructive to take a closer look 
at the profound changes that have occurred in this field. We begin with the 
fundamental concept of a dynamical system. 

Consider a system that is evolving in time. Let x denote the initial state of 
the system, and g'x its state at time ty with g°x = x. The set M of all possible 
states is called the phase space of the system, and the individual states x are 
called phase points. Suppose, moreover, that the mappings g' satisfy the 
group property 

g'+'x = g'(gsx) (1) 
and that g' and (g ' ) _ 1 satisfy appropriate continuity conditions. The set of 
mappings g', together with the phase space M is called a dynamical system. 

Dynamical systems occur very naturally in the study of ordinary differen­
tial equations. Let 

x = v(x) (2) 

be a differential equation defined on a domain M of n dimensional Euclidean 
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space, and let 

x(t) = g(*> xo) 
be the solution of (2) which at time / = 0 has the value x0. Assume, moreover, 
that g(/, x0) is defined for all t. Then, the group of transformations 

g':x->g(t9 x) 
together with the phase space M is a dynamical system. If v(x) is of class C1, 
then the mappings g' and ( g ' ) _ 1 a r e a l s o differentiate; i.e., they form a 
one-parameter group of diffeomorphisms. 

We study differential equations from the abstract viewpoint of dynamical 
systems for many reasons. The best, and simplest reason, is that the descrip­
tion of the states of a process as points of a suitable phase space often turns 
out to be extraordinarily useful. Professor Arnold begins his text with the 
following example which shows that the simple act of just introducing a phase 
space often allows us to solve a difficult problem. 

Problem. Two nonintersecting roads lead from City A to City B. Suppose it 
is known that two cars connected by a rope of length less than 2/ manage to 
go from A to B along different roads without breaking the rope. Can two 
circular wagons of radius /, whose centers move along the roads in opposite 
directions, pass each other without colliding? 

Solution. Consider the square 

M = {(JCJ, x2): 0 < xx < 1, 0 < x2 < 1} 

(see Figure 1 below). 

Cars 

Wagons 

FIGURE 1 

The position of two vehicles (one on the first road, the other on the second 
road) can be identified with a point of the square M : we simply let xt denote 
the fraction of the distance from A to B along the i th road which lies between 
A and the vehicle on the given road. The square M is called the phase space 
and its points are phase points. 

In this manner, every motion of the vehicles is represented by a motion of 
the phase point in the phase space. The motion of the cars from A to B is 
represented by a curve going from the lower left hand corner of the square to 
the upper right hand corner, while the motion of the wagons is represented by 
a curve going from the lower right hand corner to the upper left hand corner. 
But every pair of curves in the square joining different pairs of opposite 



516 BOOK REVIEWS 

corners must intersect. Thus, no matter how the wagons move, there comes a 
time when the pair of wagons occupy a position occupied at some time by the 
pair of cars. At this time, the distance between the centers of the wagons will 
be less than 2/, and they will not manage to pass each other. 

As another illustration of the usefulness of introducing a dynamical sys­
tems setting into a problem, we would like to briefly describe some recent and 
very fascinating work of Furstenberg, Katznelson and Weiss [6], [7], [8]. Two 
classical theorems of number theory are the following: 

THEOREM (VAN DER WAERDEN). Suppose that the integers Z are partitioned 
into finitely many classes Cx, C2, . . . , Cr; i.e., 

Z = C 1 u C 2 U « " U C r . 

Then, at least one of the classes Cj possesses an arbitrarily long arithmetic 
progression. 

THEOREM (SHUR). For any partition 

N = CY U C2 U • • • U Cr 

of the positive integers, we can find numbers w, v in one of the classes Cj such 
that u + v also belongs to Cj. 

Furstenberg et al. present dynamical systems proofs of these (and even 
more sophisticated) theorems. First, they consider the set of all sequences 

x = ( . . . , 0_2> a-v öo> a\> a2> • • • ) 

of symbols aJ9 where the Oj are chosen from a fixed set of r symbols, and then 
they introduce a metric into this space. Essentially, two elements 

x = ( . . . , 0_!, a0, op . . . ) and.y = ( . . . , b_x, b0, bv ...) 

are close to each other if Oj = bp j = - / c , . . . , k. This is the phase space M. 

Second, they introduce the shift mapping <j> on M, defined by 

and the iterates </>w of <f>. The phase space M together with the set of mappings 
<t>n is now a discrete (as opposed to continuous) dynamical system. Finally, 
they introduce the geometric concept of recurrence in a dynamical system. 

DEFINITION. A point x is recurrent if there exists a sequence of times 
tn —» oo such that 

g "kX - » X. 

Starting with a theorem of Birkhoff which states that a dynamical system with 
a compact phase space possesses at least one recurrent point, Furstenberg et 
al. present startling proofs of the above theorems. 

Another, and more fundamental reason for introducing a dynamical sys­
tems setting into ordinary differential equations, is that partial differential 
equations and functional differential equations can also be put into a similar 
setting: the only difference is that the phase space is now an appropriate 
Banach space of functions. Thus we can try to generalize some of the 
theorems and techniques of O.D.E's to these more difficult problems. As an 
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illustration, consider the P.D.E. 

«t = u*x + V W (3a) 
with the boundary and initial conditions 

w(0, /) = 1/(77, 0 = 0, t > 0 (3b) 

u(x, 0) = <j>(x), 0 < x < 77. (3c) 

Here ƒ is a given function defined on the whole real line with/(0) = 0; <j> is an 
arbitrarily specified function defined on [0, TT] with <j>(0) = 0, <p(7r) = 0, and X 
is a nonnegative parameter. 

The hypothesis /(O) = 0 implies that (3a) has a trivial solution u0 = 0, and 
it is well known that this solution is stable, when X = 0. But what happens as 
we allow X to increase from the value zero? Does the solution u0 = 0 lose its 
property of stability, and, if so, do there appear any new equilibrium 
solutions which inherit this property? We have the following theorem. 

THEOREM (CHAFEE AND INFANTE [2]). Assume that 

/'(O) > 0, Hm f(u)u~l < 0, sgn/"(w) - -sgn u. 
|w|-*oo 

For each integer n > 1, let \ = n2f(0). As X increases through the value \n, a 
pair of equilibrium solutions u*(X) of (3a) bifurcate from the solution u0 = 0. 
For X < Aj, the solution w0 = 0 is asymptotically stable, but for X > Xl9 this 
property is pre-empted by the pair wf(X). The other solutions u*(X), n > 2, 
are all unstable. In addition to this, every solution of (1) approaches one of 
the above equilibrium solutions. 

A much weaker version of the above theorem was originally proven by 
Matkowsky [12], using the method of "two-time asymptotic series 
expansions". The method of Chafee and Infante [2] is a dynamical systems 
proof based on the method of constructing Lyapunov functionals for 
O.D.E.'s. Let 

x = v(x) (4) 

be a system of O.D.E.'s, and suppose that 

V(x): Rn-*R 
is a Lyapunov functional with the property that 

V< 0 
along the orbits of (4). The LaSalle Invariance Principle [10] states, under 
suitable conditions on the boundedness of orbits, that any orbit of (4) 
approaches the (invariant) set on which V = 0. 

Chafee and Infante generalize this approach to the above problem. They 
construct a suitable Lyapunov functional and show that V < 0 along solu­
tions of (3a). Indeed, the only difference between the O.D.E. and P.D.E. case, 
and the only difficulty, is that in the infinite dimensional phase-space of (3), 
bounded orbits do not necessarily belong to compact subsets. Indeed this is 
always the main difficulty, or stumbling block, in trying to apply Lyapunov 
theory to functional and partial differential equations. Chafee and Infante 
show how to overcome this difficulty for (3), and in an excellent survey paper, 
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Hale [9] indicates several classes of problems which can be handled via this 
approach. It is also interesting to note that Chafee even generalizes the 
concepts of stable and unstable manifolds for some parabolic P.D.E.'s. In this 
manner he obtains some very strong instability results [3]. 

A second profound change that has occurred in the theory of differential 
equations is the introduction of many sophisticated topological concepts. One 
reason for this, of course, is that many of the problems raised during the past 
twenty-five years have been topological in nature. For example, instead of 
asking for the detailed orbit structure of (4), we now ask whether vector fields 
which are Cl close to v(x) have the same orbit structure. Specifically, we seek 
to find vector fields v(x) with the property that the orbits of the system 

x = u(x) 

can be mapped homeomorphically onto the orbits of (4) if u(x) is Cl close to 
v(x). This question of "structural stability of vector fields" is clearly a 
topological one, and Smale and his school have made significant contribu­
tions during the past two decades. Indeed, during the middle and late 1960s 
global analysis was the "in" subject in mathematics. It is interesting to note 
that Poincaré's thesis was concerned with the problem of linearizing the 
system of equations 

z=Az+f{z). (5) 

Assuming that f(z) was analytic, he attempted to find an analytic w(£) such 
that the substitution 

2 - € + u(0 
transformed the equation (5) into the linear equation 

è = Al (6) 
However, Poincaré found that even a formal series for M(£) was impossible to 
obtain if one of the eigenvalues ak of A was an integer linear combination of 
all the eigenvalues a , , . . . , <xn of A. Thus, Poincaré was forced to impose the 
conditions 

ak ^Jiai + • • • +Jnan> k = 1 , . . . , n (7) 

for any set of positive integers j v . . . Jn to obtain even formal equivalence. 
As we now know, Poincaré's difficulty arose because he required analytical 
equivalence of orbits. If we only require topological equivalence, then we 
have the following theorem of Hartman which was proven around 1960. 

THEOREM [14]. Suppose that Re a, ^ Ofor all eigenvalues dj of A. Then, there 
exists a homeomorphism z = £ + w(£) of a neighborhood of | = 0 mapping the 
solutions of (5) into those of the linear system (6K 

A second, and more fundamental, reason for the proliferation of topologi­
cal concepts, in this reviewer's opinion, is that many of the classical problems 
in differential equations have solutions which are really topological in nature. 
Here are two examples to illustrate this point. 

1. One of the earliest, and most fundamental, problems of celestial mecha­
nics was to continue solutions through collisions. More precisely, consider AT 
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planets of mass mx, . . . , mN respectively, under the influence of their mutual 
gravitational attraction. If xk, h = 1,. . . , N denote the JV three-dimensional 
vectors describing the position of the centers of mass of the N planets, then 

d2xk dU 
mk—— = -5— 

dt2 3** 
u- 2 r ^ . (8) 

\<k<KN \Xk xl\ 
These equations are singular of course, when two planets collide; i.e., xk = xi 

for some k and /. The problem of regularizing the singularity is to find 
solutions xk{t) which are valid for all time, even if collisions occur. This 
problem was solved by Sundman [18] in the special case that N = 3 and the 
total angular momentum is nonzero (this implies that there cannot be any 
triple collisions). Sundman's technique was to find an appropriate change of 
coordinates and a change of time scale along orbits which eliminated the 
singularity due to binary collisions. However, Sundman's results yield no 
information on the orbit structure of (8) near binary collisions. Further, these 
results offer no insight into how to regularize (if possible) the N body 
problem for N > 3. 

Recently, Easton [5] presented a very general geometric theory of regulari­
zation which is applicable to the 3-body problem. It is called "regularization 
by surgery" and can be described very briefly as follows. Consider the system 

x - v(x) (9) 

and let the origin be a singular point of t>. Suppose we can find an isolating 
block [4] which surrounds x = 0. This means, essentially, that we can find a 
surface S surrounding x = 0 with the property that at a point of tangency, an 
orbit of (4) points away from S (see Figure 2). We identify the endpoints of 

FIGURE 2 

orbits which cross the block S, and then show that this identification has a 
unique extension to an identification which pairs the endpoints of orbits 
entering the singularity with the endpoints of orbits leaving the singularity. 
We then use this identification to close the gap left by surgery, thus obtaining 
the regularized phase space for the flow. 
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2. Another classical problem is the existence of periodic solutions of (9). 
Consider the linear system 

x == Ax (10) 

and suppose that the matrix A has purely imaginary eigenvalues 
± a,, ± a2, . . . , ±an. Then, the system (10) has n one parameter families of 
periodic solutions, with periods 2iri/'ax,.. . , 2m/an respectively. Consider 
now the perturbed equation 

x = Ax+f{x) (11) 

where ƒ is analytic and begins with quadratic terms. A famous theorem of 
Liapunov [11] states the following: 

THEOREM. Let ± av . . . , ± an be the purely imaginary eigenvalues of A, and 
assume that ak/a{ is not an integer, k = 2, . . . , n. Moreover, assume that the 
system (11) possesses an integral with nondegenerate Hessian. Then, there exists 
a one parameter family of periodic solutions with period near 2m/ax. If 
ak/ at •=£ integer, k îhl, then n such families exist. 

The next question, of course, is what happens if <xk/<xt is an integer. 
Liapunov's proof, which involves a series construction, appears to fall 
through in this case. About ten years ago Roels [15], [16] showed that these 
series could be salvaged if the ratio ak/at was at least three. Shortly 
thereafter, Schmidt and Sweet [17], using a bifurcation theory developed by 
Hale [1], presented a new proof of these results, and also obtained some 
results for the ratios 1 and 2. In 1973, Alan Weinstein [19], [20] presented two 
extremely deep and brilliant topological theorems on the existence of periodic 
solutions of (9). He first specialized to Hamiltonian systems of equations of 
the form 

i = JHZ, z = 

c2n 

• ' - ( - ° , Ó)- <*> 
Very briefly, Weinstein studied C1 perturbations of a Hamiltonian vector 
field on a manifold M which possessed a submanifold P consisting entirely of 
periodic orbits. Under small perturbations, only a finite number of periodic 
orbits can be expected to survive, in general. Weinstein reduced the de­
termination of the minimal number of surviving periodic orbits to studying 
the intersection of two close Lagrange manifolds, and this problem in turn, is 
played back to estimating the minimal number of critical points on some 
orbit manifold. He then obtained the following theorem. 

THEOREM. If H G C2 near z = 0, and the Hessian matrix is positive definite, 
then for sufficiently small e, any energy surface 

H(z) = #(0) + 62 

contains at least n periodic orbits of (12) with periods close to those of the 
linearized system. 

Now, it's true that Moser [13] presented an alternate proof of Weinstein's 
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results which is more classical in nature. Nevertheless, Weinstein's theorems 
clearly motivated Moser's proof, and they stand as a monument to the 
topological nature of the flow. 

As we mentioned at the beginning of this review, Professor Arnold's book 
is a splendid introduction to the modern theory of differential equations. All 
the fundamental concepts such as phase space, phase flows, vector fields, one 
parameter groups of diffeomorphisms, smooth manifolds and tangent bun­
dles, which remain in the shadows in the traditional coordinate based 
approach, are presented here in a clear and rigorous fashion. Professor 
Arnold does much more than just pay lip service to these concepts, as many 
other books do: he does his darndest to make sure the reader understands 
these concepts. For example, after defining the tangent space TUX to a 
domain U at the point x as the set of all velocity vectors of the curves leaving 
x, he remarks: "If the reader is accustomed to regard the velocity vector of a 
curve as lying in the same space as the curve itself, then the distinction 
between a tangent space to a linear space and the linear space itself may lead 
to certain psychological difficulties. In this case it is helpful to repeat the 
preceding considerations with U thought of as the surface of a sphere. Then 
TUX is the ordinary tangent plane." 

Another strong feature of this book is the many nontrivial examples and 
problems drawn from mechanics. One aspect of differential equations which 
hasn't changed is the fact that many theorems in dynamical systems owe their 
origin to similar theorems for Hamiltonian systems governing the mechanical 
interaction of a system of particles. Anyone who is serious about the study of 
differential equations should know the basic concepts of physics: someone 
who doesn't know any physics has no business undertaking a serious study of 
differential equations. 

One possible objection of the "traditionalists" to this text is the absence of 
some of the elementary methods of solution. I fully agree with Professor 
Arnold that these topics are most conveniently studied in the guise of 
exercises. And to those who still object and claim that exactly soluble 
equations are important since they open up the possibility of solving neigh­
boring equations by perturbation theory, Professor Arnold offers the follow­
ing disclaimer: "However, it is dangerous to extend results obtained by 
studying an exactly solvable problem, to neighboring problems of a general 
form. In fact, an exactly integrable equation is often integrable precisely 
because its solutions are more simply behaved than those of neighboring 
nonintegrable problems." 

Finally, this text is worth reading, even for an expert in the field, because of 
the many keen and penetrating insights presented by the author. Consider, 
for example, the problem of uniqueness for solutions of the equation 
x = v(x). If the vector field v is not differentiable (or Lipshitz) then an initial 
value problem may have several solutions. Now, numerical analysts are 
taught that a vector field v must be differentiable if we are to have any hope 
of containing the build-up of numerical round off error. But how many 
mathematics texts present a geometric reason for why uniqueness requires a 
differentiable vector field? Professor Arnold carefully shows that solutions of 
equations with differentiable vector fields cannot approach each other more 
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rapidly than exponentially, thereby accounting for the uniqueness of solu­
tions. 

In short, Professor Arnold is one of the truly great stars of mathematics, 
and in this outstanding text, he shares his knowledge and understanding with 
us. 
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