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reader is already familiar with the additional phenomena and intricacies 
which arise when general boundary conditions and functional are consid­
ered. 

A sequel to the present book would be welcome. One which develops 
analogous results for general functionals and general boundary conditions 
including the bounded state variable case. It would be instructive also to 
develop a similar theory using generalized controls for problems whose 
solutions are not minimizing but become minimizing when suitable isoperi-
metric conditions are adjoined. Many problems in mechanics and in the 
theory of geodesies are of this nature. It should be noted that most examples 
appearing in the literature deal only with ordinary controls. Perhaps this is 
because their solutions involve only ordinary controls. There are, of course, 
examples which require generalized controls. As has been pointed out by E. J. 
McShane there is a need for developing techniques for solving typical 
examples from the point of view of generalized controls even when the 
solutions are given by ordinary controls. The remarks of McShane are given 
in The calculus of variations from the beginning through optimal control theory 
appearing in Optimal Control and Differential Equations, Academic Press, 
1978, edited by A. B. Schwarzkoff, W. G. Kelley, and S. B. Eliason. 

The book by Gamkrelidze is an important and welcome contribution to the 
literature on optimal control theory. 
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Extremal graph theory, by Bêla Bollobâs, London Mathematical Society 
Monograph No. 11, Academic Press, London, New York and San Fran­
cisco, 1978, xx + 478 pp. 

Problem Solving holds an awkward place in mathematics. Everyone agrees 
it is fun but some question its importance. If Mathematics is the building of a 
castle of Theory then there is perhaps little place for the solution of an 
individual problem. Yet, for others, the solution of problems is far more than 
an amusing pastime. The creation and solution of problems determine the 
direction of mathematical thought. Which of these is the correct view? An 
easy answer is, of course, both. But the relative importance given to these not 
necessarily antagonistic viewpoints helps determine the nature of our subject. 

Problem Solving has long played a vital role in Graph Theory. This has led 
to a certain subjectivity regarding the importance of any particular result. 
There are a myriad of possible problems and papers flood into the already 
overcrowded journals. Recognition of meaningful work becomes difficult but 
it is not impossible. With the passage of time the main currents of Graph 
Theory become clearly marked and the separation of the important from the 
mundane may begin. 

Extremal graph theory is an important addition to the Graph Theory 
literature. There is a staggering amount of material here. Throughout, theo­
rems are treated not as isolated results but as part of a cohesive whole. 
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Historical references are added to show the flow of the subject. This is what a 
monograph should do and it is a pleasure to see it done well. The title is 
somewhat misleading. As the author explains, "extremal graph theory is 
interpreted in a much broader sense including in its scope various structural 
results and any relations among the invariants of a graph especially those 
concerned with best possible inequalities." Topics in graph theory would have 
been a more accurate (but less interesting) title. 

We focus on Chapter VI where Extremal Graph Theory, under the more 
usual narrow interpretation, is explored. In 1940, Paul Turan derived the 
result that is considered the forerunner of Extremal Graph Theory. Given 
arbitrary positive integers r, n he found the graph on n vertices with the 
maximal number of edges that does not contain Kr+l, the complete graph on 
r + 1 points. The solution is precise. Split the n vertices into r classes as 
evenly as possible. Let vertices be adjacent if and only if they are in different 
classes. This is the unique graph with the maximal number of edges. We let 
tr(n) denote the number of edges in this graph. The general question arose: 
What is the maximal number of edges a graph on n vertices can have without 
having a given property? Equivalently, how many edges insure that a graph 
on n vertices has a given property. More specifically, for any graph F let 
ex(«: F) denote the maximal number of edges in a graph with n vertices not 
containing F as a subgraph. 

FIGURE 1. 300 points, No K4, /3(300) = 3000 edges 

While Turan began the study of Extremal Graph Theory, his colleague 
Paul Erdös has played a decisive role. To quote from the author's preface, 
'The main exponent has been Paul Erdös who, through his many papers and 
lectures, as well as uncountably many problems, has virtually created the 
subject." Paul Erdös introduced the author and many others (including this 
reviewer) to Graph Theory. 

In 1946, Erdös and Stone provided a key result. Let Ks(t) denote the graph 
on st vertices, divided into s disjoint classes of t vertices each, with vertices 
adjacent iff they lie in different classes. For example, Ks{\) = Ks. Let r, /, 
e > 0 be fixed and n sufficiently large. They showed that if a graph on n 
vertices has at least tr(n) + en2 edges (that is, slightly more than the number 
of edges that force Kr+l) then it contains a Kr+l(t). The exact relationship 
between r, /, e, and n and, more generally, the nature of graphs with slightly 
more than tr{n) edges has been the object of intense study which is well 
presented in this volume. 
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Let F be an arbitrary graph with chromatic number x(F) - r + 1. F is a 
subgraph of Kr+l(t) where in the (r + l)-coloring of F no color is used more 
than t times. From the result of Erdös and Stone 

ex(n: F ) < ex(n: Kr+l(t)) < tr{n) + o(n2). 
Conversely, since F cannot be r-colored, the Turan graph with tr{n) edges 
described above does not contain F9 providing a lower bound for ex(n: F). 
Together 

ex(«: F ) - *r(n) + 0(n
2) 

an excellent first order approximation to ex(«: F) when r > 2. 
When F is bipartite (r = 2) the above shows only ex(/*: F) = <?(«2) and one 

wishes at least to find a = a(F) so that ex(n: F) = w"**1). y^^ f = ^ 2 ) 
(the 4-cycle), a = 3/2. Essentially, a maximal graph on « = />2 H- /? + 1 
points is formed by taking the vertices of the projective plane over GF(p) and 
joining (a, b9 c) to (*,>>, z) iff ax + fy + a = 0. When F = Ü:2(3), a = 5/3. 
Here a graph on n = /?3 points is formed by taking the vertices of affine 
3-space over G F ( » and joining two vertices if their squared Euclidean 
distance is a fixed, appropriately chosen, constant. A search for similar 
algebraic constructions for F = K2(r) has proven fruitless. There are, of 
course, many other bipartite F and the evaluation of a = a(F) remains an 
open problem in all but a few cases. There is far more in this chapter but 
there are also seven other chapters to browse through. 

Graph Theory's directions have been greatly influenced by certain key 
conjectures. One must mention, of course, the Four Color Conjecture (Theo­
rem). Its influence on Graph Theory was akin to that of Fermat's Last 
Theorem (Conjecture) on Algebraic Number Theory. Fortunately, the fallout 
from this conjecture, such as studies of contradiction operations, has not 
ended with its resolution. 

FIGURE 2. Not perfect 

Berge calls a graph G perfect if o>(H) - x ( # ) for all subgraphs H of G. He 
conjectures that G is perfect if and only if it contains neither an odd cycle nor 
the complement of an odd cycle. This remains a most vexing problem. 
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The Berge Perfect Graph Conjectures are less well known to the general 
mathematical audience but have played an important role in modern (post 
1945) Graph Theory. Two basic parameters of a graph G are the clique 
number w(G) and the chromatic number x(G). (W(G) is t n e maximal clique 
size-a clique being a set of pairwise adjacent vertices, x (^) is t n e minimal 
number of colors required to color the vertices of G so that adjacent vertices 
are colored distinctly.) Since vertices of a clique must be colored distinctly 
W(G) < x(G)- When does equality hold? Not always-the pentagon has <o = 
2, x — 3, as does any odd cycle. The complement of a cycle of length 2 « + 1 
has co = n> x = n + 1-

Berge also made a weaker conjecture: A graph is perfect if and only if its 
complement is perfect. This result was proven independently by Lovasz and 
Fulkerson in 1972. Let ƒ , , . . . , Im be a listing of the maximal independent 
(i.e., pairwise nonadjacent) sets of vertices on a graph G with vertex set 
{1, . . . , t>}. Consider the following optimization problems: 

yi>'-'>ym > °> z j , . . . , z „ > o, 

2 v, > 1, 1 < / < t>, 2 zi < h l <j <m, 
(*) < e / ; (**) «'s/y 

V V 

minimize 2 y» maximize 2 zt-

If we allow yp zi to range over the nonnegative reals, we create a pair of 
dual Linear Programming problems. The fundamental duality theorem of 
Linear Programming insures that (*), (**) have a common solution T = T(G) . 

If we restrict >>y, z, to be integers (and hence zero or one by the nature of the 
equations), we create two problems in the domain of Integer Programming. 
The solution to (*) is the minimal number of independent sets with union 
{1, . . . , t>} which is simply x(G). The solution to (**) is the maximal number 
of vertices, no two in a maximal independent set. But two vertices are in a 
maximal independent set exactly when they are nonadjacent so the solution 
to(**)isco(G). 

The inequality co(G) < r(G) < x(G) holds for all G. The equality co(G) = 
T(G) = x(6') holds precisely when both Linear Programming problems (*) 
and (**) have integer optima. The statement "G is perfect" was profitably 
expressed in the language of Linear and Integral Programming. These sub­
jects are in the domain of Operations Research and are applied with great 
success (sometimes) in the "real world". Now the tail wags the dog and 
Linear and Integral Programming have yielded valuable techniques for the 
study of Graph Theory. 

The following conjecture of Bollobâs is relatively new. Let G and H be 
graphs on n vertices. Let G have maximal degree a and H have maximal 
degree b. Assume {a + \){b + 1) < n. The conjecture is that copies of G and 
H may be placed onto the same n vertices so that they are edge disjoint. Part 
of the strength of a conjecture is in its implications. Let n = (a + l)(b + 1) 
and let H be the union of (a + 1) disjoint complete graphs on (b + 1) 
vertices. Assuming the conjecture true: If G has maximal degree a then G 
may be (a + l)-colored with each color used the same number of times. This 
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equicoloration theorem has been shown by Hajnal and Szemeredi. 
There are many other subjects covered in this volume and we shall not 

attempt to enumerate them here. The topics covered are generally discussed 
in depth. The book, though self-contained, would be difficult reading without 
some prior basic knowledge of Graph Theory. The pace is brisk and the 
reader is quickly brought to the frontiers of the subject. 

Bollobâs is a fastidious writer. The theorems are precisely stated and the 
proofs are carefully written. The publisher, Academic Press, has done a fine 
job. Most important, Bollobâs is a mathematician who knows his material. In 
section after section he takes a set of theorems and, by appropriate con­
catenation plus some well chosen words of explanation, he creates a Theory. 
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Multidimensional diffusion processes, by D. W. Stroock and S. R. S. Varadhan, 
Die Grundlehren der mathematischen Wissenschaften, vol. 233, Springer-
Verlag, Berlin and New York, 1979, xii + 338 pp., $34.80. 

1. Is it best to think of a 'diffusion* as meaning (i) a continuous strong 
Markov process, (ii) a strong solution of an Ito stochastic differential equation, 
or (iii) a solution of a martingale problem! Both the Markov-process approach 
and the Itô approach (which holds so special a place in the hearts of 
probabilists after the appearance of McKean's wonderful book [7]) have been 
immensely successful in diffusion theory. The Stroock-Varadhan book, devel­
oped from the historic 1969 papers by its authors, presents the martingale-
problem approach as a more powerful-and, in certain regards, more intrin­
sic-means of studying the foundations of the subject. 

The martingale-problem method has been applied with great success to 
other problems in Markov-process theory, both 'pure' (Stroock [10] , . . . ) and 
applied (Holley and Stroock [3], [ 4 ] , . . . ). It has conditioned our whole way 
of thinking about still-more-general processes (Jacod [ 5 ] , . . . ). Moreover, the 
method's ideas and results now feature largely in work on filtering and 
control (Davis [1], . . . ). 

I 'batter' you with the preceding paragraph because the authors make the 
uncompromising decision not 'to proselytize by intimidating the reader with 
myriad examples demonstrating the full scope of the techniques', but rather 
to persuade the reader 'with a careful treatment of just one problem to which 
they apply'. Halmos's doctrine 'More is less, and less is more' is thereby 
thoroughly tested; but if one had to choose a single totally-integrated piece of 
work which in depth and importance shows that probability theory has 'come 
of age', it would surely be the theorem towards which so much of this book is 
directed-or perhaps Stroock's extension of it [10]. Most of the main tools of 
stochastic-process theory are used, after first having been honed to a sharper 
edge than usual. But it is the formidable combination of probability theory 
with analysis (in the form of deep estimates from the theory of singular 
integrals) which is the core of the work. 


