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THE ALGEBRAIST'S UPPER HALF-PLANE 

BY DAVID GOSS 

Introduction. The purpose of this article is to introduce the general 
mathematical community to some recent developments in algebraic geometry 
and nonarchimedean analysis. Let r = pn,p a rational prime. Then these 
developments center around the beginnings of an "arithmetic" theory of the 
polynomial ring ¥r[T] over the finite field of r elements. The goal of this 
theory is to use nonarchimedean analysis to do for Yr[T] what classical 
analysis does for Z. The theory allows us to find direct analogues of many of 
the classical functions of arithmetic interest in a situation that, at first glance, 
seems as nonclassical as possible. In the process much will be learned about 
the polynomials. Much also will be learned about the unique properties of Z 
and the classical functions. 

One of the exciting aspects of the theory is its great generality. Indeed, we 
could replace ¥r[T] with much more general affine rings of curves over finite 
fields. More precisely, if C is a projective, smooth curve over Fr, oo a rational 
point and A the functions regular away from oo, then we may use A instead 
of ¥r[T]. Thus one can, so to speak, get a sense of what analysis might have 
been forced to if Z were not a unique factorization domain. Such observa­
tions can only come in the present setting since Q is the only totally real (i.e., 
all Galois conjugates contained in R) field with a unique absolute-value. We 
have chosen to stick to the polynomials in order to keep the exposition as 
simple as possible. The jump from the polynomials to more general rings is 
not terribly large and most essential features appear for Fr[T]. 

Another exciting aspect is that we begin to see how a given 'arithmetic* 
situation generates an associated harmonic analysis. As classical harmonic 
analysis is based on the integers, the one developed here is based on Fr[T]. In 
contrast to classical harmonic analysis which is multiplicative, i.e., based on 
the exponential function, the one here is based on addition. 

Throughout the paper we compare the theory here with the classical one. In 
this fashion we hope the reader may speedily develop a feel for the subject. 

One of the most surprising (and hotly contested) aspects of classical 
analysis is its harmonic analysis. This centered around the possibility of 
expanding an arbitrary singly-periodic function in terms of sines and cosines. 
Since sines and cosines are easily expressed in terms of the exponential 
function, e(z\ the central role of this function is apparent. 

Viewed on the complex plane, e(z) has the following very well-known 
properties: It is never zero, takes addition to multiplication, is invariant under 
z H> z + 2777 and, finally, it is its own derivative. As a consequence, e(z) gives 
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rise to an analytic isomorphism of the coset space C/(2mZ) with C*. 
Two important facts follow immediately. First, if ƒ is a holomorphic 

function invariant under zv-> z + 2 777, then ƒ descends to a function on C* 
and thus automatically has a Fourier-Laurent expansion in e(z). Secondly, the 
roots of unity are the special values e(a27"\ « 6 Q . Therefore, the simplest and 
most classical number fields arise naturally out of the study of e(z). 

Notice that any rank one Z-submodule of C (i.e., rank-one "lattice") is of 
the form x2iriZ, x £ C*. So studying e(z) is quite general. 

After the singly-periodic holomorphic functions, the next logical object of 
study is the doubly-periodic functions, i.e., "elliptic functions". These are 
functions invariant under z i-> z + /, with / in a "rank-two lattice", i.e., a 
rank-two, discrete, Z-submodule of C. Here many new phenomena are 
encountered: As there are no nonconstant holomorphic doubly-periodic 
functions, one has to study doubly-periodic meromorphic functions. Secondly; 
there are many "nonisomorphic" (see Chapter 3) rank-two lattices. Thirdly, if 
L is a rank-two lattice, C / L (i.e., the associated "elliptic curve", again see 
Chapter 3)_need not have any natural definition over the field of all algebraic 
numbers, Q. (N.B., C* is the affine line minus the origin and so is defined 
over Q.) 

In order to arrive at good "two dimensional" analogues of cyclotomic 
fields, one does the following: One creates spaces (called "moduli spaces") 
out of all distinct isomorphism classes of rank two lattices (with, possibly, 
extra structures). One shows these spaces have the structure of algebraic 
curves. It is then_an important theorem that these curves have very natural 
definitions over Q. (In fact, many important algebraic sets arise over Q in a 
similar fashion. These spaces are commonly called Shimura- Varieties .) 

The key to handling the moduli curves is that they may be described 
analytically as the upper half-plane H = {x + iy E C|>> > 0} modulo the 
action of subgroups of SL^Z). Thus functions on H which are holomorphic 
and invariant under SL^(Z) have a natural arithmetic interest. However, 
invariance is too strong a restriction and so one studies functions that are 
"almost invariant", (see Chapter 4). Such functions are called modular forms. 

From definition, modular forms are invariant under z \-> z + n, some 
n G N. As such, in the fashion described above, they have expansions, called 
"^-expansions" in e^1^^. These expansions are the key to the theory and the 
crucial link between the rank-two and rank-one theories. For instance, the 
coefficients of the most important modular forms always lie in cyclotomic 
fields. 

Finally, one can only fully appreciate the elegant structure of such expan­
sions by using certain linear operators, called Hecke-Operators. These opera­
tors are also important in passing from modular forms to Dirichlet series. 
With the above tools much arithmetic is developed, e.g., quadratic forms, the 
T-function, etc. 

Returning now to the polynomials, let K = F r ( ( l / r ) ) . Our basic fact is 
that Fr[ T] sits discretely in AT, exactly as Z sits discretely in R. Further, A' is a 
complete, nonarchimedean, topological field. So we can use its analytic 
properties to adopt the classical situation to the polynomials. 

It is apparent that the classical successes depend totally on the simple fact 
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of analytic continuation for complex functions. In standard nonarchimedean 
analysis analytic continuation is nonexistent. So, first of all, one needs a 
nonarchimedean theory which has it. Such a theory is called "rigid analytic 
spaces" and is described in Chapter 1. 

Having the power of rigid analysis and with the classical situation in mind, 
the next goal is to find an adequate notion of a "lattice". One is immediately 
led to the following definition (due to Drinfeld): A lattice is a discrete, finitely 
generated, Fr[ !F]-submodule of K. These lattices give rise to algebraic objects, 
called "elliptic-modules", exactly as classical lattices give rise to "elliptic 
curves". 

As any lattice is, by definition, finitely generated, it can be described as an 
increasing union of finite, additive subgroups. This is, of course, a purely finite 
characteristic occurence and is the basis for the constructions given here. 

Associated to rank one lattices, we have an "exponential function". This is 
an entire, nonarchimedean function which is invariant under translation by 
the lattice and which is additive. Such functions play the role of the classical 
exponential function, e.g., certain special values describe finite dimensional, 
abelian field extensions of Fr( T), etc. However, the reader will note that there 
is a small degree of ambiguity here and no one function emerges as THE 
analogue of e(z\ 

For rank two lattices, we can construct affine curves over ¥r(T); just as 
classically we find them over Q. It is crucial that we also have a rigid analytic 
space, %, which plays the role of H. We use here GL2(Fr[r]) instead of 
SL2(Z). Modular forms are then rigid analytic functions with the same 
invariance as in the classical definition. 

As with classical forms, ours have "^-expansions". To compute these we 
develop the additive harmonic analysis. It is based precisely on the finite 
additive subgroups. These expansions also provide the link with the rank one 
theory. 

With the ^-expansions and the introduction of Hecke operators for our 
forms, the classical and finite-characteristic theories diverge sharply. This, no 
doubt, reflects differences in arithmetic whose full meaning will be under­
stood only over time. 

We now summarize the various chapters of this work. 
Chapter 1 presents an overview of rigid analytic spaces. These spaces are 

the global spaces of nonarchimedean analysis; one may, for instance, prove 
for them analogues of the classical comparison theorems of Serre. The use of 
this theory will allow us to conclude many results that otherwise would be 
impossible to prove. 

Chapter 2 introduces our basic object of study, the nonarchimedean space 
%. We summarize the properties of % that are necessary for modular forms. 

In Chapter 3, we restrict our attention to the characteristic-/? case of formal 
Laurent-series fields. We present the basic theorem on algebraization of 
quotients of % by discrete subgroups. Our method is to first explain the 
situation for elliptic modular curves, as this will undoubtedly be more 
familiar to the reader. Then the same reasoning, with appropriate modifica­
tions, carries over to characteristic-/?. 

Chapter 4 introduces modular forms and their ^-expansions. We describe 



394 DAVID GOSS 

how in the nonarchimedean case one can develop a theory of ^-expansions. 
Then we shall show, among other things, the finite dimensionality of spaces 
of modular forms and the existence of bases of these consisting of forms with 
algebraic ^-expansion coefficients. 

In Chapter 5 we present the cusp forms and double-cusp forms. 
The simplest modular forms are the Eisenstein series, and we discuss them 

in Chapter 6. The general ^-expansion computation is then given and one 
detailed example worked out. 

Chapter 7 discusses the Hecke operators for both the elliptic and finite 
characteristic cases. 

Finally Chapter 8 presents some other possible areas of interest. 
For detailed mastery of the results, the reader should have a basic knowl­

edge of algebraic curves in all characteristics (as found, for example, in 
Fulton, Algebraic curves) and a little algebraic number theory, (as found in 
the beginning of Lang, Algebraic number theory). Although not strictly neces­
sary, some knowledge of the classical theory of elliptic modular forms would 
be of great help. 

The author thanks W. Sinnott and M. Tretkoff for their help in the 
preparation of this work. 
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1. Rigid analytic spaces. The theory of rigid spaces is the global theory of 
nonarchimedean analysis. It is a very useful device whose purpose is to allow 
one to perform classical analysis. We shall give the main ideas of the 
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construction so that the reader may have confidence in later developments. 
The construction has three parts. 

(a) Standard nonarchimedean analysis. Let K be a discretely-valued local 
field. Thus, K can be either a finite extension of Qp (the field of /?-adic 
numbers) or a formal Laurent-series field over a finite field. Let | | : K -» R be 
the valuation on K. Then | | satisfies 

l ^ l -M-M (O 
and 

| x + 7 | < M a x { | 4 | > > | } . (2) 

Further, K is complete with respect to the induced metric. Let K be the 
algebraic closure of K. It is well known that | | extends uniquely to K, (see [8], 
for instance). However, K is neither complete nor discretely-valued. We let 
(K)c be its completion under | |. It is a theorem that (K)c is still algebraically 
closed. It is analogous to C in that it is both complete and algebraically 
closed. It is, however, not locally compact. 

The set© = {x Œ AT| |JC| < 1} is compact. From the second property of | | 
we see it is a ring. It is called the ring of integers of K. The set M = {x G 0 | 
|JC| < 1} is thus an ideal. As | | is discrete, M and 0 are both open and 
closed. Thus, 0 / M is finite. As M is maximal, 0 / M is a field. 

Now let 2 ^ = 0 cin be an infinite series with {an} C K. As classically true, for 
there to be convergence an must tend to zero as AZ-»OO. One of the big 
advantages of analysis over K (or any complete nonarchimedean field) is that 
this condition is also sufficient. Indeed let Tn = M a x ^ ^ ^ a , ! } anc* let 
Sj = 2^ = 0

 ai- Then, for m > n, \Sm — Sn\ < Tn by the nonarchimedean prop­
erty of | |. Thus, {Sj} is Cauchy and so converges. 

Now let f(x) = 2 üjX* be a power series with coefficients in K. Let z E K. 
Then a necessary and sufficient condition that ƒ converge at z is that atz

j -> 0 
as I -* oo. Using this notion we see that many of the classical theorems on 
power series are valid. For instance, if ƒ converges at z then it converges for 
all>> G K with |>>| < |z|, etc. 

Now suppose ƒ is entire; i.e. ƒ converges for all z G K. Then, we have a 
very strong form of the Weierstrass Product Formula. We state it below; a 
proof may be found in [10]. For now, we consider ƒ as a function on (K)c in 
the natural fashion. 

THEOREM_1.1. Let f(x) = 2°^ 0
 aix* be an entire function. Then, the zeroes of 

f belong to K. Further, 

S{x) - cxk H O - x/a\ 
0¥=<x 

where a ranges over the nonzero roots (with multiplicity). 

COROLLARY 1.2. An entire Sanction is determined up to a constant by its 
divisor. 

Conversely, once we take into account the Galois action, it is easy to see 
how to construct entire functions by using products of the above type. 



396 DAVID GOSS 

Notice that Corollary 1.2 provides an intrinsic explanation for the well-
known fact that, over Qp, the usual exponential function has a finite radius of 
convergence. A bit later we will construct nonarchimedean entire functions 
that play a role similar to e(x). As a further introduction to standard non-ar-
chimedean analysis, the reader may consult the book of N. Koblitz, number 
58 in the Graduate Texts in Mathematics series. 

The basic difficulty with this form of analysis is that there does not exist a 
straightforward notion of analytic continuation. In fact, let 0* = {x E 0 | 
|A:| = 1}. Then 0* is also compact-open and 0 = 0* u M. Now let ƒ: 
0 -> K be given by /(0 *) = 1 and f(M) = 0. Obviously, ƒ can be expanded 
locally in a power-series; a horrible state of affairs! 

(b) Tate's a/fine theory [13]. The idea of this step is beautifully simple; if 
there were analytic continuation, the "global" functions on 0 would be those 
power series with radius of convergence > 1. These series form a ring, and we 
make rings of this form our first objects of study. 

DEFINITION 1.3. Let Dn = {{xv . . . , xn) E Kn\ \xt\ < 1 for all /} . Dn is 

called the n\h polydisc. 
Note: In this notation, Dx = 0 as a point set. 
DEFINITION 1.4. Let K{xv . . . , xn) be the ring of all formal power-series 

which converge on Dn. 
We know, from above, that a series is in K{xv . . . , xn} iff its coefficients 

tend to 0 as the degree of the monomial tends to oo. 
Since K is discretely-valued, it is not hard to see that K{xv . . . , xn] is 

noetherian. Let J Q K{xv . . . , xn) be an ideal. Any ring isomorphic to 
K{xx, . . . , xn}/J, for some / , is called a Tate algebra. 

Tate's main result about these algebras is that every maximal ideal is of 
finite codimension as a vector space over K. In the case of K{xv . . . , xn] 
this can be interpreted in a geometric (and more classical) fashion as follows. 
Let L be a finite extension of K. We know that | | has a unique extension to 
L. Let (a,, . . . , an) E Ln with \at\ < 1 for all i. Then we have a homomor-
phism K{xl9 . . . ,xn} -* L given by xt -» at all i. The kernel is a maximal 
ideal. Tate's theorem then says everyjnaximal ideal arises in this fashion. Of 
course, if o is an automorphism of K over K, the elements (al9..., an) and 
(a(tf j), . . . , o(an)) give rise to the same ideal. Thus, we see that the ring 
K{xl9 . . . , xn] "represents" the polydisc via its maximal ideals; these corre­
spond to the quotient of the polydisc over K (= {(xv .. . , xn) E (K)n\ \x;\ < 
1; all /}) by the Galois action. For any Tate algebra B we let Max(2?) be the 
set of its maximal ideals. We no*w see that Max(J9) is, in general, some 
analytic subset of a polydisc; i.e. is given by analytic equations. 

From this approach one can prove corollaries in analysis. We cite two, and 
we refer the reader to Tate's article for the proofs. The first is the following: 
Let B be a Tate algebra containing no nilpotent functions (i.e. xn = 0 iff 
x = 0; B is said to be "reduced") and let {ƒ„} be a sequence in B. Suppose 
that on Max(JB) this sequence is uniformly convergent. Let f(z) = \im{fn(z)} 
for z E Max(£). Then, the first fact is that ƒ E B\ i.e. uniform limits of 
analytic functions are analytic. The second fact is that an element ƒ E B 
which is never zero on "geometric points" has a reciprocal in_2?. (A geometric 
point is a point in the analytic subset of the polydisc over K that is given by 
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the zeroes of the equations defining B.) In other words, a function which has 
no zeroes in any extension of K has a holomorphic reciprocal. 

Taking his cue from algebraic geometry, Tate makes the spaces of maximal 
ideals his basic "affine" objects of study. Let Bx, B2 be two Tate algebras and 
<ƒ>: Bx -> B2 an algebra map. Then we get an associated map <f>*: Max(i?2) -» 
Ma.x(B{) by taking the inverse image of maximal ideals. We thus define the 
morphisms of affine rigid spaces as being dual to algebra maps of the 
associated Tate algebra. We call the Tate algebra the algebra of rigid 
functions. 

Affine subspaces of affine spaces are defined by "representation." More 
precisely, let Y be subset of X = Max(2?). Suppose we have another Tate 
algebra 2?„ with a map <j>*: Max(Jö1) -» X (dual to <j>: B -> Bx) such that: (1) 
<f>*(Max(51)) ç y, (2) If B2 is a third Tate algebra having a map <£f: 
Max(i?2) —> X with image in Y9 then there exists a unique map <f>2: Bx-> B2 so 
that the following triangle is commutative. 

<t> fBx \ «h 

B > B2 

If such a Bx exists we say that Y is an affine subspace of Max(J5) and denote 
Bx by i? r . Notice that by the universal property Max (BY) c^ yas point sets. 

For example let B = K{Xl9 . . . , Xn}/(fv . . . , f J, f G B and c 6 l 
Then the place where \f(x)\ < \c\ in Max(2?) is represented by 
K{Xl9...9Xn9y}/(fl9...9fm9f-yc). 

If Y0, 7, are two affine subspaces of Max(2?), then Y0 n F is also. The 
associated algebra is the "completed" tensor product, BY ® BY, i.e., we take 
the tensor product and then include all uniformly convergent limits. 

(c) Globalization ([6], [7]). The final step is to put the affines together in 
such a way as to force analytic continuation. The idea here comes from the 
following theorem of Grauert and Gerritzen (see [5]). 

THEOREM 1.5. Let U = Max(J5), be an affine rigid space. Let {Ut} be a 
covering of U by a finite number of analytic affine open subsets. Then { Ut} has 
an acyclic Cech complex. 

In down to earth terms, the theorem says we may define functions locally; 
i.e., if {f } is a set of rigid functions on the Ut which agree on overlaps, then 
they give rise to a rigid function on U. The example in (a) is ruled out because 
the set {x G K\ \x\ < 1} can not be covered by a finite number of affines. 

Finally, then, a rigid analytic space is a space X together with a given 
covering {Uj} of X by affines and the following axioms on the use of this 
covering: 

(1) Let U Q X. We say that ƒ is a rigid function on U iff for all V affine, V 
an affine subspace of Ut some i and V Q U9 we have ƒ is rigid on V. 

(2) Let U Q X: We say U is admissible iff there is a covering {Vf} of 
U n Ui9 all /, of affine subspaces of 17, so that if V Ç U n L̂  is the morphic 
image of any affine then V is contained in a finite number of the {Vj}. 
(These spaces are the correct ones for patching.) 
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(3) Let y, U be two admissible subsets of X. Then we say that { 7, U) is an 
admissible cover of U u Y (and so we can patch functions) iff for every affine 
subspace V C Ui9 some /, with V Q U u Y, the covering of K, obtained by 
the coverings of V n U and V n Y, may be refined to a finite affine cover. 
The general notion of an admissible covering by an arbitrary number of 
admissibles is similar. 

One can only patch functions on admissible subsets in the fashion given by 
(3), or else we should have far too many functions. Our definitions are the 
minimum that we could have in accordance with Theorem 1.5. The reader 
should note that with our axioms rigid spaces are examples of spaces with a 
"Grothendieck Topology". 

Morphisms of rigid spaces are mappings pulling rigid functions back to rigid 
functions. 

For instance, A£ may be given a rigid structure by taking as our covering 
discs of increasingly large radii. Further, any projective variety has a rigid 
structure involving only finitely many affines. On projective varieties the 
G.A.G.A. theorems of Serre hold (see Kiehl [6]) e.g., a meromorphic function 
is an algebraic function (of course the reverse is also true). 

Let A" be a rigid analytic space defined over K. Suppose that X is reduced 
in that it has no nilpotent functions. We say that X is connected iff a rigid 
function with zero Taylor series at a point is everywhere zero. We say X is 
geometrically connected iff it is connected when viewed as an analytic space 
over all finite extensions L of K. 

The moral of the construction is this: We have seen the main problem is 
the existence of too many open sets. So, we reduce the number of "admissi­
ble" open sets until we force analytic continuation. Then, as often happens 
with modern algebra, it's "the good old days" again. 

2. The algebraist's upper half-plane. We now introduce our basic rigid 
analytic space. Recall that the classical upper and lower half-planes can be 
described as {x G C|x_£ R}. This definition also makes sense for local 
nonarchimedean fields K\ ____ 

DEFINITION 2.1. We set % = {JC e AT|JC & K). % was originally in­
troduced by V. G. Drinfeld in [1], (and^enoted Œ2). 

As a point set, % is clearly open in K; K being equipped with the topology 
induced by | |. Further, % has an action of GL2(A:) on it: Let g = (a

b
c
d) e 

GL2(K). Then (g,z)*-> (az + b)/(cz + d). 
Drinfeld shows the following (see [1]). 

THEOREM 2.2. (a) % has a rigid analytic structure on it as an admissible open 
in A1. This structure is defined over K. 

(b) The action of GL2{K) extends to rigid analytic isomorphisms of %. 
(c) % is a geometrically connected rigid analytic space. 
(d) Let T Q GL2(K) be a discrete group. Then the quotient space T\%, as a 

point set, may be given a natural rigid analytic structure. The natural map 
% -» T\3C is a mapping of rigid spaces. 

The quotient in (d) is constructed by finding an admissible affine covering 
of % which is permuted around by T and which has finite isotropy at each 
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affine. One is thus immediately reduced to the simple task of finding 
quotients of affine spaces (i.e., Tate algebras) by finite groups. 

As DC is a rigid open subset of A1, it is smooth. Thus T\% is normal and, 
being one-dimensional, also smooth. 

DEFINITION 2.3. For x G %, let d(x) = MinaGA:{|jc - a\). It is clear that 
for x G DC, d(x) ^ 0. Further, the places where d(x) is constant are seen 
easily to be open. In [2], the following is shown. 

PROPOSITION 2.4. (a) Let c G R. Then the subspace of % given by 
{x G %\d(x) > c) is a rigid analytic open subset of %. 

(b) Let I ' G N + and Ut = {x G %\d(x) > 1//}. Then, to show a sequence of 
rigid functions on % converges to a rigid function, it is sufficient to show it for 
Ui9 all i. 

EXAMPLE. Let c G K, with \c\ < 1. To give a feel for the rigid structure on 
%, we show how to represent the space V = {x G %\ \x\ < 1 and d(x) > \c\). 
First, note that Dl n K = 0 is compact. Let {bv . . . , bn) be a collection of 
elements in 0 so that for any x G 0, there exists i with \x — bt\ < \c\. Then 
V is the affine open given by \z — b\ > \c\, all /. Indeed, V is clearly 
contained in this space. Now, let x be in this space. Suppose d(x) < \c\. Let 
a G K with \x — a\ < \c\. Clearly \a\ < 1. Further, for some /, \bt — a\ < \c\. 
Therefore, by the nonarchimedean property, 

\x — bt\ = \x — a + a — bt\ = Max{|x — a\9 \a — &,-|} < |c | . 

This is a contradiction. 

3. The classical theory and the theory over a formal Laurent-series field. 
(a) Summary of the classical situation. Although % is defined for any 

nonarchimedean local field, it is especially interesting in the case where K is a 
formal Laurent-series field. The reason for this lies in the existence of many 
interesting discrete subgroups of GL2(K). Indeed, let C be a smooth, projec­
tive curve, k the function field and oo a point with k^ (i.e. the completion of 
k at oo ) isomorphic to K. Further, let A be the Dedekind ring of functions on 
C holomorphic away from oo. Then, GL2(A) Q GL2(K) is a discrete sub­
group. 

For simplicity of exposition, we now let k = Fr(!T), A = Fr[T] and oo the 
point at infinity on P1. From the division algorithm we see ¥r[T] is a p.i.d.; so 
all torsion free finitely generated modules are free. For i G Fr[T] we let £>(/) 
be its degree. 

We see the situation parallels the classical situation: Fr[T] plays the role of 
Z, ¥r(T) the role of Q, k^ = K the role of R and GL2(^) the role of SL2(Z) 
(acting on H, the classical upper half-plane, in the usual fashion, ((£ c

d)9 z) -» 
(az + b)/(cz + d)). 

DEFINITION 3.1. (a) In the classical situation, let T = SL^Z). If ƒ ç Z is a 
nonzero ideal we set T(J) = Ker{r -» SL2(Z//)}. 

(b) In the nonarchimedean situation, let T = GL2(A). If J C A is a 
nonzero ideal we let T(J) = Ker{T -> GL 2 04/ / )} . (Notice T((l)) = T is both 
cases.) 

Such subgroups are called principal congruence subgroups. 
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In the case of the principal congruence subgroups of SL2(Z), an enormous 
amount of information is known, (see [12]). We summarize some of this in the 
following theorem. 

THEOREM 3.2. Let G be a principal congruence subgroup of SL2(Z). Let 
XG = G^H. Then (a) XG is a smooth Riemann surface. It may be compactified 
to a smooth compact Riemann surface by adding a finite number of points 
{called cusps). These points are in one to one correspondence with G\Pl(Q) 
(e.g. for SL2(Z) there is one cusp, etc). 

(b) XG may be given a natural structure as an affine algebraic curve defined 
over some cyclotomic field. 

The idea behind the proof of (b) lies with the interpretation of XG as 
parametrizing isomorphism classes of "elliptic curves". More precisely, let 
T E H. Then, the Z-submodule of C, LT = Z + ZT is a rank two "lattice"; i.e. 
it is discrete and of rank two as Z-module. It is easy to see that a general rank 
two lattice may be written r(Z + ZT) with r E C*. We shall see in a moment 
that the lattices Z 4- ZT and r(Z + ZT) define isomorphic objects. Thus, we 
will be able to confine ourselves to LT, T E H. The map LT -> rLT is called a 
homothety. Now C/LT is a compact Riemann surface that may be given the 
structure of a nonsingular cubic in P2(C). The induced Z-module structure on 
C/LT may be transferred to the cubic. Further, on the cubic the structure is 
given by polynomial equations. In other words, the analytic space C/LT may 
be given a purely algebraic interpretation as a cubic with addition. Such cubics 
are called elliptic curves and it is a theorem that, over C, all such cubics arise 
from rank two lattices. Now let r E C*. Then r gives rise to an isomorphism 
C/LT->C/rLT. The same is true for the corresponding cubics and any 
isomorphism arises this way. Therefore, since the underlying isomorphism 
class of the elliptic curve depends neither on a basis for the lattice, nor its 
homothety class, we see that SL2(Z)\if parametrizes isomorphism classes of 
elliptic curves over C. 

Suppose « E N and let E be an elliptic curve over C. Further, let E[n] = 
{x E E\n • x = 0). From the description of E as C/LT, for some T E // , we 
see E[n]-> Z/(n) © Z/(n). A level (n)structure is a choice of basis for this 
free Z/(«)-module. One sees as above that, over C, T((n))\H parametrizes 
elliptic curves with level (w)-structure. 

Now the concepts of elliptic curve and level structure make sense over Q. 
As these concepts are algebraic, all isomorphisms can be made over finite 
extensions of Q. Therefore, the relations characterizing isomorphism classes of 
elliptic curves with level (n)-structure are definable over finite extensions of Q9 

(in fact, cyclotomic fields). Since these relations are precisely the underlying 
equations of Xr((n)) we have succeeded (modulo rigorous proof!) of giving 
Xr^n)) the desired algebraic structure over Q. 

If we use the same arguments for rank one lattices c C, we would be 
describing cyclotomic fields. Indeed, the usual exponential function e(2) gives 
an isomorphism C/ÇL™ * Z)-»C*, and the division points are precisely roots 
of unity. 

(b) The Laurent-series case. We now return to the characteristic-/? case. 
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Here, we want to follow exactly the same program as for SL2(Z), so it is 
necessary to create the analogues of elliptic curves, etc. 

It will be convenient to handle the ranks one and two cases together. We 
shall be rather brief; for more information in the very simple case of Fr[T] 
the reader can consult [4]. (Note, in [4], only the rank one case is discussed. 
However, the general case is exactly the same.) 

Our first definition is a direct carry over of the classical one. Recall, that 
k^ has the topology induced from | |. 

DEFINITION 3.3. An A -lattice M is a finitely-generated, discrete A -submod­
ule of k^. Its rank is the rank of the underlying free module. 

By discrete we mean that the intersection of M with every ball around the 
origin is finite. One can see that every rank one lattice is of the form Ai with 
i G /cj>. Any rank two lattice is of the form i{A + AT) with / G ^ J , and 
T G %. (As with Z, we shall eventually only need to confine ourselves to 
lattices of the form LT = A + AT, T 6 5C.) 

Now let L be a rank one or two lattice. As a group we can form k^/L. 
The fundamental fact is, like over C, k^/L has an algebraic structure. The 
construction goes as follows: Form the function 

eL{z) = z Et {\-z/a). 
0 ^ a 6 L 

Because L is discrete, the results in Chapter 1, §(a), tell us eL is entire as a 
function defined over some finite extension of k^. It's most basic property is 
that it is additive. Indeed, we can write L = U Li9 where Lt is a finite F r 

vector space. Thus, eL(z) = lim e^(z) where e^ is formed in the obvious 
fashion. By definition, e^z) is a polynomial whose roots form an additive 
group. It is classical that eL{z) is additive; e^(z + y) = e^z) + e^y). Thus, 
eL(z) is also additive and even Fr-linear. Its derivative, e'L{z\ is identically 1. 

Thus, eL gives an isomorphism of groups, k^/L-^k^. So, as we did for Z 
and complexjattices, we can use eL to carry over the A -module structure on 
k^/L to k^. We shall denote this by (a, z)\-*a*z; a G A, z G A:̂ . By 
definition, eL{az) = a*eL(z). But eL(az) and 

aeL(z) I I (1 - eL(z)/eL(a)) 
aŒa~lL/L 

have the same divisors and derivative. So, by Corollary 1.2, they are equal. 
Therefore, we have the basic formula, 

a*y = ay Ü ( l - ^ a ) ) . 
aŒa~lL/L 

In particular, f *y = £y for f 6 F r . 
Now let F be the rth power map; i.e. F(z) = zr. Let k^F} be the 

polynomials in F; 2 tf/F'. Under composition, these polynomials form a ring. 
This ring is noncommutative since (aF)(bF) = ab2F2 etc. Nevertheless, via 
eL, we have constructed a homomorphism <j>: a-+<j>(a) = a*( ), from A to 
^ { F } . (So, to compute <p(T2) we compose <f>(T) with itself, etc.) This 
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homomorphism is even Fr-linear. By counting the number of elements in 
a~ lL/L -> (A / (a))™nk L, and setting d = rank L, we see we can write 

dD(a) 

<j,(a) = a*() = aF° + 2 ^ <h ^ *«» ^D(a) * 0. 
/ = 0 

Finally, as <f> is Fr-linear, it is determined by 
d 

<J>(r) = TF° + 2 aifi-
i = 0 

lfd = 1, 

<HF) = FF° + aF; Û E £*,. 

If rf = 2, 

* ( r ) = FF° + ^ F + a2F
2; ax G *„ , a2 G *£. 

The rank of <f> is defined to be the rank of the corresponding lattice. 
The wonderful fact, of course, is that <f> is a purely algebraic object. It makes 

sense over any field containing k. Via it, k^ acquires a new A -module 
structure, (a, z) H» <$>(a){z). Such modules are called elliptic or Drinfeld mod­
ules. As in the elliptic curve case, one can prove that all such modules arise 
from lattices. Further, homothetic lattices give rise to isomorphic modules, 
etc. 

EXAMPLE 3.4. We shall present here the details concerning a particular rank 
one elliptic module C, given by C(T) = TF° - F. This module was studied 
by Carlitz in the 1930s; see [4]. First of all, we want to describe eL, where L is 
the lattice corresponding to C. For i G JV, let [/] = Tr' — T. Further, let 
D0 = 1 and Dt = [If' • • • [/] for i > 0. From the fact that eL is Fr-linear we 
see its derivative, e'L(z), is identically 1. Thus, eL(z) — z + S J ^ ctz

r. From 
the equation 

eL(Tz) = T(eL(z)) - eL(z)r, 

we find, by induction, 
oo rh 

h = 0 Uh 

Now, let X = n?li(l - [/]/[/ + 1]). Note that X is a unit at oo, i.e. | \ | = L 
Let a be any (r — l)st root of [1]. We set X = aX. One can show L = F r[F]\ 
and that X is transcendental. (In [4], X is denoted by TT.) Notice that L is 
invariant of the choice of a. 

From our discussion, we see eL is very similar to the classical exponential 
function. Also X is strikingly similar to 2m. 

We could just have easily worked with the modules Q , f G F*, given by 
Cç(T) = TF° — f F. We leave the easymodifications to the reader. 

Let a G A and let E =̂ (<ƒ>), <£] A -» / ^ { F } , be an elliptic module of rank d. 
Let E[(a)] = ker(<j>(a): k^ -» fc^). F[(fl)j is a natural yl-module. From the 
analytic description, E[(a)] ^ A /(a) © • • • © A /(a), where A/(a) appears 
m times, m being the rank of <j>. A level (a)-structure is a choice of basis for 
this free A /(a)-module. 
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Now, with the above algebraic objects, we can simply repeat the discussion 
given for principal congruence subgroups of SL2(Z) to conclude the following 
theorem in the case of rank-two lattices. 

THEOREM 3.5 (see [1]). Let G be a principal subgroup of GL2(A). 
(1) G\% = XG is smooth and may be given a smooth compactification by 

adding a finite number of points called cusps. These points are in 1 :1 
correspondence with elements of G\Pl(k), (e.g. GL2(A) has only one cusp etc.). 

(2) XG can be given a natural structure as an affine curve over some finite 
abelian extension of¥r(T). 

We also point out that in the rank-one case, these ideas may be used to 
describe interesting "cyclotomic" abelian extensions of k. For the general 
construction see [1]; for the simpler case of Fr(T], see [3] and also D. Hayes, 
Trans. Amer. Math. Soc. 189 (1974), 77-91. 

4. Modular forms and ^-expansions. 
(a) The classical case. Recall the classical definition of a weakly modular 

form, ƒ, of weight k for T((n)). This is a holomorphic function f on H such 
thatifg = ( ^ ) G r ( ( « ) ) , t h e n 

Note that because of the action of the units in Z, if ƒ is nontrivial and n = 1, 
then k is even. 

In particular, ƒ is invariant under the map z H» Z + n. Thus, ƒ has a Fourier 
expansion 

2 Cj(e(2™/n)y\ 

More generally, if b is a cusp, we can find gb E SL^Z) so that gb(b) = oo. Let 
^ _ 1 = (^) .Then, 

is also invariant under z ^ z + «, Thus it too has an expansion in e*2™*/̂ , 
called the expansion at b. When there will be no confusion, we denote e(2w,z/w) 

by? . 
We now say ƒ is modular iff all the expansions have only finite poles. We 

say ƒ is holomorphic iff all the expansions have no negative terms. Finally, we 
say ƒ is a cusp form iff ƒ is holomorphic with value 0 at each cusp. 

The theory of such functions is very successful and a great deal is known 
about them. The next theorem summarizes a small part of these results (see 
[12]). 

THEOREM 4.1. (a) The vector spaces of holomorphic forms of a given weight 
and level are finite dimensional. 

(b) There is a basis of such spaces given by forms whose expansion coefficients 
are algebraic, (in fact cyclotomic). 
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The proof of (a) lies in showing these forms are holomorphic global 
sections of a line bundle on the compactified modular curves. One then 
appeals to a G.A.G.A. principle to see that these sections are then given by 
algebraic maps. Finally then, one knows that spaces of global sections of line 
bundles are finite-dimensional. The dimension can often be computed by the 
Riemann-Roch theorem. 

Recall that every modular curve has a definition over some finite cyclo-
tomic extension of Q. The proof of (b) lies with showing that the line bundle 
also has a definition over the same field. Now, one has an algebraic interpre­
tation of ^-expansions, via the so-called Tate elliptic curves. We will not give 
the details except to say that its purpose is to completely reflect the algebraic 
properties of modular forms. Further, our line bundle certainly has a basis of 
global sections defined over the cyclotomic field. So, finally, we see the 
existence of the required forms. 

(b) The Laurent-series case. In the case of % and k^, we use the same 
definitions. Let / be a nonzero ideal of A. Then, a weakly modular form, of 
weight k, level ƒ is a rigid function ƒ: % —> A1, defined over some finite 
extension of k^, so that if (a

b
 c

d) E T(I) then 

Notice that, as with SL2(Z), for GL2(A) the weight must be divisible by 
(r — 1) in order for there to exist a nontrivial form. 

In particular, for GL^/l), we see/ is invariant under automorphisms of the 
form z->Çz + a; { 6 F r * , a GF r [7] . In the level /, l^A, case, it is 
invariant under translations z -» z + a; a G I. 

For convenience we will work first in the level I, I =£A9 case. Here, we can 
associate expansions to ƒ in the following manner: We view ƒ as a rank one 
lattice and we form the function 

e j z ) = ei{z) = z I I (1 - z/a). 

Since e^ is additive, it. is invariant under translations 

z -^ z + a; a G ƒ. 

We let q^z) = e j z ) " 1 . Recall e'^O) is identically 1. Thus by logarithmic 
differentation, 

«coW-TT^-s^ + ar1. 
Therefore, as d(z) -> oo, q^z) -^ 0 uniformly. 

Now let L be a finite extension of k^. 

THEOREM 4.2. Let g(z) be a rigid analytic function on % defined over L and 
invariant under the maps zH»z + a ; a G / . Then g has an expansion 

2 anq"x(z); {a'n} Q L. 
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Further, this expansion converges in a nontrivial disc with the origin removed. 

For a proof, see [2]. 
Thus, we deduce ^-expansions at oo for our modular forms. We handle the 

cusps as we did for SL2(Z), making sure to choose gb G SL2(A) so as to avoid 
any complications. 

For GL2(A), there is a small modification. We set 

ex(z) = II (1 - z/a), g j z ) - 1 and ^ = <&-». 

The point is that for f e F*, g^iÇz) = f ~xg^{z). Thus the (r - l)st power is 
necessary in order to have a function invariant under 

z-*lz + a; ? G F > G A. 
We then say a weakly modular form is modular iff at every cusp the 

expansion is finite tailed, etc. Further, we can show the existence of a line 
bundle on the compactified curves so that holomorphic forms are sections of 
this bundle. We then can argue as before, using a G.A.G.A. principle to 
conclude the finite dimensionality of the vector spaces of forms. 

However, to get the maximum amount of rationality information we have 
to alter our definitions slightly. For the clue on how to proceed we return 
briefly to the classical case. Recall that the exponential function has rational 
Taylor coefficients at the origin. However, it has period 2m. To arrive at the 
"correct" uniformizer e(27Tiz\ we composed e{z) with the map z -» liriz. Now 
let / = A and consider the function eL{z) of Example 3.4. Recall that it has 
rational (i.e. GFr(T)) Taylor coefficients at the origin^ Recall further that 
L = X-A. Therefore, we define_ ^(À, z) to be eL(Xz\ goofc z) t o ^ e 

e^iX; z)~l and q^iX; z) to be gJ<X\ z) ( r - 1 ) . (There are appropriate modifica­
tions in the case of level I ^ A.) The _above process is called normalization. 

The effect of changing e^(z) to ej^\ z) merely multiplies_e00(z) by X; i.e. 
e^X; z) = Xe^z), etc. Further, if ƒ = 2 anq^ then ƒ = S ^ ( À ) ^ - 1 ^ ; z)\ 
However, with this modification one can now proceed as classically to deduce 
the following theorem (see [2]). 

THEOREM 4.3. (a) The vector spaces of holomorphic forms of a given weight 
and level are finite dimensional. 

(b) There is a basis of such spaces given by forms whose normalized expansion 
coefficients are algebraic. 

Again we may just as easily work with the modules (Q). One sees easily 
that what is intrinsic is the fractional ideal (or finite divisor) generated by the 
coefficients. Thus, the coefficients may be thought of as geometric objects. 
The full impact of this fact is not yet clear. 

5. Cusp forms and doubie-cusp forms. Let n G N and a = (a
b

c
d) G T((AI)). 

Thus, a(z) = (az + b)/(cz + d). Since det(a) = 1, we see 

d(a(z)) = dz/ (cz + df. 

Therefore, if ƒ is a form of weight 2, level (n), ƒ dz is an invariant differential; 
i.e. is a differential form on XT(,n)). Now let b be a cusp and q the uniformizer 
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there. One has dq = cq dz for some nonzero constant c. Therefore, dz = 
dq/cq, and if ƒ is a cusp form then f dz is & holomorphic 1-form on the 
compactification of XT^n)y The converse is easy to see. So we have 

THEOREM 5.1. The dimension of the space of cusp forms of weight 2 is g, 
where g is the genus of XT^n^. 

In the function field case, we need to have level I ¥=A structure in order to 
have determinant equal to 1. This amounts to the easy observation that F* 
injects into ¥r[T]/L Under this assumption, if ƒ is a form of weight 2, level /, 
then fdz is an invariant differential. Now let b be a cusp and qb the 
uniformizer at b. Since e'b is identically 1 and qb = eb~

l, we find 

dqb = -1 qldz. 

Thus, if ƒ is a holomorphic form with two zeroes at each cusp, ƒ dz is a 
holomorphic differential on the compactification of XT^y 

DEFINITION 5.2. A holomorphic form of level ƒ, is a double-cusp form iff it 
has a double zero at each cusp. 

Thus, 

THEOREM 5.3. The dimension of the space of double-cusp forms of weight 2, 
level I, is the genus of XT^y 

The concept of double-cusp form seems to have little utility in the case of 
the full group GL2(A). However, any cusp form for the full group becomes 
double-cuspidal at each level I =£A. 

6. Eisenstein series and additive harmonic analysis. 
(a) Classical Eisenstein series. Our purpose here is to discuss Eisenstein 

series and their expansions. In the function field case, this will lead into a 
discussion of "additive harmonic analysis". 

The simplest examples of modular forms for SL^Z) or principal con­
gruence subgroups, are the Eisenstein series. They are defined as follows. 

DEFINITION 6.1. (a) For SL^Z) let k > 2. We set 

E2k{z) = 2 ' (cz + dY2k 

(c</)ezez 

where 2 ' means summation over nonzero elements. 
(b) Let n > 2 and let (0, 0) ^ (Ö0, ax) G Z/((n)) 0 Z/((«)). Let k > 3. 

Then, for level («), we set 

Ek(z; a& ax\ n) = 2 (cz + <0~*« 
c=ao(n) 
d=ax(n) 

It is classical that these series are holomorphic on H. It is further easy to 
see they satisfy the correct modular rules. From classical cotangent formulae 
one computes their ^-expansions (see [9]). We recall these below. 
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THEOREM 6.2. (a) 

« E N Vz /C U - n = l 

wAere a„(n) = 2 r f | n ; d > 0 dv. 
(b) Le? ? = e°-mz/n). Then Ek(z; a0, a,; n) = 2 £ . 0

 ax^A. " ^ e 

f0 ifa0*ÊO(n) 
a ° = S a"* iy«0 = O(/i) 

I a=a 0 ( / i ) 

and, for X > 1, 

nK(k - 1)! m(,-x 
m=a 0 (« ) 

Note that our computation in (b) is only at oo. But, passing from oo to 
another cusp permutes the Eisenstein series. Therefore, our computation is 
sufficient. Thus, the Eisenstein series are holomorphic forms. Further, it is 
apparent that upon dividing by powers of TT we obtain rational coefficients in 
(a) and algebraic coefficients in (b). 

(b) Characteristic-p Eisenstein series. Now we pass to the characteristic-;? 
analogue. We shall see that the theory here seems to behave very differently. 
In fact, not much specific information about the ̂ -expansions is known. We 
will content ourselves with sketching the computation and presenting a few 
properties. 

DEFINITION 6.3. (a) For Gh2(A\ we set 

*(,-!,*(*) = 2 ' (« + <0~(r_1)*. 
{c,d)E:A®A 

(b) Let / =£A be an ideal and (0, 0) ̂  (a0, ax) ŒA/I&A/I. Then, for 
level /, we set 

Ek(z; a0, ax; I) = 2 (c z + <*)"*• 

The function g(z) = cz + d is rigid analytic and never zero on %, so 
(cz + d)~l is rigid analytic. Further, (cz + d) = c(z + d/c). So, |cz + d\ = 
|c| |z + <//c|. As rf/c G Fr(T), \z + <//c| > d(z). Thus |cz + rf| > |c| d(z) -+ 
oo as |c| -» oo. By the nonarchimedean property of | |, we see our series 
converge uniformly on Ui9 as defined in Proposition 2.4.b, and so define 
weakly modular functions on %. 

(c) Additive harmonic analysis. In order to actually compute the ^-expan­
sions, we need to discuss a harmonic analysis based on addition. Our main 
computational tool will be the classical formulae of Newton, which we now 
recall. (The reader may verify them as an exercise.) 
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6.4. NEWTON'S FORMULAE. Let f(x) = xn + axx
n~l + • • • +a„ fce a poly­

nomial and let ax, . . . , an be its roots. Further, let Sk = ax + • • • + a*. 7%e/î 
(a) Sk + axSk_x + • • • +a jfe-1S1 + fai* = 0, A: = 1, . . . , n 
(b) Sk + axSk_x + • • • + a ,A-„ = 0, /c > ». 

Now let M be a finite F r vector subspace of k^, \M\ the number of 
elements in it, eM(z) = z l l ^ e . J l - z/a)9 Qh(z) = 2 a e A / (z + a)""* and 

PROPOSITION 6.5. TTzere is a monic polynomial, of degree h, Ph(x), such that 
Ph{eM) = Qh. Further, Ph(0) = 0. 

CONSTRUCTION PROOF. Let w be another transcendental element. Then, 
since eM{z) is an additive function, we see 

e„(w - z) = eM(w) - eM{z) = (w - z) ü (l - ^ = ^ 1 

So, as a polynomial in w, eM(w) — eM(z) has roots z + a, a G M. 
Now set logr \M\ = e and eM(z) = 2 / = = 0

ö / z r - Then, l / (z + a) is a re­
ciprocal root of 

^ ( w ) - eM(z) = 2 «/w'' ~ eM(z). 

Therefore, by simple algebra, l / (z + a) is a root of 

Newton's formulae now finishes the proof. 
As a corollary of the proof, we see that the coefficients of Ph are polynomi­

als in the coefficients of eM. Further, we can see by construction that 
Ph(x) = xh, for 1 < h < r. In particular, we obtain a different proof of the 
fact that eM(zyl = S a G M (z + a)" 1 . 

Now let N = Fr[ T] • x for some x G k* and let ^ ( z ) be the associated 
function. We set, as rigid meromorphic functions, Qh(z)' = 2a€EN(z + a)~ / l 

a n d ^ ( z ) = eN(zy\ 

PROPOSITION 6.6. There exists a monic polynomial, Ph, so that Ph(qN(z)) = 
fi*(*). 

CONSTRUCTION PROOF. Write N = U Nt with a finite F r vector space. 
Thus all our functions are limits of their iV-analogs. Now notice that once 
\Nt\ > h, the formula given above for the coefficients of Ph in terms of the 
Taylor series of eN(z) is invariant of Nt. Further, passing to the limit causes 
no problem. Thus, we can use this formula on eN to find Ph. 

COROLLARY OF PROOF 6.7. If eN has coefficients in afield K, then so does Ph. 

(d) q-expansions in finite characteristic. We can now compute the expan­
sions of the Eisenstein series. We shall first give a very general formula, then 
work out an example in detail. Thus, let ƒ be a nonzero ideal, which may be A 
itself. Let (a0, ax) E A 0 A and, for now, put 

E{z) = 2 ' (cz + d)~\ 
(c,</) = (a0,ai) (mod ƒ) 
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Let g^{z) = 2a6E/(z + a ) - 1 = ^ ( z ) - 1 . Finally, let Ph be chosen as in Pro­
position 6.6 for N = I. Now if a0 = 0(7), then 2</=:fl ( / ) d - 7 is the constant 
term. Otherwise, the constant term is zero. Next suppose c ^ O ; then 
2<,=«l(/)(c* + <0~* = *"%=«,</)(* + rf/c)-*. We let {*<} be representa­
tives of I/cI. So, by Proposition 6.6 we have, 

2 (z + rf/c)-*- 2 2 ( * + ^ + ^ + «)~* 

-{?/.(4+M)). 
Suppose //,(•*) = 2*» i fy*-7'. Then the last sum is 

2 2 bjgj^z + fll/c + x ' / c y . 

But, 

ôo(z + a\lc + */A) = ^ 0 + öiA + x'/cVl 

= goo(z)(l + g J z ^ J z ^ J ^ / c + xf/c)y\ 

Thus, the geometric series allows us to expand g^{z + ax/c + x ;
c/c) as a 

power-series in g^, and thus to expand its powers. Summing over c gives us 
the expansion of E(z) in terms of g^. Note that in the case / = A, the 
uniformizer at infinity is q^ = g£~ °. However, since E($z) = £(z), g<JSz) = 
f ~ ^oo(z), for f G F*, we see that the above expansion ends up in terms of 
q^. In the case I¥=A, g^ = q^. Finally, reasoning as for congruence 
subgroups of SL2(Z), we see that this computation is general. We have shown 

THEOREM 6.8. The Eisenstein series are holomorphic at the cusps. 

EXAMPLE 6.9. Let I — A and j = (r - 1). Our function then is the first 
nontrivial Eisenstein series Ey We have mentioned that Pj(x) = x ( r _ 1 ) and so 

Ej{z) = 2 c-J + 2 qj.cz). 
c=^0 c = 0 

Now it is often possible to go the general computation one step further; to 
directly, give the expansion in terms of q^. We shall do this here. It is based 
on the following lemma that the reader may easily check. 

LEMMA 6.10. Let b = x~(r~l\ Then 

£eF* ° l 

F* acts on I/cI and we let {xf} be a set of representatives of F * \ ( / / c / ) ; 
i.e. of the associated quotient classes. Since e^ is Fr-linear, we have 

2 (ejz + xf/e))-*-" = 2 2 (ejz) + Sejxf/c))-*-». 
if) {*?} ^e F? 

qj.cz
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We now put x = eO0(z)/eo0(xf/c), use the lemma and then the geometric 
series to conclude, 

f W ) 

Notice that if c is not a unit, then the number of nonzero elements in {xf} 
is = 1 (r); so q^icz) has at least two zeroes as a function of q^. Therefore, 

*<,-.)(*)- 2'-<'-«> + ( S c-<'-»)7. 
c=^0 VceFr* / 

But, if c e Fr*, c(r'l) = 1. Thus, the coefficient of q^ is (r - 1) = - l(r). 
What about the higher coefficients? The key is to notice that e^xf/c) is a 

point of order c on the elliptic module associated to A (viewed as a lattice). 
Further, all the powers that occur are divisible by (r — 1). As (r — 1) = — 1 
(r) we may compute the sums above by summing over all the elements {xf} and 
then multiply by - 1 . But now we are computing power sums of roots of 
polynomials and so, again, we may use Newton's rules. 

Our first corollary is very important: Let <J> be the elliptic module 
associated to A and let c G A. We know <j>(c)(z) = cz + 2?ici aiz

r'. Thus, the 
gap between the highest nonzero term and next highest is rD<<c) — rD^~l; 
which tends to infinity with D(c). But Newton tells us that once i < rD^ — 
rD(c)-\^ tk e s u m s 0f the ;th power of the roots of <t>(c)(z) = 0 is 0. Thus, in any 
coefficient, only finitely many c's may have a nonzero contribution.^ 

Finally, when we normalize our uniformizer and divide by (X)(r~ l\ we see 
that the coefficients of q^iX; z)n, n > \, may be computed by using Carlitz's 
module C. In other words we use Newton to find the same power sums of 
C(a)(z) = 0, a Œ A, as we used for <£. As a corollary, these normalized 
coefficients are rational; i.e. in Fr(T). 

It remains to discuss the constant term. Upon dividing by (X)r_1, we are 
reduced to computing 

2 a-<'-», 

where L is the lattice associated to C. Now, we know that 

eL\Z) otŒL 

Therefore, we can use the geometric series to see that the Laurent coefficients, 
at the origin, of \/eL(z) are sums of the form ±2 a G J L a~ / c . But, we can 
compute these directly from eL by synthetic division. This gives us the last 
tool needed to find the coefficients. (For more on the constant terms, i.e. 
"zeta-values", see [4].) For an analytic theory of zeta functions developed 
along these lines see v-adic zeta functions, L-series, and measures for function 
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fields, Invent. Math. 55 (1979), 107-120. In particular, we see that the 
normalized coefficients are rational multiples of (X)(r_1). 

The above procedure works in general for all Eisenstein series for GL2. 
Thus we have 

THEOREM 6.11. The normalized coefficients of E^r_^{z) are rational multiples 

For instance, set r = 3. We find by using the above procedure, 

$)-%(*) = {T9_T)
1
{T3_T) ~ ««& *) + ° • ? « & Zf 

+ O • qj\, z)4+0- qx(X, zf - qx(\, z)1 + • • • . 

Very mysteriousl 

What about the case of the principal congruence subgroups? The theory is 
essentially the same for the nonconstant terms. The constant term is handled 
by the following lemma. 

LEMMA 6.12. Let J be a rank one lattice and let fi G k ® / — J. Then 
(a)l/ey(j8) = 2 a e y l / ( j 8 + a ) . 
(b) In general, the sums 2 a e J ( / ? + a) ' occur as Taylor coefficients at the 

origin, of the function in z (ey(z) + eN(p))~l. 

PROOF, (a) follows directly from the formula 

upon setting z — p. 
To see (b) we notice that for fi Œ k ® J - J, 

(ej(z) + e,(0))-' = ej{z + /J)"1 = 2 (* + P + «)"'• 
a(EJ 

Now, we again use the geometric series to express both sides about the origin 
and compare coefficients. 

With the lemma, the general computation is finished and we find 

THEOREM 6.13. The normalized coefficients of the Eisenstein series of weight i, 
level I, are ith powers of a fixed constant times an algebraic element. 

In comparison with the classical case, the expansion coefficients are very 
puzzling. For the full group, the denominators of the constant terms are 
computed in [4], and, in [3], this result is extended to all the coefficients. Still, 
nothing very specific is known. For instance, are the nonconstant terms 
actually in Fr[ T]l (This would imply a terrific amount of concellation.) When 
are they zero? What primes divide them? etc. 

7. Hecke operators, (a) Hecke operators for congruence subgroups of SL2(Z). 
One of the most beautiful aspects of the classical theory of modular forms is 
the theory of the Hecke operators. These operators act on spaces of modular 
forms and yield a terrific amount of arithmetic information. We will now 
summarize this. 
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For SL2(Z) the definition is as follows. Let/(z) be a form of weight 2k and 
let « E N . Then, 

T((nMz)-n»-* S d~H^-\ 
a>\,ad=n \ u / 

As, r((rt)) is defined by summing over all sublattices of index n, it is simple to 
see that T((n))f(z) is also a form of weight 2k for SL2(Z). Further, we have 

(a) T((m))T((n))f = T((mn))f, if (m, n) = 1, 
(b) T((p))T((p"))f = T((pn + l))f + p2k-xT((p"-lM 

if/? is a prime and w > 1. 
(Indeed, (a) is simple, (b) is proved by taking into account multiplicities; see 
[11].) Therefore, we see these operators commute. Now, let f(z) = 
2 m G Z cm^w, q = e(2mz). Then, by using standard formulae on sums of powers 
of roots of unity, one computes that 

T((n))f(z)= 2 ymqm, 

with 

"Ym ~ 2 alk~XCmn/a2' 
a\(n,m) 

a> 1 

(See [11, pp. 98-102].) 
From the calculation we derive the important corollaries. (1) T((n)) takes 

holomorphic forms to holomorphic forms and cusp forms to cusp forms. (2) 
Let n = p, p prime. Then ym = cpm if m SE 0 (p); ym = cpm + p2k~xcm/p if 
m = 0 (/;). 

Suppose, finally, that ƒ is a nonzero eigenfunction for all T((n)); i.e. 
T{{n))f = \J. Then we find cx ^ 0 and, if we normalize so that cx = \, then 
c„ = A„ for all n. Thus, we find an important dictionary between eigenvalues 
and ^-expansion coefficients. 

The simplest nontrivial examples of such eigenfunctions are the Eisenstein 
series. One computes, (see [11, p. 104]), that 

T((n))E2k = o2k_l(n)E2k. 

On the space of cusp forms, there exists an inner product, called the 
Peterson product, for which the Hecke operators are hermitian. One thus 
deduces the existence of an orthogonal basis of cusp forms consisting of eigen­
functions for all the Hecke operators. 

In the case of level (m), m E N, one can define Hecke operators for any 
number prime to m, in a very similar manner. With this many of the above 
results go thru; e.g. the space generated by Eisenstein series of a given weight 
is stable under the Hecke operators. The space of cusp forms is also stable, 
etc. We refer the reader to [5]. 

(b) Hecke operators in the Laurent-series case. Before returning to the 
function field case, we give a useful convention: lower English letters will 
now denote monic elements of A, if they denote an element of A. 

Therefore, let f(z) be a weakly modular form of weighty = (r - l)y0 for the 
full group GL2(v4). Let i G A. Our definition here is similar to the classical 
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one; we differ only in using "overlattices" as opposed to "sublattices". So, we 
set 

D{B)<D(d) 

It is immediate that T((i))f is weakly modular on %. 
One of the interesting facets of the theory over the formal Laurent-series 

fields, is that T((i))T((h))f = T((ih))f for all i, h G A. The reason for this is 
quite amusing; we perform the standard calculation and we see that the 
multiplicities are either 1 or 0 modulo (r). As r = 0 in A, the result follows. 

In the case at hand, one cannot as yet present a formula on the effect on 
^-expansions as beautifully simple as the one for the SL2(Z) case. Still we can 
give a procedure for the calculation. Thus, let ƒ = 2w>0

c,i#£>; tfoo — ££T!)> 

LEMMA 7.1. The sum 2D(B)<D(d) qjiaz + B)/d) is a polynomial in qj^az). 

COMPUTATION-PROOF. Let <f> be the elliptic module associated to e^\ i.e. 
ej^az) = <|>(a)(e00(z)) for a E A. Now, the elements g^daz + B)/d) are 
reciprocal roots of the polynomial in x, <j>(d)(x) — e^az) = 0. Suppose, 
<j>(d) = lifi^ atx

ri. Then, by simple algebra, the reciprocal roots of 2 atx
r — 

ej^az) satisfy 

Again, by Newton, we can compute power sums of g<J<(az + B)/d) in terms 
of goo(az) and so we can compute power sums of q^iiaz + B)/d). Reasoning 
as we did for the Eisenstein series, we see the power sums of q^daz + B)/d) 
end up as expressions in qj^az). This gives the result. 

Thus, we are reduced to finding the expansions of q^az)", n > 1, a E A. 
More generally we have: 

LEMMA 7.2. Let 0 =£ a E A and let ax,.. . , an be representatives of A/(a). 
Then 

SooM = ~ 2 UooOO ~ eO0(ai/a)g2
o0(z) + • • - ) . 

« a, 

PROOF. We have seen g^O) = 2 0 + a)"1 . So 

a a {a,} « 
i i 

= - 2 «<»(* + o,/*)-1 - - 2 (*«(*) + ««.(a*/*))"1 

= 7 2go0w(i + u«,/«)gocWr1-
The geometric series then finishes the proof. 

Consequently, we can compute g^azf in terms of gx; the same result is 
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true for q^. If we normalize, we just do the whole computation with Carlitz's 
module C. 

As for SL2(Z), the Eisenstein series are again eigenforms for all the Hecke 
operators. Further, one sees that for y = (r — l)/o, T({i))E{z) = iJE(z), for all 
i G A. (Note that ij depends only on (/).) The reason is that we do the 
standard computation for SL2(Z) and, as with the Hecke operators, we see 
some multiplicities are divisible by r. 

The case of level I is handled in the same fashion as for principal 
congruence subgroups of SL2(Z); see [2]. The effect on expansions is calcu­
lated in the same manner as above. One then can see, as for congruence 
subgroups of SL2(Z), that the space generated by Eisenstein series is stable 
under the Hecke operators. The space of cusp forms is also stable. Further, by 
checking Newton closely, we see that the space of double-cusp forms is also 
stable. In view of the classical situation this is very surprising. 

It seems unlikely that there are bases for these spaces consisting of 
eigenvectors (though miracles do sometimes happen!). Still, we are guaran­
teed some eigenvectors. This follows from the same result on nontrivial finite 
dimensional representations of commutative algebras. 

The action of the Hecke operators, like the ^-expansions, is very mysteri­
ous. For instance, let A = (T*2 - Tr)E^+$ - {T* - T)Erj_l. Then, A is a 
form of weight (r2 — 1) for the full group. One can show that A is nowhere-
zero on % and is a cusp form. Further, one can show that {k^- A} is the 
space of cusp forms of weight r2 — 1. Thus, A must be an eigenform for the 
Hecke operators. Consequently, A acts like the classical A = (60)3Z?2 — 27 • 
(140)2£3

2. However, in [3], it is shown that r((/))A = /(r_1)A, for all /. As a 
consequence, Er_x and A have the same eigenvalues for all T((i)). This never 
happens classically. It means that the Hecke operators alone do not dis­
tinguish a modular form. Further, it seems to imply, as Serre remarked, that 
the Hecke operators act like "grossencharacters of type A0". 

Still, given an eigenfunction for all the Hecke operators, there must be 
many relations among the coefficients. Perhaps, when finally understood, 
these relations will not be as complicated as they at first appear. One might 
then see exactly how much information the Hecke operators are giving. 

Complements. Although the theory over a Laurent-Series field contains 
many analogues of classical objects, some analogues are not known to exist. 
For instance, do these series correspond in some way to Galois representa­
tions; or, for that matter, anything involving the Galois groups? Are there 
analogues of theta functions, and do these analogues give us "sums of 
squares"-type formulae? Is there a Poisson summation formula, or a Mellin 
transform? etc. Such questions are very intriguing. 
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